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Abstract—A new semi-supervised ensemble algorithm called 

XGBOD (Extreme Gradient Boosting Outlier Detection) is 

proposed, described and demonstrated for the enhanced 

detection of outliers from normal observations in various 

practical datasets. The proposed framework combines the 

strengths of both supervised and unsupervised machine learning 

methods by creating a hybrid approach that exploits each of their 

individual performance capabilities in outlier detection. XGBOD 

uses multiple unsupervised outlier mining algorithms to extract 

useful representations from the underlying data that augment the 

predictive capabilities of an embedded supervised classifier on an 

improved feature space. The novel approach is shown to provide 

superior performance in comparison to competing individual 

detectors, the full ensemble and two existing representation 

learning based algorithms across seven outlier datasets. 

Keywords—semi-supervised machine learning; data mining; 

anomaly detection, outlier detection; outlier ensemble; ensemble 

methods; stacking; representation learning 

I. INTRODUCTION 

Outlier detection methods are widely used to identify 
anomalous observations in data [1]. However, using supervised 
outlier detection is not trivial, as outliers in data typically 
constitute only small proportions of their encompassing 
datasets. In addition, unlike traditional classification methods, 
the ground truth is often unavailable in outlier detection [2]–
[4]. For supervised algorithms, such highly imbalanced 
datasets and insufficiently labeled data have led to limited 
generalization capabilities of these methods [2]. Over the years, 
numerous unsupervised algorithms have been developed for 
outlier detection. These methods specialize in exploring 
outlier-related information such as local densities, global 
correlation and hierarchical relationships for unlabeled data. 

Ensemble methods combine multiple base classifiers to 
create algorithms that are more robust than their individual 
counterparts [5]. In the past several decades, numerous 
ensemble frameworks have been proposed, such as bagging 
[6], boosting [7] and stacking [8]. Although ensemble methods 
have been explored for both supervised and unsupervised 
applications, outlier ensemble techniques have been rarely 
studied [3]. As outlier detection algorithms are typically 
unsupervised and lack true labels, their construction is not 
trivial [2], [4]. Most existing outlier ensemble methods are 
unsupervised, using either bagging approaches such as Feature 

Bagging [9] or boosting approaches such as SELECT [3]. 
However, the predictive capabilities of supervised methods are 
often far too reliant on the proportion of labelled data that may 
exist within the dataset. Therefore, stacking-based outlier 
ensembles may be used to leverage both the label-related 
information using supervised learning as well as the complex 
data representations with unsupervised outlier methods. 

The research presented herein extends and improves the 
work of Micenková et al. [10], [11] and Aggarwal et al. [12] to 
propose a semi-supervised ensemble framework for outlier 
detection. The original feature space is augmented by applying 
various unsupervised outlier detection functions on itself. 
Transformed outlier scores (TOS) generated by unsupervised 
outlier detection functions are viewed as richer representations 
of the data. Greedy TOS selection algorithms are then applied 
to prune the augmented feature space, in order to control the 
computational complexity and improve the accuracy of the 
prediction. Finally, the supervised ensemble method XGBoost 
[13] is used as the final output classier on the refined feature 
space. This combination of original features with the outputs of 
various base unsupervised outlier detection algorithms allows 
for a better representation of the data, similar to the 
classification meta-framework stacking [8]. 

The motivation behind this research is that unsupervised 
outlier detection algorithms are better at learning complex 
patterns in extremely imbalanced datasets than supervised 
methods. The strategy of taking the output of unsupervised 
methods as the input to the supervised classifier is regarded as 
a process of representation learning [10], [11] or unsupervised 
feature engineering [12]. Stacking is used as a combination 
framework to learn the weights of original features and newly 
generated TOS automatically. Compared to existing works 
[10], [11], the approach presented in this research does not rely 
on the costly EasyEnsemble [14] method to handle data 
imbalance by building multiple balanced samples; rather, it 
uses XGBoost [13] instead. In addition, multiple TOS selection 
methods are designed, evaluated and compared to achieve an 
efficient computational budget. Moreover, XGBOD does not 
require data pre-processing in feature combination, i.e., feature 
scaling for logistic regression in [10], [11], leading to an easier 
setup. Lastly, a tentative theoretical explanation of XGBOD is 
provided under a recently proposed framework by Aggarwal 
and Sathe [15]. Overall, XGBOD is easy to use, efficient to 
implement, and empirically effective for outlier detection.  



II. RELATED WORK 

A. Representation Learning 

The effectiveness of a machine learning algorithm relies 
heavily on selected data representations or features [16], 
wherein abundant and effective representations tend to produce 
good prediction results. Some machine learning algorithms, 
such as deep learning, are capable of learning both the mapping 
from representations to outputs as well as the representations 
themselves. However, these algorithms require a large amount 
of data to extract useful representations, which is not typically 
available in outlier mining. Nonetheless, the concept is easily 
transferable to outlier detection: unsupervised outlier detection 
methods could be viewed as instruments to extract richer 
representations from limited data, which is also known as 
unsupervised feature engineering [12]. This approach has been 
proven to be effective in enriching the data expression and 
improving the supervised learning [17].  

B. Data Imbalance and Extreme Gradient Boosting  

Data imbalance occurs when a given class (or subset) 
within the dataset represents an underwhelming minority of the 
overall population of classes [18]. When data imbalance is 
present, the performance of a classifier is generally degraded. 
Outlier detection is a binary classification task that is relatively 
imbalanced [15]. The outliers are inherently the minority class, 
which makes the detection of outliers prohibitively difficult. To 
treat data imbalance, bootstrap aggregating (Bagging) or 
EasyEnsemble methods are involved in outlier detection [10], 
[11]. EasyEnsemble builds multiple balanced subsamples by 
down-sampling the majority class, and combines the base 
classifier outputs trained on subsamples, such as majority vote.  
However, these methods are expensive to execute and their 
performance is problem-specific [19].  

Extreme Gradient Boosting, commonly referred to as 
XGBoost, is a tree-based ensemble method developed by Chen 
[13]. It is a scalable and accurate implementation of gradient 
boosted trees, explicitly designed for optimizing the 
computational speed and model performance. Compared to 
established boosting algorithms like gradient boosting, 
XGBoost utilizes a regularization term to reduce the over-
fitting effect, yielding better predictions [13] and shorter 
execution times [20]. Recent research shows that ensemble 
methods with XGBoost have the greatest ability to handle 
imbalanced datasets relative to other ensemble methods [18].  
As a result, XGBoost is selected as the final supervised 
classifier to replace EasyEnsemble in this study. Additionally, 
XGBoost could automatically generate feature importance 
rankings while fitting the data [20], which is useful for 
implementing a feature pruning scheme to improve the 
computational efficiency of the algorithm presented herein. 

C. Unsupervised Outlier Detection Methods 

Unsupervised methods do not rely on label information and 
could learn outlier characteristics through various approaches, 
such as local density. Developed unsupervised outlier detection 
methods may be categorized into four groups [21]: (i) linear 
models such as Principal Component Analysis; (ii) Proximity-
Based Outlier models, including density- or distance-based 

methods; (iii) statistical and probabilistic models that rely on 
value analysis; and (iv) high-dimensional outlier models such 
as Isolation Forest. These models are based on different 
assumptions, and yield superior results on certain datasets 
when the corresponding assumptions are met. In this research, 
various types of unsupervised outlier detection methods are 
used as base detectors to construct an effective ensemble. 

D. Outlier Ensemble 

Numerous ensemble methods have been introduced 
previously in the context of outlier detection [2], [4], [12]. 
These studies have either combined the outputs of constituent 
detectors or induced the diversity among different constituent 
detectors with potentially independent errors [3]. The most 
straightforward combination strategy is averaging the outputs 
of various base detectors after the normalization, also known as 
Full Ensemble. One of the earliest works, Feature Bagging [9], 
induces diversity by building on a randomly selected subset of 
features. Rayana and Akoglu adapt the boosting approach into 
outlier mining [3]. Their algorithm, SELECT, generates pseudo 
label information to perform sequential learning [3]. It is 
noteworthy that these frameworks are unsupervised, and 
similar to bagging and boosting methods in traditional 
classification tasks. In this study, we combine the results of 
various unsupervised detectors via a similar supervised 
approach called Stacking [8]. Stacking has been used recently 
in combing supervised and unsupervised ensembles in 
knowledge base population tasks [22].  As mentioned by 
Aggarwal et al. in [12], the key difference between 
classification stacking and the outlier Stacking presented in this 
research is that the former utilizes supervised methods for 
representation learning, whereas this approach relies on 
unsupervised methods instead. In both cases, the final output 
classier however is supervised. 

E. Semi-supervised Outlier Ensemble with Feature Learning 

Micenková et al. have proposed a semi-supervised 
framework called BORE to leverage the strength of both 
supervised and unsupervised methods [10], [11]. BORE first 
uses various unsupervised outlier detection methods to 
generate outlier scores on the training data. These unsupervised 
outlier scores are then combined with the original features to 
construct the new feature space. To combat the data imbalance 
in outlier data, they use EasyEnsemble [14] to create multiple 
balanced training samples and they then average the results of 
the samples. Logistic regression with L2 regularization is 
applied on the subsamples to identify outliers. To measure the 
computational cost, they simulate a cost-aware feature 
selection that takes the randomly generated running cost into 
account. Similar to Micenková’s work, Aggarwal and Sathe 
discuss a semi-supervised outlier ensemble framework that 
uses mild supervision in combining with unsupervised outlier 
models [12]. With access to a small number of outlier labels, 
they state that one could use logistic regression or support 
vector machines to learn the weights of base detectors. L1 
regularization is suggested to prevent overfitting and perform 
feature selection while many detectors are presented. We 
include both BORE (logistic regression with L2 regularization)  
and logistic regression with L1 regularization in this study as 
baseline algorithms. 



    

III. ALGORITHM DESIGN 

XGBOD is a three-phase framework, as depicted in Fig. 1. 
In the first phase, new data representations are generated. 
Specifically, various unsupervised outlier detection methods 
are applied to the original data to get transformed outlier scores 
as new data representations. In the second phase, a selection 
process is performed on newly generated outlier scores to keep 
the useful ones. The selected outlier scores are then combined 
with the original features to become the new feature space. 
Finally, an XGBoost classifier is trained on the new feature 
space, and its output is regarded as the prediction result. 

A. Phase I: Unsupervised Representation Learning 

The proposed approach is based on the notion that 
unsupervised outlier scores can be viewed as a form of learned 
representations of the original data [10]–[12]. Alternatively, 
these can also be understood as a form of unsupervised feature 
engineering, to augment the original feature space as well. 

Let the original feature space
n d

X


 denote a set of n  

data points with d features. As outlier detection is a binary 

classification, vector {0,1}y  assigns outlier labels, where 1 

represents outliers and 0 represents normal points. Let L  be a 
set of labeled observations of X , such that:  

 1 1( , ),..., ( , ) n d
n nL x y x y =                      (1) 

The outlier scoring function is defined as a mapping 

function ( )  , where each scoring function would output a 

real-valued vector ( ) 1n
i X    on dataset X as the 

transformed outlier scores (TOS) to describe the degree of 
outlyingness. Outlier scoring functions could be any 
unsupervised outlier detection method. The outputs, TOS, are 
used as new features to augment the original feature space. 
Combining k outlier scoring functions together constructs a 

transformation function matrix:  1,..., k =   which 

generates the outlier score matrix of k base scoring functions 

on the original feature space X . Applying ( )   on the original 

data X , the outlier scoring matrix ( )X is then given as: 

( ) ( ) ( )1 ,...,
T T n k

kX X X   =   
 

              (2) 

As mentioned above, any unsupervised outlier detection 
method could be used as a base outlier scoring function for 
feature transformations. However, heterogeneous base 
functions tend to yield better results, as identical outputs from 
base functions do not greatly contribute to the ensemble [1], 
[12]. The diversity among base functions encourages distinct 
data characteristics to be learned, leading to an improved 
generalization ability of the ensemble. Furthermore, highly 
correlated base estimators result in similar errors and do not 
contribute to the prediction; rather, they bring unnecessarily 
high computational burdens to the overall solution.  

 Meanwhile, outlier scoring functions should be accurate as 
well, as inaccurate ones degrade the prediction.  As a result, 
there is an inherent tradeoff between diversity and accuracy: 

Fig. 1. Illustration of XGBOD’s semi-supervised approach 

using distinct but inaccurate detectors improves the diversity at 
the risk of degrading the overall predictive capabilities. 
Therefore, a balance between diversity and accuracy should be 
maintained to gain an improved prediction result [1], [4]. In 
this study, different types of unsupervised outlier methods are 
used as the base outlier scoring functions, and their parameters 
are also tweaked to generate further variation. This design 
yields a varied collection of both accurate and inaccurate TOS. 

B. Phase II: TOS Selection 

Once the outlier score matrix ( )X  is generated, it is 

ready to be combined with the original features X . In the work 
of Micenková et al. [11], X is directly combined with the 

entire newly generated data representations ( )X  as: 

 ( )Feature Space [ , ] n l
new X X =                   (3) 

where ( )l d k= + is the dimension of the combined feature 

space with d original features and k newly generated TOS.  

Compared to the approach presented herein, multiple TOS 

selection methods are designed to pick only p ( p k ) TOS 

from ( )X for combining with the original features. The 

reason is closely related to feature selection in machine 
learning: not all TOS would contribute to the prediction. 
Additionally, reducing the number of selected TOS would 
speed up the execution as (i) there are fewer transformations to 
apply on the original data and (ii) the combined feature spaces 
are smaller to learn on. Three selection methods are defined, 
and an empty set S  is initialized to store the selected TOS. 

Random Selection picks p TOS from ( )X  randomly and 

adds to S without replacement.  

Accurate Selection selects the top p most accurate TOS. 
The accuracy measure could be any appropriate evaluation 
metric, such as the area under receiver operating characteristic 

curve (ROC), among others. Let ( )iACC  denote the ROC of 

( )
T

i X measured by the ground truth y. It then iteratively 

selects the most accurate TOS in ( )X  based on the value 

of ( )iACC   using: 

( )( , )
T

i iACC ROC X y=                           (4) 



Algorithm 1 Balance Selection 

Input:  1,..., k =   , ground truth y , # of TOS = p  

Output: The Set of Selected TOS: S  

 Initialize: Selected TOS: {}S =  

 

 

1.  ( ) ( )( )( )max
X max ACC X =   /* most accurate*/ 

 
2.  ( )

max
S S X   /*add selected TOS to set S */ 

 

 

3.  ( ) ( ) ( )
max

\X X X    /*remove from the pool*/ 

4:    while #( )S p do 

5:        for ( ) ( )
i

X X   do 

 
6.         ( ) Eq. (5)i   /*discounted accuracy*/ 

7.         ( ) ( )( )max
max

i
X X =   

8.         ( )
max

S S X   /*add the current best to set S */ 

9.         ( ) ( ) ( )
max

/X X X   /*remove from the pool*/ 

10.      end for 

11.  end while 

12.  return S  

 

Balance Selection maintains the balance between diversity 
and accuracy by picking the TOS that are both accurate and 

diverse. For each ( ) ( )i X X  , a greedy selection is 

executed based on TOS accuracy calculated by Eq. (4). To 
improve diversity in S at the same time, a discounted accuracy 

function ( )i  is devloped on the basis of Eq. (4) as:  

( )

 

#( )

1

( , )

subject to , 0

i
i S

i j

j

j i

ACC

S ACC


=

  =

 

  

                        (5)  

The Pearson correlation ( , )i j    is used to measure the 

correlation between a pair of TOS. The Pearson correlation 
between a TOS and all selected TOS in S is aggregated 

as
#( )

1

( , )
S

i j

j


=

  . If a TOS is highly correlated to the TOS 

that have already been selected in S, a larger denominator 
would be assigned in Eq. (5) to discount its accuracy. The 
discounted accuracy function favors accurate TOS that have 
low correlations with already selected TOS in S , thereby 

discouraging the with-in set similarity in S . Until the size of 

set S equals p , TOS in ( )X will be evaluated iteratively by 

Eq. (5). Each time, the TOS with the largest discounted 

accuracy ( )( )i
max X  is added to S and removed from the 

candidate pool ( )X . The workflow is given in Algorithm 1. 

With running one of the TOS selection algorithms above, p 

TOS are selected as
n pS  . Then the refined feature space, 

Feature Spacecomb , is created by concatenating the original 

features X by S, as   ( )Feature Space , n d p
comb X S  +=  . It 

is noted that ( )k p−  TOS are discarded to improve the 

algorithm efficiency and prediction.  

C. Phase III: Prediction with XGBoost 

An XGBoost classifier is applied on Feature Spacecomb to 

generate the final output. Leveraging XGBoost, the run-time 
efficiency and predictive capability of the algorithm are 
enhanced due to its robustness to data imbalance and 
overfitting. Additionally, a post-pruning process may be 
performed by XGBoost’s internal feature importance. The 
feature importance is calculated on the feature counts in node 
splitting, when the model is fitted. More aggressive TOS 
pruning is thus possible, i.e. selecting top q most important 
TOS from S by the internal feature ranking.  

D. Theoretical Foundations 

Bias-Variance tradeoff is widely used to understand the 
generalization error of a classification algorithm. Recently, 
Aggarwal and Sathe have pointed out that a similar theoretical 
framework is also applicable to outlier ensemble [15]. In this 
view, an outlier ensemble has two types of reducible errors: (i) 
squared bias, caused by limited ability to fit the data and (ii) 

variance, caused by the sensitivity to the training data. An 
effective outlier ensemble should successfully control the 
reducible error, given that reducing bias may increase variance 
and vice versa.  

In this research, various unsupervised outlier detection 
algorithms are used to enrich the feature space, which injects 
diversity into the model and then combines the results. This is 
considered as a variance reduction approach, as combining 
diverse base detectors reduces the variance of outlier ensemble 
[3], [12], [15]. However, this may cause inaccurate TOS to be 
included in the ensemble, incurring higher model bias. This 
explains why the full ensemble (averaging all TOS) does not 
perform well—it may include some inaccurate base detectors 
with high bias [3]. Thus, the TOS design selection algorithms 
only keep the useful ones for reducing the bias. Moreover, the 
ensemble and regularization mechanisms in XGBoost could 
achieve low variance without introducing much bias [20]. With 
various instruments to reduce bias and variance, XGBOD is 
considered to improve the generalization ability in all stages. 
However, the performance of XGBOD may be heuristic and 
unpredictable with pathological datasets or a bad selection of 
base unsupervised outlier detection functions. 

IV. EXPERIMENT DESIGN 

Two comparison analyses are conducted with various 
baselines included. ROC [1], [10], [11] and Precision@n 
(P@N)  [12] are widely used for evaluation in outlier detection; 
both are included herein. The final scores are calculated by 
averaging the results of 30 independent trials. To further 
compare the performance difference, various statistical tests are 
introduced. Specifically, the non-parametric Friedman test [23] 
followed by Nemenyi post-hoc test [24] is used to analyze the 
differences among multiple algorithms, while Wilcoxon rank-
sum test is used to conduct the pairwise comparisons. In this 
study, 0.05p   is regarded as statistically significant. 



Dataset Points ( n ) Features ( d ) Outliers 

Arrhythmia 452 274 66 (15%) 
Letter 1600 32 100 (6.25%) 
Cardio 1831 21 176 (9.6%) 
Speech 3686 600 61 (1.65%) 
Satellite 6435 36 2036 (31.64%) 
Mnist 7603 100 700 (9.21%) 

Mammography 11863 6 260 (2.32%) 

 

TABLE I.  SUMMARY OF DATASETS 

A. Outlier Datasets 

Table I summarizes seven real-world datasets used in this 
study. All datasets are widely used in outlier research [2], [11], 
[15], [25], and are publicly accessible within an outlier 
detection repository called Odds [26]. The datasets are split 
into training sets (60%) and testing sets (40%). 

B. Base Outlier Scoring Function and Parameter Setting 

The effectiveness of XGBOD depends on both the accuracy 
and diversity of the base outlier scoring functions. Therefore, a 
wide range of unsupervised outlier detection algorithms are 
included. The pruning process then selects the most useful 
ones. In this research, seven base outlier scoring functions are 
used: (i) kNN (the Euclidean distance of the kth nearest 
neighbor as the outlierness score); (ii) k-Median; (iii) Avg-kNN 

(average k nearest neighbor distance as the outlierness score); 

(iv) LOF [27]; (v) LoOP [28]; (vi) One-Class SVM [29] and 
(vii) Isolation Forests [25]. The description of these algorithms 
is omitted due to brevity. However, it is noted that kNN, k-
Median, Avg-kNN and One-Class SVM herein are all 
unsupervised with no requirements of the ground truth. To 
further induce diversity, the parameters of these base scoring 
functions are varied. For nearest neighbor-based algorithms 
including kNN, k-Median, Avg-kNN, LOF and LoOP, the 

range of k is defined as  1, 2, 3, 4, 5, 10, 15,..., 100 . Given 

that the LoOP algorithm is computationally expensive on large 
datasets, the narrower k range of [1, 3, 5, 10] is used. For One-

Class SVM, the kernel is fixed to radial basis function, and 
different upper bounds on the fraction of training errors are 
used. For Isolation Forest, the number of base estimators varies 

at  10, 30, 50, 70, 100, 150, 200, 250 . In total, 107 TOS is 

built for each dataset. 

C. Experiment Setting 

Experiment I compares the performance of different 
frameworks. They use either all TOS or none TOS (on the 
original data); no TOS selection is included. For example, in 
the proposed method, XGB_Comb, applies XGBoost directly 
on the combined data constructed by the original features and 
all TOS. Multiple baselines are included: (i) Best_TOS: the 
highest score among all TOS (unsupervised); (ii) Full_TOS: 
the average of all TOS scores, equivelent to Full Ensemble 
(unsupervised); (iii) XGB_Orig: XGBoost on the original data 
with no TOS; (iv) XGB_New: XGBoost on newly generated 
TOS only; (v) L2_Comb: 2L logistic regression with 
EnsyEnsemble on the combined data, also known as BORE in 
[10] and (vi) L1_Comb [12]: 1L  logistic regression with 
EnsyEnsemble on the combined data. Both L2_Comb and 
L1_Comb are using EasyEnsemble (50 bags). XGBoost in both 

Experiment I and II uses 100 base estimators with max tree 
depth at 3 by default. 

Experiment II analyzes the effect of TOS selection. 
XGBoost is used as the only classifier in all settings. Therefore, 
selecting zero TOS is equivalent to XGB_Orig and selecting all 
TOS is equivalent to XGB_Comb in Experiment I. From 
selecting zero TOS (XGB_Orig) to all TOS (XGB_Comb), it 
would result in distinct feature spaces. The results of selecting 
different numbers of TOS are analyzed. Besides the number of 
selected TOS, the results of different selection algorithms 
(Random Selection, Accurate Selection and Balance Selection) 
are also compared. It is noted that selecting one TOS with 
Accurate Selection is same as using Balance Selection. 

V. RESULTS AND  DISCUSSIONS 

A. Prediction Performance Analysis 

Table II shows the results of Experiment I, which directly 
compares different classification methods without any TOS 
selection. For clarity, all unsupervised approaches are marked 
with *, and all methods applied on the combined feature space 
are marked with # in Table II. The best performer for each 
dataset is highlighted in bold. 

The Friedman test illustrates that there is a statistically 
significant difference among seven algorithms for both ROC 

( 2 32.45 = , 0.001p  ) and P@N ( 2 32.88 = , 0.001p  ).  

However, Nemenyi test is not strong enough to show pairwise 
differences.  XGB_Comb achieves the best result on six out of 
seven datasets except Mammography, for both ROC and 
P@N. For Mammography, XGB_Comb is inferior to 
XGB_Orig; incorporating TOS does not improve the result in 
this case. One potential explanation is that Mammography 
only has 6 features so that not all chosen unsupervised methods 
can extract useful representations out of such a limited feature 
space. In contrast, unsupervised representation learning 
markedly improves the supervised classifier on datasets with a 
high dimension feature space, such as Arrhythmia (274 
features), Mnist (100 features) and Speech (600 features). 
Therefore, unsupervised representation learning tends to be 
more useful when a high feature dimension is presented. 

It is noted that the final output classifier should be carefully 
chosen while using unsupervised representation learning. One 
view is that simple linear models, such as logistic regression, 
should be used as the final classifier for the augmented feature 
space. In this situation, EasyEnsemble should be used to 
construct balanced subsamples, since simple model could not 
handle the data imbalance. In contrast, we argue that the 
combination of a simple model and EasyEnsemble could be 
replaced by the ensemble algorithms with strong 
regularization, like XGBoost, for better performance. The 
experiment result confirms our view. XGB_Comb, L1_Comb 
and L2_Comb are all applied on the combined feature space 
(the original features + newly generated TOS). However, only 
XGB_Comb has an edge over the supervised approach with no 
TOS (XGB_Orig), while L1_Comb and L2_Comb are even 
inferior to XGB_Orig on Arrhythmia, Cardio, Satellite and 
Mnist.     



Datasets 

ROC P@N 

Best_

TOS* 

Full_

TOS* 

L1_ 

Comb# 

L2_ 

Comb# 

XGB_

Orig 

XGB_

New 

XGB_

Comb# 

Best_

TOS* 

Full_

TOS* 

L1_ 

Comb# 

L2_ 

Comb# 

XGB_

Orig 

XGB_

New 

XGB_

Comb# 

Arrhythmia 0.8288 0.7750 0.8537 0.8545 0.8698 0.8110 0.8816 0.5345 0.4088 0.5530 0.5449 0.5932 0.4568 0.6002 

Letter 0.9368 0.8897 0.9653 0.9685 0.9399 0.9593 0.9729 0.5655 0.3450 0.6653 0.6874 0.6181 0.6679 0.7320 

Cardio 0.9449 0.8411 0.9953 0.9879 0.9966 0.9868 0.9976 0.5972 0.3478 0.8925 0.8508 0.9302 0.8477 0.9377 

Speech 0.7673 0.5009 0.8515 0.8534 0.7593 0.7819 0.8591 0.1677 0.0441 0.1569 0.2082 0.1696 0.1502 0.2561 

Satellite 0.7534 0.6992 0.9156 0.9096 0.9656 0.9254 0.9666 0.6188 0.5040 0.7566 0.7508 0.8508 0.7769 0.8568 

Mnist 0.9184 0.8526 0.9890 0.9880 0.9963 0.9980 0.9999 0.4368 0.4147 0.8409 0.8379 0.9195 0.9302 0.9901 

Mammography 0.8759 0.8617 0.9410 0.9415 0.9515 0.9105 0.9431 0.3152 0.2609 0.6013 0.5754 0.6877 0.4707 0.6677 

 

Dataset 
XGB_ 

Orig 

XGB_ 

New 

XGB_ 

Comb 

L1_ 

Comb 

L2_ 

Comb 

Arrhythmia 0.3963 0.2693 0.6181 1.5521 0.6281 
Letter 0.1520 0.9048 1.0286 1.2231 0.5719 

Cardio 0.1456 0.1046 1.1174 3.1053 0.6215 

Speech 8.1853 2.2833 10.177 5.9067 2.2505 

Satellite 0.5018 3.7720 4.1570 144.79 28.252 

Mnist 1.6107 3.5495 4.9213 19.359 26.428 

Mammography 0.2968 5.2578 5.4165 38.182 1.9436 

 

TABLE II.  MODEL PERFORMANCE (AVERAGE OF 30 TRIALS)

TABLE III.  TRAINING AND PREDICTION EFFICIENCY (SECONDS) 

Compared with L1_Comb [12] and L2_Comb [10], 
XGB_Comb outperforms regarding both ROC and P@N; it 
brings more than 10% improved P@N on four datasets and 
even 23.05% improvement on Speech. It has been found that 
L1_Comb and L2_Comb have close performance, confirmed by 
the Wilcoxon rank-sum test on L1_Comb and L2_Comb with 
no statistically significant difference. 

The analysis of execution time is conducted on selected 
algorithms, and the TOS generation stage is not measured since 
it depends strongly on the choice of base algorithm and the 
implementation. Table III shows the execution time (average of 
30 trials), and the most efficient method with the full combined 
feature space is highlighted in bold. Clearly, L1_Comb is 
generally least efficient and markedly slower than L2_Comb 
and XGB_Comb; it is not recommended to use for this task. 
However, there is no clear winner between L2_Comb and 
XGB_Comb regarding running efficiency. L2_Comb is faster 
on four datasets and 2 to 3 times faster than XGB_Comb, while 
XGB_Comb is the most efficient algorithm on three datasets 
that is 5 to 7 times faster than L2_Comb. It is noted 
XGB_Comb is the most efficient one on time consuming 
datasets (Satellite and Mnist). Additionally, the authors have 
not measured the data preprocessing time for L1_Comb and 
L2_Comb, such as data scaling, which is not required for 
XGB_Comb. Combining with the analysis of the detection 
performance, it is assumed that XGB_Comb is still a stable 
choice that brings consistent efficiency improvement over 
L1_Comb and meaningful improvement over L2_Comb on 
time-consuming tasks. 

B. Number of Selected TOS 

Figure 2 illustrates the XGBoost’s P@N performance when 
different numbers of TOS are used to enrich the original 
feature space, from zero (XGB_Orig) to all TOS (XGB_Comb). 
Detailed performance metrics are omitted for brevity. In 
general, using a subset of TOS usually generates better results 

than using all TOS. For instance, the best P@N is achieved by 
selecting 5 TOS on Arrhythmia, 60 TOS on Letter, 5 TOS on 
Cardio, 80 on Satellite and 5 on Mammography. Using all 
TOS on Mammography even leads to degraded performance 
which is worse than no TOS (XGB_Orig). In contrast, if 5 most 
accurate TOS (Accurate_5) are selected, the prediction 
performance is improved. Surprisingly, combining only a small 
number of TOS with the original feature may still improve the 
results significantly. For instance, using the most accurate TOS 
(Accurate_1) would improve P@N from 0.6181 to 0.7307 on 
Letter, and improve from 0.7673 to 0.8338 on Speech. This 
observation can be explained by the design of XGBoost: it 
learns the important features automatically by identifying most 
frequent features to split on in base trees [20]. Although only a 
small number of useful TOS included, XGBoost assigns higher 
weights to these key features in prediction.  

Using t-distributed stochastic neighbor embedding (t-SNE) 
[30], two-dimensional visualizations of Arrhythmia are 
presented with four distinct feature spaces in Fig. 3. 
Augmenting the original feature space with 10 TOS (upper 
right) and 30 TOS (lower left) improves the data expression 
over the original feature space (upper left), since outliers (red 
triangles) are more separated from normal points (blue dots) 
with TOS. The visualization of using TOS only (lower right) 
demonstrates that TOS are good representations of the data 
where outliers are easier to be identified. However, deciding 
the best number of TOS to use is non-trivial and possibly data-
dependent; Friedman Test does not show a statistical difference 
regarding the number of TOS. It is understood that selecting 
too few TOS is risky with high model variance, which can be 
controlled by selecting more TOS. As a rule of thumb, 
including all TOS is a safe choice; it often results in decent, if 
not the best, performance. 

Besides using the combined feature space (the original 
feature space along with the newly generated TOS), using 
newly generated TOS alone achieves excellent results 
occasionally. On Letter and Speech data, using TOS alone 
outperforms the original feature space. This does not only 
prove that TOS can effectively express the data but also 
implies that the original features may not be necessary for the 
final classifier. However, this performance improvement is 
inconsistent. For example, although Fig. 3 suggests using TOS 
alone results in better data representation, using TOS alone has 
lower ROC than using the original feature space on 
Arrhythmia. The same phenomenon has been observed in 
[10], [11] as well. Thus, the original features cannot be fully 
replaced by TOS as the quality of TOS is heuristic in the 



 

 

current approach. Despite, the possibility still exists if effective 
representation extraction methods can be proposed. 

Fig. 2. The effect of number of TOS and selection method 

Fig. 3. t-SNE visualization on Arrhythmia 

C. TOS Selection Method 

Figure 2 also shows the comparison of three selection 
methods regarding P@N. On Letter, Cardio and Mnist, the 
Friedman test does not show a significant difference. On the 
remaining four datasets, the selection method performances 
tend to be more arbitrary with significant differences, although 
no algorithm consistently outperformed. 

Random Selection comes with more uncertainty. Its 
performance is severely degraded on Speech by selecting only 
one TOS (0.1604), even worse than not using TOS (0.1696). 
Additionally, Random Selection performs worse than Accurate 
Selection and Balance Selection on all datasets if only selecting 
one TOS. However, Random Selection also has promising 
results; it ranks highest on Cardio (10 TOS) and Mnist (90 
TOS). Micenková’s work [10] analyzed the performance of 
Random Selection and found it is consistently poor. The results 
presented herein agree that Random Selection is less 
predictable and stable, but it could occasionally lead to decent 
results. The authors assume the discrepancy is because (i) 
EasyEnsemble in [10], [11]  is less stable than built-in bagging 
of XGBoost and (ii) different outlier datasets have distinct 
characteristics. While more research is needed, it is possible 
that Random Selection exhibits a heuristic result. 

Choosing from Balance Selection and Accurate Selection 
may depend on the dimension of the original feature space. 
Empirically, Balance Selection seems to work better on the 
datasets with more features, such as Speech (600 features) and 
Arrhythmia (274 features). In contrast, Accurate Selection 
outperforms on Mammography (6 features) and Satellite (36 
features). One assumption is Accurate Selection tends to pick 
TOS generated by a specific type of outlier detection method 
with different parameters, but it is hard for this type of method 
to extract distinct but useful representations on high 
dimensional data. Alternatively, Balance Selection favors 
diversity, leading to good results by selecting different types of 
TOS with independent errors. Accurate Selection might be 
appropriate when the original feature space dimension is low, 
as emphasis on diversity might not be critical in this situation. 

 With the number of selected TOS increases, all three 
selections methods become more comparable because the 
number of overlapping TOS rises as well. As discussed, 
Random Selection is riskier, and its performance is usually the 
worst of all three algorithms. It is not recommended especially 
while selecting few TOS. However, it may give superior results 
sometimes due to its heuristic nature. Accurate Selection is 
suggested when the dimension of the original features is low, 
and Balance Selection might be useful with a complex original 
feature space. Using all TOS like the default setting of 
XGB_Comb could be a safe choice in most of the cases. 

D. Limitations and Future Directions 

Numerous studies are underway. Firstly, TOS are extracted 
from the original features directly. However, making feature 
selection on the original data may eliminate some unnecessary 
ones, and TOS can then be built on the selected features. 
Secondly, more TOS selection methods can be incorparated in 
future studies, such as post-pruning on XGBoost’s feature 
importance. Additionally, TOS Selection may be replaced by 



dimensionality reduction methods, like principal components 
analysis; TOS could be combined instead of being selected. 

VI. CONCLUSIONS 

A new semi-supervised outlier ensemble method, XGBOD 
(Extreme Gradient Boosting Outlier Detection), has been 
proposed, described and demonstrated for the detection of 
outliers in various benchmarked datasets. XGBOD is a three-
phase system that (i) uses unsupervised outlier detection 
algorithms to improve data representation (ii) leverages greedy 
selection to keep useful representations and then (iii) applies an 
XGBoost classifier to predict on the improved feature space. 
Numerical experiments on seven outlier datasets show that 
XGBOD achieves markedly improved results compared to 
competing approaches. This is supported by the theoretical 
considerations that indicate reductions in variance and bias.  

The design of XGBOD is motivated by the previous work 
of Micenková et al. [10], [11] and Aggarwal et al. [12], which 
proposed that unsupervised outlier detection methods can 
extract richer outlier data representations than the original 
feature space. Specifically, applying various established 
unsupervised outlier detection algorithms on the original data 
could generate TOS with potentially better representations. 
Furthermore, combining these TOS with the original feature 
space could then improve the overall outlier prediction.  

This research extends these previous studies to show that 
using even very few TOS significantly improves the outlier 
detection rate. The t-SNE visualizations on different feature 
spaces confirm that TOS help to separate outliers from normal 
observations. To control the computational expense, three TOS 
selection algorithms have been designed and tested herein. 
Recommendations regarding the selection, use and 
interpretation of these algorithms have also been provided. In 
general, Balance Selection is proposed for high-dimensional 
feature spaces and Accurate Selection is suggested for data 
with fewer features. Random Selection may be useful in some 
cases; however, the result is generally unpredictable. 

 Compared to other semi-supervised outlier ensemble 
methods, XGBOD provides better predictive capabilities, 
eliminates the dependency of building balanced subsamples 
and averaging the results, and improves efficiency with more 
stable execution. It is robust enough to handle an increased 
range of input features, in that it does not require any feature 
scaling or missing value imputation in data preprocessing. To 
the authors’ best knowledge, XGBOD is the first complete 
framework that combines unsupervised outlier representation 
with supervised machine learning methods that use ensemble 
trees. Lastly, it should be noted that all source codes, datasets 
and figures used in this study are openly shared and available1. 
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