arXiv:1805.00509v1 [cs.NE] 1 May 2018

Spiking Neural Algorithms for
Markov Process Random Walk

William Severa, Rich Lehoucq, Ojas Parekh, and James B. Aimone
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM 87122
Email: wmsever@sandia.gov, rblehou@sandia.gov, odparek @sandia.gov, jbaimon@sandia.gov

Abstract—The random walk is a fundamental stochastic pro-
cess that underlies many numerical tasks in scientific computing
applications. We consider here two neural algorithms that can
be used to efficiently implement random walks on spiking
neuromorphic hardware. The first method tracks the positions
of individual walkers independently by using a modular code
inspired by the grid cell spatial representation in the brain. The
second method tracks the densities of random walkers at each
spatial location directly. We analyze the scaling complexity of
each of these methods and illustrate their ability to model random
walkers under different probabilistic conditions.

I. INTRODUCTION

The classic random walk, a stochastic process, underlies
many numerical computational tasks. The random walk is a
direct reflection of the underlying physical process and models
Brownian Motion, among other processes. Random walks
have found myriad applications across a range of scientific
disciplines including computer science, mathematics, physics,
operations research, and economics [1]]. For instance, the treat-
ment of ionic movements as a random walk process is critical
to deriving Nernst-Plank dynamics for ions in understanding
the biophysics of neurons [2]]. Additionally, random walks are
also used in non-physics domains, such as financial option
pricing [3]] and ecology [4].

Random walks are typically straightforward to implement,
and can be computationally appealing in high dimensional
domains that are ill-suited for other numerical approaches.
Because they are typically used to independently sample a
population, simulations of many random processes are easily
distributed across a parallel machine; with each computational
core responsible for a distinct process. However, the utility of
multi-core systems for multi-agent models such as random
walks is still limited in many applications [5]. Most simu-
lations that utilize random walks to statistically arrive at a
solution require the aggregation of a population of walkers
before any conclusions can be made. Aggregation of walkers’
behavior requires both time and energy, and the difficulties
are exacerbated when scaling to large systems (e.g. terascale,
petascale, exascale). Thus while the walkers themselves are
easily parallelized, the overall simulation is still constrained
by the integration of information across the population.

Similar to other heavily parallel domains, parallelization
via GPUs can out-perform CPUs for random walks, seeing

roughly an order-of-magnitude performance gain [6]. How-
ever, these gains are offset by increased power consumption
which renders the benefits dubious in an HPC setting. Ad-
ditionally, the aggregation challenge is unimproved from the
CPU implementation.

Neuromorphic hardware presents a compelling architecture
to consider for an energy efficient implementation of random
processes. In the ideal, a neuromorphic platform can be viewed
as an incredibly large parallel architecture, albeit one with very
simple processors (i.e., the neuron) [7]]. These novel and up-
coming platforms potentially offer dramatic improvements in
performance-per-Watt [8]—[10]. Additionally, we hypothesize
that neuromorphic platforms that leverage spiking neurons,
such as the leaky integrate-and-fire (LIF) neuron, and have
inherent capability for probabilistic sampling, such as either
stochastic synapses or probabilistic thresholds, may offer com-
pelling advantages for modeling a random walk process. These
stochastic components have been used for computation in other
applications [[11]] and can be instantiated in hardware such as
on IBM’s TrueNorth chip [§]].

This paper describes two spiking neural circuits for simu-
lating random walkers. We then analyze these models in the
context of emerging neuromorphic computing architectures,
such as the Intel Loihi chip [12] and the ARM-core based
Manchester SpiNNaker platform [[13]. We note that the ap-
proach taken here for modeling stochastic processes relies on
relatively small circuits with very precise use of stochastic
events, whereas an alternative approach to modeling stochastic
inference consists of more dynamical population models of
neurons [11].

II. RANDOM WALK MODEL

Consider a system, S, that consists of a mesh of discrete
locations. For simplicity we will consider the case where
the mesh is an lattice of N grid points along each of D
dimensions, although in practice a lattice is not a requirement.
Within § is a population that evolves through a random
walk process that is suitable to model as a population of
independent particles, such as a diffusion process where each
particle moves through space according to a Brownian motion
evolution. We consider only the case where each particle is
independent without interactions.

If a simulation models K independent particles, then the
average position of the K particles approaches the expected
value of the population at a rate of O(1/y/K) as a conse-
quence of the central limit theorem.

III. NEURAL MODEL OF RANDOM WALK

In this paper, we consider two neural circuit approaches to
modeling a population of random walkers. The first is a neural
circuit to perform the conventional task of modeling each
walker independently as it moves over a space, which we call
the particle method. The second approach is a neural circuit
that tracks the number of particles at each given location in a
simulation. This method effectively tracks the distribution of
particles over the whole space, as we refer to it as the density
method. The following two sections describe the motivation
and circuits used to compute these respective methods, and
the subsequent section describes the simulations performed to
illustrate these approaches efficacy.

Importantly, as one of the motivating features of spiking
neuromorphic hardware is its potential advantages in energy
consumption, we consider here not only the required neuron
resources and time to simulate these models, but also estimate
the energy consumption of these models, for which number
of spiking events is generally considered a first-order proxy.

A. Particle models

The most straightforward approach to modeling a random
walk is to commit a subset of neurons to modeling each
particle independently. A simple neural algorithm for a particle
consists of three parts: the stochastic process, which deter-
mines what random action is taken, a spatial location, which
tracks the location, and an action circuit, which updates the
location based on the output of the stochastic process and any
boundary conditions, if relevant.

In most implementations, the dominating neuron cost for
simulating individual walkers will be the spatial location. Even
if particles are relatively restricted in their local movements,
each particle circuit must be able to represent all spatial
locations that are relevant for the simulation. Thus, if space
(i.e., number of neurons) is the primary consideration, a
compact code, such as a binary representation is well suited,
as it requires only O(D - log N) neurons to represent space.
However, a binary code is non-trivial to update using neurons,
and the average activity of the network is relatively dense.
Alternatively, a unary code — where one neuron represents
each spatial location — can be highly energy efficient (only
one spike required to communicate location) and straightfor-
ward to update, albeit spatially impractical (requires O(NP)
neurons to represent space).

Here, we present a neural algorithm that lies between these
extremes, offering a compromise between a binary and unary
representation of space.

1) A modular spatial code balances compactness and en-
ergy efficiency: One potential model that lies between unary
and binary is a modular code, also known as a residue numeral
system. Our approach to implementing a modular code is

shown in Fig. [I] This model is inspired by a model for grid
cells in the entorhinal cortex brain, which has been shown to
have very high capacity for spatial locations relative to the
more unary-like place cells in the hippocampus [14].

Reference

0%o
o© °

Individual Walker

0%0 °°°
° e,
«¢ @*@ o0 ° o
(2] (5]
00 oC 00

Fig. 1. Illustration of modular oscillator code. Top panel shows reference
oscillators, with rings of size 5, 7, and 11. Individual walker have equivalent
sized rings. When not moving, all oscillators progress forward at same speed,
however if a particle takes a random step, its individual rings will advance
relative to the reference. The position of each walker can then be decoded
from these modular differences

Left? Right?

o

Fig. 2. Schematic of spiking neural circuit to construct ring osccilators with
update capabilities. Principal ring neurons are shown in blue, with the active
neuron in dark blue. Update neurons are below the ring neuron, and can
be reused assigned neurons are at least three apart. Bold solid line between
adjacent ring neurons is weight 0.5 and delay 2; solid lines between other
ring neurons are weight 0.5 and delay 2; solid lines to update neurons are
weight 0.5 delay 1; dotted lines —0.5 and delay 1; and movement source
inputs are weight 0.5 and delay 1

For each dimension, the particle circuit will have M ring
oscillators, each with a unique prime number of neurons,
C; for i < M, with states at time ¢, ¢;(t) fori < M
with the combined state represented by the vector C'(t) =
[c1(t), c2(t), ..., cart], where each state is the integer index of
which neuron is active in each ring. This provides the circuit
with C); = []C; possible states. For example, consider a
particle with M = 3 and C; = 3,Cy = 5, and C5 = 7, then
the particle’s spatial code would have C'); = 105 possible
states.

To implement the random walk in neurons, we consider the
case where a position x is encoded by the offset between the
particle’s state vector C' and an equivalently sized reference
population, R, which consists of rings of the same size. At
each time-step, for the state of each ring oscillator in the
reference and particles advances by one,

Cl(t) -+ 1, if Cl(t) < Cl
0, otherwise

ci(t+1) = { (1

The position, = is then generated from C and R by
subtracting the two states. For each oscillator, a difference
(Si = (Ci — ’I“i) mod Ci (2)
is computed, from which we know, by the Chinese Remain-
der Theorem, that the position, x, can be decoded. (One useful
reference may be pages 873-876 in [15]].) One extension of
residual codes such as these is that addition and multiplication
involving x can be performed by the equivalent modular arith-
metic operation on each of the component rings. Therefore, a
change of Az in the position of a walker can be represented
by adding Az to each of the states c;(t).

Structuring a neural circuit to advance a ring oscillator
continuously is straightforward, with each ring of C; size
being comprised of C; LIF neurons connected in a ring
configuration, with the synaptic efficacy being sufficient to
drive the downstream neuron to fire. However, a non-obvious
circuit is necessary to reliably speed up or slow down the
oscillators if the random walk moves the location. Fig.
shows one circuit solution that uses spike delays to ‘add’ and
‘subtract’ to the position of the ring by one using spike delays.
The integrate-and-fire neurons in this circuit all have a spiking
threshold of 1, a reset value of 0, and immediate decay (i.e.,
a time constant of 0). In this implementation, a ring neuron at
location i is connected to the neuron at i+/ with a weight 1,
and to the neuron at i+2 and to itself with weight 0.5. Each
of these ring connections has a delay of 2. With this setup,
without any other inputs the ring will advance by one state
every 2 clock cycles.

A secondary circuit is then placed on all rings of a walker to
advance or stall the circuit (thus generating an offset relative
to the reference). We consider here the case where the particle
has three potential movements (‘left’, ‘right’, or ‘stay’); with
a source neuron for each direction using a stochastic threshold
or synapse to determine whether to move in one direction or
not and communicating that action to each of the particle’s
rings for that dimension. The currently active ring neuron,
i, sends an input of weight 0.5 and delay 1 to both of its
respective update neurons. In the case where the circuit is
advanced (labeled ‘right” in Fig.[2), all positive update neurons
get a 0.5 input as well, allowing the appropriate positive update
neuron to fire. That neuron then sends a +0.5 to the ¢+ 2 ring
neuron and a -0.5 to the 7+ 1 ring neuron, effectively shifting
the ring forward by 1. The negative update is similar, except
for driving the source 7 neuron rather than the 7 + 2 neuron.

Importantly, because the rings are only locally activated and
impact up to two ring neurons away, these update neurons
can be reused every three ring neurons. Ultimately, this means
either four or five pairs of update neurons are required, because
there are a prime number of ring neurons.

The dynamical representation of position as the offset
of these oscillators confers several advantages. First, it is
consistent with the transient state of neurons. Rather than a
neuron having to self-activate to maintain a state, the ring
simply evolves at a steady rate when position is not changing.
Second, it allows updates to be more efficiently implemented.
When there is a random movement of the particle, in whatever
dimension is being considered, the particle’s rings are in uni-
son accelerated or decelerated by one. The use of a common
reference for all particles also allows changes in the frame-of-
reference to be efficiently accounted for as well — a simple
shift in the reference state is the equivalent of shifting all
the particles in unison. This may be of use in models where
an observer of a random walk is itself in motion. Similarly,
because the reference is used only in the decoding of position,
it is possible to have multiple references, or to readily compute
the distance between particles without using a reference at all.

2) Complexity of oscillator particle model: Each walker
for the above model requires 2+ C; + 2 * (3 + C; mod 3)
neurons and > 9 C; + 2% (3 + C; mod 3) synapses. Only
one spike is required per ring, for M total, when there are no
updates, and M + 1 additional spikes required for an update.

There is a global cost as well, with an additional set of
rings for the reference position (although unless the reference
position is also in motion, update neurons would not be
required). Each dimension would consist of its own rings.

This model presents a useful trade-off between a dense code,
with lots of rings, and a sparse code, which is more energy
efficient but requires more neurons to cover a space. The dense
code would approach O(D log N) total neurons, with systems
with fewer rings approaching O(DN) total neurons and with
a correspondingly lower number of spikes.

B. Density model

One alternative to tracking the particles independently is to
keep track of the density of particles at every location and
randomly move walkers. The main advantage of a particle
density approach is that the complexity of the spatial graph
is independent of the number of walkers. While a density
representation is the equivalent of the particle method in terms
of producing estimated density distributions at different times,
path dependent statistics are not readily available. Instead,
they must be decoded from the timing of the spikes. This
can impact some application, such as estimating the prices of
certain path-dependent financial options.

As in the particle model, we need to either discretize a con-
tinuous space or equivalently assume that the markov process
exists on a graph. For each node on the graph, we instantiate
a spiking circuit which we call a unit. A schematic of a two-
neighbor unit is pictured in Fig. |3} Within a component there
exists several key components:

From Other
Units Readout To Other Units
1 T A A

Walker
Generator

Supervisor

Walker
Counter

Supervisor

Probability Gate

Fig. 3. Schematic of a two-neighbor unit. Circles represent neurons where
empty represents complete decay (Decay = 1) and filled represents no decay
(Decay = 0). Blue lines represent excitatory connections; Red dashed lines
are inhibitory. Weights are =1 and delay is delay = 1 unless marked. Thresh-
olds are all 0.5 except for the filled (no decay) neurons that have threshold
0. The buffer circuit is optional and only used in synchronized mode,where
all walkers take the same number of steps. ‘Supervisor’ generically refers to
neurons used to moderate the walking process.

1) Walker Counter The walker counter is a simple neuron
with threshold O and contains running count of the
number of walkers at a given node. Walkers are passed
from unit to unit by spikes with negative weight (in-
hibitory signal). Hence, a sub-threshold potential of —5
corresponds with 5 walkers being at the corresponding
node.

2) Walker Generator The walker generator is a self-
excitatory neuron that ‘counts’ out the walkers stored in
the walker counter. After being initiated by a separate
supervisory signal, the walker counter sends positively
weighted spikes to the walker counter, until the walker
counter hits its threshold. At this point, all walkers
have started their next transition and inhibition from the
walker counter halts the walker generator.

3) Probability Gate and Output Gate This group of
neurons interacts with the output gates to ensure that
each walker is sent to exactly one other unit, weighted
by the specified probabilities. More specifically, a tree
of neurons subdivides (through selective excitation and
inhibition) the potential outputs according to conditional
probabilities. In Fig. [3] the unit only has two neighbors
and so only one neuron is needed for the random draw.

4) Buffer The buffer is an optional component for syn-
chronized operation. Without the buffer, the walkers may
each take a different number of steps. By incorporating
a buffer, the walkers are first stored in the counter, sent
to buffers of neighbor units, and then flushed from the
buffers into the counters. Structurally, the buffer contains
a counter and generator neuron.

The readout provides a mechanism for monitoring the simula-
tion by observing the spikes being generated by the walker
generator. This could be useful for auxiliary computation

or in hardware systems where sub-threshold potentials are
unobservable. All the simulations that follow were performed
on a software simulator and so, since we can directly access
the sub-threshold potentials, a readout mechanism was not
needed.

A simulation using this density model is performed as a
series of manually or automatically triggered tasks. Initially,
current injection is used to place walkers at the desired
initial position. Then, walkers are counted and distributed by
sending an excitatory signal to the walker counter and walker
generator. This automatically sends walkers to neighboring
nodes via the the probability gate and output gate. We connect
a ‘walks complete’ neuron downstream of the walker counters
so that we know when all the walkers have been distributed.
If the units use synchronization buffers, the buffers are cleared
in the same way via an excitatory signal. Likewise, when
the buffer is flushed, we use the resulting excitatory signal
to trigger the next simulation timestep (i.e. the walkers take
their next step). Referring to the terminology of the particle
model, the stochastic process occurs within the probability
gates, the spatial location is stored in the potentials of the
walker counters, as each unit has a location, and the action
circuit is a combination of the walker generator and the output
gates.

This density-based approach allows for the neuron require-
ment to be tied only to the size of the underlying space/graph
and not to the number of walkers. Overall, the neuron cost for
a n-node graph is O(n) assuming the number of neighbors
for any node is much smaller than the total number of nodes.
The runtime is dependent on the number and distribution of
walkers. The time taken to evaluate one simulation timestep
is asymptotically linearly proportional to the largest number
of walkers at a node.

We note that for this construction, we assume that the
underlying neuron model is capable of stochastic firing. That
is, after a threshold potential is exceeded, the neuron spikes
according to the draw of a random number. This stochastic
model is representative of currently available neuromorphic
hardware. However, with more advanced neuron models, such
as one that supports stochastic synapses (i.e. spikes are sent
to post-synaptic neurons according to independent random
draws) could allow for simplified circuits.

IV. SIMULATIONS

A. Results of particle simulations

First, we demonstrate the particle method by showing a
random walk in free space. Fig. [] illustrates the appropriate
random trajectories of the particles over a 100 time steps.
Fig. [5] shows a longer time course, with particles moving for
1000 time steps.

Next, we illustrate how more complex walks can be exam-
ined, such as non-uniform probabilities. Fig. [7| shows a case
where random movement is biased heavily in the negative
direction, with the movement of the particles drifting as a
population towards the bottom left.

15 T T T T T T

8 |

-15 -10 -5 0 5 10 15 20

Fig. 4. Random walk of 20 particles over 100 time steps in free space
originating at the origin, with a balanced probability of moving in either
dimension equal to 0.25. Each particle used rings of size 5, 7, and 11
neurons. Steps are represented by progressively larger circles, with the solid
dot representing the end location.

Fig. 5. Random walk of 20 particles over 1000 time steps in free space
originating at the origin, with a balanced probability of moving in either
dimension equal to 0.25. Each particle used rings of size 5, 7, and 11 neurons.

One key limitation of the modular method described above
is its behavior when a walker’s position exceeds the precision
of the neural circuit. Because the modular code described
above has a finite capacity, eventually particles in a free space
will drift beyond the provided spatial resolution, wrapping
around the space as if it is a torus. An example of this is
shown in Fig. [6] wherein a small modular code (rings of size
3 and 7) led to a perceived jump of the particle from position
—10 to +10.

B. Results of density simulations

To examine the density model, we first explored a one-
dimensional space where nodes are connected in a cycle,
with transitions to adjacent nodes having a 50% probability.
Pictured in Fig. is the distribution of walkers with units

10 T T T T = T
8l]
6]
4t]

T 1 4
2+ | h“‘o \\-" + - 4
o L~ o
or ~ > 7 1
& L H'—O\
2r e Q - i
a0 [e5= 2] O—@
= < i
4 e 00 .G @ O :
¥ e o G= 4
6 fo] —¥ D 4
s P
8r Lo [2 1
N

10 & .

il -4 2 0 4 6 8

Fig. 6. Random walk of 2 particles over 50 time steps in free space originating
at the origin, with a balanced probability of moving in either dimension equal
to 0.25. Each particle used rings of size 3 and 7. Note the misencoding of
the blue particle due to reaching the capacity of the code.

Fig. 7. Random walk of 50 particles over 200 time steps in free space
originating at the origin, with a weighted probability (of 20%) of moving
in the negative direction in each dimension, versus 5% of moving in the
positive direction. Each particle used rings of size 5, 7, and 11 neurons.

10 and 13 being initialized with 30 walkers each. Only the
Markov simulation time is shown. The checkerboarding seen
is a result of the fact that each node is connected only to two
neighbor nodes, and any given walker must move to one of
these two options.

The corresponding spike raster for the 1D case is shown
in Fig. [§| As expected, the walkers tend towards a uniform
distribution. Fig. [§] also illustrates how time is treated dif-
ferently the density method. The amount of simulation time
required to model one time step of the system evolution is
non-deterministic, requiring enough time to potentially move
all particles within any given location. Because the system
progresses forward synchronously for spatial locations, the
model time required to advance is dependent on the distri-
bution of walkers. Because we are modeling a random walk,

Spike Raster Plot

160 |

Neuron

) T — i T EN

280

Timestep

Fig. 8. The spike raster plot for a one-dimensional random walk, with 50% probability in both up and down directions. Walkers begin on units 10 and 13.
Black dots represent spike events; red dots represent failed probability calls (i.e. neuron threshold is met, but the neuron does not spike due to stochasticity).
Neurons are grouped by unit, but are not sorted. Each simulation time step requires fewer computational time steps as walkers become more diffuse.

Timestep: 0 Timestep: 1 Timestep: 5 Timestep: 10
w® o » 0
8 3 5
3 5] || © 3 »
4 N 4 4
3 3 3 * 2
" n " "
: | | : :
6 6] 6 5 o
[] : o :
N . . 4
o 0 0 o o
D012 34 56 7 8 9 10112 WS 0 123 4 5 6 7 8 5 101112131415 67 1818 0 1 23 456 7 8 9 108 121357 0012345 6 7 8 9 W1 23S T B
x x x x
Timestep: 0 Timestep: 1 Timestep: 5 Timestep: 10
1] 10 10 ®
1 16 | 16 1
1 . 1 1 15
v i i 1 .
¥ i i 12
' ! ! '
10 . 10 10 "
- - o - -
8 8 [[
o
. . . .
]
0 0 0 [v

Fig. 9. Sample walker distributions from two separate two-dimensional experiments. In the first row, 30 walkers start on units (5,5), (5,15), (10, 10),
(15,5), (15,15); directions up, down, left, right have probabilities 35%, 35%, 15%, 15% respectively. In the second row, the simulation has the same setup,
except there are two obstacles (highlighted in blue). The walkers have O probability to enter the highlighted areas; the probability to enter a wall is distributed
evenly to the perpendicular directions.

Distribution of Walkers

20

[) B
Simulation Timestep

Fig. 10. Walker distribution over time for a one-dimensional random walk,
with 50% probability in both up and down directions. Walkers begin on units
10 and 13. Units are arranged spatially in a cycle so that walkers can ‘wrap
around.’

Walker Distribution Over Time (Free Space)
- (3,5)

(3,15)
— (5,10)

Number of Walkers
=
|

T — T T T T
0 10 20 30 40

Walker Distribution Over Time (with Obstacles)

Number of Walkers
w
L

— T — Tt T T
0 i0 20 30 40
Simulation Timestep

Fig. 11. Plotted are the number of walkers over time at three different
locations. The top graph corresponds to the top row of Fig. El as the bottom
graph does with the bottom row. The evolution of the walker distribution is
affected by the additional obstacles.

most simulations will drift towards more diffuse distributions,
requiring progressively less time to simulate the model.

Fig. 0] illustrates two time-courses of the density model in
two dimensions on a torus. The top half shows an instance
where the probabilities are uniform across the space (though
weighted towards the up and left directions). The bottom half

explores a case where walkers are prevented from entering
two disjoint obstacles. In Fig. [T1] we plot the walker density
at three different locations.

V. CONCLUSIONS

In this paper, we have demonstrated that small-scale neural
circuits can efficiently and scalably implement random walk
simulations. While this paper does not examine other aspects
of stochastic process models that are critical for many appli-
cations, such as complex boundary conditions and interactions
between particles, the models in this paper are designed to be
extended towards such considerations.

Notably, the two models of random walks shown here
are functionally equivalent, but each offer advantages under
particular circumstances. For instance, the number of neurons
required for density method scales with spatial resolution,
and the number of particles being modeled is dynamically
accounted for in the time required for the model to run.
This configuration may thus be well-suited for neuromorphic
systems whose neurons are capped at a fixed level whereas
the time a simulation can be run is flexible. Thus the number
of particles can be tuned to achieve the statistical significance
demanded by an application. Alternatively, the particle method
models each walker independently, thus the time for a simu-
lation to run is independent of the number of walkers so long
as there are sufficient neurons to represent the requisite spatial
resolution within each neuron.

There are several reasons beyond scaling that one method
may be preferable to the other. While perhaps not as obvious,
the paths taken by individual particles are preserved within the
spike timings of the density method; however, the behavior
of individual paths is directly retrievable from the particle
methods. This is of use in models of certain path-dependent
financial options for instance [[16]. On the other hand, for many
applications the density of walkers at a given spatial location
and time is the critical output of stochastic process models.
The density method by its nature provides an estimation of
the density at all locations of the space at all times, whereas
the particle method would require a subsequent integration of
information from all of the independent circuits.

Finally, the two models here each offer compelling poten-
tial advantages on different neuromorphic platforms, such as
the IBM TrueNorth chip [8]], Intel’s Loihi chip [12], San-
dia’s STPU archiecture [17], and the Manchester SpiNNaker
platform [13[]. The mapping of these algorithms to spiking
neuromorphic systems will be a subject of a future study.
However, we anticipate that these algorithms should map
well to these and other platforms, as the highly parallel
nature of random walk processes makes them well suited for
neuromorphic architectures. We conclude by highlighting the
point that the efficient implementation of a strictly numerical
process such as the random walk on neuromorphic hardware
would represent a major new capability for systems generally
designed to implement tasks such as neural processing and
machine learning.

ACKNOWLEDGMENT

This research was funded by the Laboratory Directed Re-
search and Development program at Sandia National Labora-
tories. Sandia National Laboratories is a multi-mission labora-
tory managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract de-na0003525.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

N. Masuda, M. A. Porter, and R. Lambiotte, “Random walks and
diffusion on networks,” Physics Reports, vol. 716-717, pp. 1 — 58,
2017, random walks and diffusion on networks. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0370157317302946

D. Johnston and S. M.-S. Wu, Foundations of cellular neurophysiology.
MIT press, 1994.

F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” Journal of political economy, vol. 81, no. 3, pp. 637-654,
1973.

E. A. Codling, M. J. Plank, and S. Benhamou, “Random walk models
in biology,” Journal of the Royal Society Interface, vol. 5, no. 25, pp.
813-834, 2008.

T. Chuang and M. Fukuda, “A parallel multi-agent spatial simulation
environment for cluster systems,” in Computational Science and Engi-
neering (CSE), 2013 IEEE 16th International Conference on. IEEE,
2013, pp. 143-150.

D. van Antwerpen, “Improving simd efficiency for parallel monte
carlo light transport on the gpu,” in Proceedings of the ACM
SIGGRAPH Symposium on High Performance Graphics, ser. HPG *11.
New York, NY, USA: ACM, 2011, pp. 41-50. [Online]. Available:
http://doi.acm.org/10.1145/2018323.2018330,

W. Severa, O. Parekh, K. D. Carlson, C. D. James, and J. B. Aimone,
“Spiking network algorithms for scientific computing,” in Rebooting
Computing (ICRC), IEEE International Conference on. 1EEE, 2016,
pp. 1-8.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668-673, 2014.
A. Diamond, T. Nowotny, and M. Schmuker, “Comparing neuromorphic
solutions in action: implementing a bio-inspired solution to a benchmark
classification task on three parallel-computing platforms,” Frontiers in
neuroscience, vol. 9, p. 491, 2016.

J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuro-
morphic hardware systems,” Frontiers in neuroscience, vol. 7, p. 118,
2013.

L. Buesing, J. Bill, B. Nessler, and W. Maass, “Neural dynamics as
sampling: a model for stochastic computation in recurrent networks
of spiking neurons,” PLoS computational biology, vol. 7, no. 11, p.
e1002211, 2011.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, P. Joshi, A. Lines,
A. Wild, and H. Wang, “Loihi: A neuromorphic manycore processor
with on-chip learning,” IEEE Micro, 2018.

S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the spinnaker system
architecture,” IEEE Transactions on Computers, vol. 62, no. 12, pp.
2454-2467, 2013.

S. Sreenivasan and I. Fiete, “Grid cells generate an analog error-
correcting code for singularly precise neural computation,” Nature
neuroscience, vol. 14, no. 10, p. 1330, 2011.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. MIT Press and McGraw-Hill, 2001.

M. B. Goldman, H. B. Sosin, and M. A. Gatto, “Path dependent
options:buy at the low, sell at the high,” The Journal of Finance, vol. 34,
no. 5, pp. 1111-1127, 1979.

A. J. Hill, J. W. Donaldson, F. H. Rothganger, C. M. Vineyard, D. R.
Follett, P. L. Follett, M. R. Smith, S. J. Verzi, W. Severa, F. Wang et al.,
“A spike-timing neuromorphic architecture,” in Rebooting Computing
(ICRC), 2017 IEEE International Conference on. 1EEE, 2017, pp.
1-8.

http://arxiv.org/abs/de-na/0003525
http://www.sciencedirect.com/science/article/pii/S0370157317302946
http://doi.acm.org/10.1145/2018323.2018330

	I Introduction
	II Random Walk Model
	III Neural model of random walk
	III-A Particle models
	III-A1 A modular spatial code balances compactness and energy efficiency
	III-A2 Complexity of oscillator particle model

	III-B Density model

	IV Simulations
	IV-A Results of particle simulations
	IV-B Results of density simulations

	V Conclusions
	References

