
DeepOrigin: End-to-End Deep Learning for
Detection of New Malware Families

Ilay Cordonsky
Deep Instinct Ltd

ilayc@deepinstinct.com

Ishai Rosenberg
Deep Instinct Ltd

ishair@deepinstinct.com

Guillaume Sicard
Deep Instinct Ltd

guillaumes@deepinstinct.com

Eli (Omid) David
Deep Instinct Ltd

david@deepinstinct.com

Abstract—In this paper, we present a novel method of differ-
entiating known from previously unseen malware families. We
utilize transfer learning by learning compact file representations
that are used for a new classification task between previously seen
malware families and novel ones. The learned file representations
are composed of static and dynamic features of malware and
are invariant to small modifications that do not change their
malicious functionality. Using an extensive dataset that consists
of thousands of variants of malicious files, we were able to
achieve 97.7% accuracy when classifying between seen and
unseen malware families. Our method provides an important
focalizing tool for cybersecurity researchers and greatly improves
the overall ability to adapt to the fast-moving pace of the current
threat landscape.

I. INTRODUCTION

For the past decade deep learning advancements influenced
problem solving methods in various fields like natural lan-
guage processing and computer vision. Previously, to create
a proper model in each of those fields, one had to use
advanced domain specific techniques in order to extract human
engineered features, which later were used as heuristics or
features in machine learning models. Deep learning introduced
representation learning, which made those tasks much easier
and today some tasks produce better results than humans [1].

While deep learning has been revolutionizing some fields,
others still have room to grow: The cyber space deals with
250,000 new threats daily1, however the traditional way of
mitigating and analyzing new threats heavily relies on human
intervention. Clients will get infected, upon noticing, they will
propagate the incidents to specialized teams, which in turn will
investigate the malicious file. If a file was already seen in the
wild, the infection might be removed. However, if it is a new
variant or family, the team will have to investigate the file
by analyzing some aspects of its behavior (network activity,
system calls, etc.). As a security researcher, it is critical to
quickly understand whether one is dealing with a new type of
malware, as the human resources in the cyber defense area is
very scarce and it is crucial for them to focus on the newest
threat families. Doing so heavily relies on domain expertise,
and with an exponential growth of malware we witness every-
day, the task of differentiating between known and previously
unseen malware families becomes much harder. Metamorphic
and polymorphic malwares are rewritten numerous times such

1https://www.av-test.org/en/statistics/malware/

that every iteration is different from the others. This type of
obfuscation makes it almost impossible to be detected by a
standard signature based anti-virus. Online forensics tools such
as VirusTotal2 will provide the security analyst with historical
data of the file only if the specific file was already found in
the wild. In practice, many new variants are undocumented
and thrive unnoticed.

To tackle the issue of differentiating known malware from
the unknown we leverage automatic file signature generation.
Moreover, the process should be invariant to the file’s static
nature and its actual behavior, both of which can be meddled
with, thus obfuscating the initial static or dynamic structure
of the file. While some file signature generation methods
have already been proposed [2], none of them were used
to differentiate previously unseen malware from obfuscated
versions of known malware. The question we are trying
to answer is: Can we generate a low dimensional malware
signature that captures the file’s main functionality in ways
that allow for differentiation between known and unknown
malware families?

Our main contributions in this paper are:

• A novel method for file signature generation. We use
these signatures to construct a new classifier that distin-
guishes between known malware families and new ones,
unseen in the wild ones. The initial input generation is
automatic and does not rely on domain-specific knowl-
edge or any specific aspect of the file (static or dynamic).
Primarily we are using a supervised multi-class classifier
(trained on already seen labeled malware) to generate low
dimensional file signatures that in turn are used as input
to a new classifier that solves the issue of measuring
functional differences between malware families.

• A unique threat landscape visualization method that al-
lows for rationalizing about malware novelty: Unseen
malware generates low neuron outputs. Plotting these
outputs on a low dimensional space gathers new malware
relatively close to the origin point and scatters known
malware at a distance. This overview is a powerful
forensics tool that also provides a glimpse into the neural
network.

The proposed method consists of four stages:

2http://www.virustotal.com

Ref: International Joint Conference on Neural Networks (IJCNN), pages 1–7, Rio de Janeiro, Brazil, July 2018.
ar

X
iv

:1
80

9.
08

47
9v

2 
 [

cs
.C

R
] 

 2
4 

N
ov

 2
01

9

https://www.av-test.org/en/statistics/malware/


1) A deep neural network is trained for known malware
family classification.

2) Non-linear dimensionality reduction model is created
by removing the softmax layer from the deep neural
network. The output of this model is the low dimensional
file representation.

3) File representations are created for a second training
dataset. This dataset consists both of known and novel
malware families.

4) A second classifier3 is trained using output from the pre-
vious stage. This classifier learns to distinguish between
known and novel malware families.

We use an extensive dataset of 14 malware families that we
split between the train and test sets. The split is temporal,
i.e., to allow us to follow each family representation over
time, all samples in the test set are from a later time than
samples in the train set. Furthermore, we use another set of
novel ransomware families, to differentiate them from the
representations of the known families. The quality of the
signatures is assured by analyzing the test accuracy of the
original classifier, which achieves 97% accuracy. To be able
to reason about the signature space and visualize it, another
model is trained using only two neurons for the (n − 1)th
layer. Removing the last layer leaves us with a 2D signature
generator. Finally, we scatter plot the resulting signatures.

The rest of the paper is structured as follows: Section 2
summarizes previous related work, and Section 3 provides the
details of the proposed methodology. In Section 4 we present
experimental results, and Section 5 contains our concluding
remarks and proposals for future work.

II. BACKGROUND AND RELATED WORK

Nowadays multiple cybersecurity vendors already provide
machine learning based malware detection solutions. State-of-
the-art detection mechanisms usually offer a binary decision,
i.e., whether the file is malicious or not. Some even tackle
the malware family classification problem, but even then, the
classification only occurs between a small number of known
malware families. Even the best malware classifier will not
be able to provide an answer to a question that all malware
researchers asks themselves with each new incident: did we
already see the likes of this sample?

In practice, while such models might generalize well enough
to catch a zero-day malware, further investigation of this file
will be similar to that of any other malicious file detected by
the same model, and no specific measures will be taken. Had
we had an indicator that would expose samples belonging to a
previously unseen new malware family, the incident handling
might be completely different (e.g., calling a cybersecurity
researcher to reverse engineer the malware and to evaluate
both potential damage and possible removal techniques).

We will review some of the methods that previously ad-
dressed similar tasks. Comar et al.[3] created a 2-tier system

3The new classifier is evaluated using a test set that consists of distinct
malware families that are not available during training.

where the first tier differentiates between malicious and benign
files, while the second tier dives deeper into malware classifi-
cation, discriminating between known malware and obfuscated
variants of it. Using one-class SVM, they assembled hyper-
spheres within the feature space. Each malware family class is
assigned to a separate hypersphere, and samples that do not fall
in all the spheres are considered obfuscated versions of known
malware. Training such a system suffers from scalability issues
since one will have to train as many classifiers as the number
of known malware families to establish a commercial grade
system. Moreover, each time a new family is detected, a new
model has to be trained for that specific family. Additionally,
only network related data were extracted for the feature space,
which makes the task domain-specific. In contrast, our method
is using a deep neural network to utilize multiple levels
of non-linearity between the features (as opposed to linear
kernel-based SVMs, that only achieve a single level of non-
linearity). Moreover, we encompass both dynamic and static
characteristics of the file within our initial input space, e.g.,
API calls, registry entry modifications, network inspection,
import/export tables, strings, etc. Thus, in addition to improved
accuracy due to the usage of more features, we are not bound
to any specific maliciousness indicator and therefore able to
detect families of non-network related malware. A further
difference is in how we define unseen malware: In our case,
obfuscated versions of the same malware family should reside
in proximity on the decision plane. Malware family of a
distinct type that incorporates different behavior and intent
will be considered as new, instead of recognizing zero-day as
a polymorphic version of a known malware type. The rationale
is that those samples have the same behavior as their variants,
and therefore, there is no need to reverse engineer them again,
unlike the novel malware families.

PAYL [4] uses unsupervised learning, creating profiles of
byte frequencies distributions per host and port connected
to an application. They then decide whether the behavior
is anomalous by testing if the Mahalanobis distance of the
operational profile from the precomputed one is higher than
a threshold set during the training period. Thus, this method
is domain specific and uses only features extracted from the
network activity of each application.

Deep learning is already being used for malware classi-
fication successfully. Dahl et al. [5] presented a successful
malware classifier that uses random projections for initial
dimensionality reduction, and a neural network classifier to
distinguish between malicious families and benign files. How-
ever, their method does not address the task of differentiating
between previously seen and unseen malware families.

David et al. [2] analyzed each file in a Cuckoo sandbox
environment where the files are executed in a secure envi-
ronment and their behavior recorded (network activity, system
calls, etc.). Each resulting report was tokenized and converted
to a binary vector, which was converter later using stacked
denoising autoencoders to a low dimensional signature. This
method is different from our approach to signature generation,
where we are using the output of the last hidden layer of



a DNN classifier as our signatures. The current paper also
provides an additional continuous metric for how novel a
malware sample is, instead of just a binary value of whether
the malware belongs to a known malware family or not.

III. PROPOSED METHODOLOGY

In this section, we present our approach for file signature
generation, for the task of differentiating between malware
of known and unknown families. Additionally, we introduce a
method to visualize the signatures in a low dimensional space.
This visualization method is an important tool that allows for
improved malware analysis.

The challenge we are dealing with is a classification task, in
the sense that we would like the representations of different
files from the same malware family to reside close to each
other in the signature space, allowing for a clear separation
between them and a different, unknown malware family set.
Thus, the representation should be fuzzy enough to disregard
slight modifications in the malware that only affect the struc-
ture of the file, without any behavioral change (e.g., appending
a byte to the end of the file, changing the file header in a way
that won’t compromise its validity, modify the source code
without changing the functionality, etc.). We hypothesize that
if we use the pre-softmax layer output as files’ signatures4,
their properties would allow separating between new and old
malware. That is, for family A of new malware samples, we
will get signature vectors of low floating point values, in
contrast to samples from known malware family B that will
produce signature vectors of higher values. By measuring the
relative distance of each signature from the origin point (in
the signature dimension space), we will be able to distinguish
novel malware from known malware families, as the former
will be closer to the origin point. By setting a threshold on this
distance, we will assign a decision boundary for the question at
hand. We can also use the distance from the origin to evaluate
the “novelty level” of the malware.

The preprocessing phase, as shown in Figure 1 consists of
executing each malware in a sandbox framework, which in turn
produces a text file in JSON format with various aspects of the
file (i.e., API calls, network activity, static characteristics such
as strings, etc.). Each of these perspectives may reveal a dif-
ferent angle to the scanned file’s maliciousness. For example,
if a file creates a new readme file, using the CreateFile
API, and then encrypts some files with the BCryptEncrypt
API, it may be ransomware. Plain text strings recovered from
an executable may reveal the imported functions used, some
of which may be alarming. High entropy values of various
file sections may indicate that the file is packed5. Analyzing
the network activity may expose downloads of unwanted
artifacts, a method popular among malicious dropper software.

4To generate a signature for a new file, we use the trained network without
the softmax layer - a file vector is fed to a forward pass of the network. The
resulting output vector is the signature.

5A packed executable is encoded when inactive and decoded at runtime
directly into memory. Packing is a known technique used for obfuscation to
avoid static analysis tools.

Fig. 1. Simplified illustration of the proposed method

The opening of ports to create backdoors is another network
exploitation technique.

The JSON file is tokenized and converted to a high di-
mensional binary vector that is used as an input to the
DNN classifier. The classifier consists of 9 fully connected
layers, including a 30-neuron pre-softmax layer. The DNN
uses PReLU activation function, and the last layer is a 14-
neuron softmax layer since we are training it to differentiate
between 14 known malware families. The softmax layer is
then removed, allowing us to use the resulting model as a low
dimensional signature generator.

A. Initial File Vectorization

Executables can be analyzed both statically and dynam-
ically. The static representation of the file consists of all
features that can be extracted without executing the file.
Examples of such features are plain strings, and various file
header parameters (e.g., compilation time, architecture, etc.).
To extract a dynamic representation, we are required to run
the file in a secluded environment (sandbox), and record
the actions the file is performing (e.g., network packets sent
and received, open sockets, IO operations, API calls along
with their arguments, etc.). Static features have two main
advantages: 1) Faster and safe extraction (no need to run
the file), and 2) Exploring all code flows of the analyzed
file. However, dynamic features are harder to obfuscate. To
combine the advantages of all feature types, we base our
method on both.

Executing malicious files using Cuckoo Sandbox provides
us with both static and dynamic features, and the output is
stored in a structured JSON file. This file is the input to our
preprocessing engine.

The absence of feature engineering allows the neural net-
work to learn the most efficient feature representations. As
a minimal preprocessing phase, we create a string dictionary.
This dictionary is generated using the training data exclusively.
We first tokenize each report to unigrams (words) and then
choose the 20,000 most common unigrams as our dictionary.



To eliminate zero variance features (i.e., JSON field names
that exist in all reports, and hold no information within them),
we remove all the words that are in all of the reports. We then
perform a second pass on the data, to create a Boolean feature
vector per Cuckoo output file. Each vector consists of binary
bit-string, where each bit corresponds to a single unigram
present or absent within the file. Those 20,000-dimensional
vectors are used as input to the deep neural network described
in the next subsection.

B. Training the Deep Neural Network

As stated before, our principal goal in this paper is to
highlight new malware. We first create low dimensional file
signatures, such that different variants of the same family
get similar representations. We use these representations as
input to a different classifier that will be trained upon them to
differentiate between already known families and new ones.
This method is somewhat similar to transfer learning [6], a
technique widely used for computer vision tasks. For our
purposes, we train a deep neural network classifier and use
its last hidden layer output as input to a new classifier. We
also introduce new malware families previously unseen by the
original classifier. We use a simple linear classifier over the
output values, and use each vector’s Euclidean distance from
the origin as a classification feature.

We train 9-layer DNN (20,000–5,000–1,000–1,000–1,000–
1,000–100–30–14 neurons in each layer). 20,000-dimensional
binary vectors are used as input, and the output layer is 14-
dimensional softmax layer. To achieve better generalization we
perform batch normalization [7] after each layer, along with
dropout [8] and input noise [2] to increase input variance.
For activation we chose PReLU [9]. We use categorical cross-
entropy as the loss function.

After training the model, we remove the 14-dimensional
softmax layer, leaving a 30-dimensional pre-softmax layer as
the new output layer. The values are not normalized and may
vary across the positive and negative side of each axis. These
floating point values serve as the low dimensional signature
of the file. We test the hypothesis that for unknown malware
family samples, most of the neurons will produce a low output
value, considerably lower than that of known family samples.

C. Visualization

For visualization purposes, we train a separate neural net-
work, where the pre-softmax layer consists of two neurons.
Following training and removal of softmax layer, we use the
output of these two neurons as a 2D file signature generator.
These signatures are easily plotted and may be used as an
additional tool for malware analysis.

IV. EXPERIMENTAL RESULTS

A. Dataset

For the baseline dataset, we chose to work with 14 different
malware families: Nimnul, Dinwod, Delf, Blocker, Expiro,
Kykymber, Zbot, Wabot, PornoAsset, Sytro, PolyRansom,
Virut, WBNA, and Parite. The amount of families that we

chose for the initial classification task is considered quite high.
The rationale was to encompass a broad variety of malware
behavior, so we created a dataset that consists of ransomware,
banking trojans, worms, backdoors, remote access, and remote
administration tools.

The initial dataset consists of 9,922 files and is split between
a train set of 7,759 and a test set of 2,163 samples. The split is
performed by a complete temporal separation between the two
sets, i.e., all samples in the train set appeared in the wild before
18-JAN-2017, while the ones in test set appeared after that
date6. Both training and test sets contain the same 14 malware
families. Additionally, we created another dataset of 160 new
ransomware samples from different families all of which were
previously unseen within the initial dataset. These are used to
evaluate the final classifier (the one that differentiates between
seen and unseen malware).

B. Previously Known Malware Families

The initial model was trained using a dataset containing
both old and new malware families, spanning over the years
2012-2016. To familiarize the reader with the families at hand
we provide short descriptions.

Nimnul: File infector that opens a backdoor. Using this
backdoor, an attacker can instruct the computer to download
malicious content that can further damage your computer.

Dinwod : Trojan. Injects code to running processes and
installs other malware.

Delf : Trojan. This is a generic code name. These trojans are
known for redirecting web traffic, application manipulation,
and installation of other malware.

Blocker: Generic ransomware code name. This type of
malware encrypts sensitive data using an encryption key it gets
through the TOR network. It then presents a ransom message
that asks for Bitcoin payment to decrypt files.

Expiro: Malware from the polymorphic file infectors family.
It injects unique malicious code each time while preserving the
malicious intent. The infected files are injected with informa-
tion theft routines, which are executed when the original files
are called.

Kykymber: Spyware that is usually dropped by a dropper
malware. It meddles with registry, downloads more malicious
files, and then deletes itself.

Zbot: (aka Zeus) Trojan. It steals personal and financial
information. May also lower browser security configuration
and turn off the firewall.

Wabot: Opens a backdoor that allows for remote access.
PornoAsset: Trojan. Usually dropped by other malware

droppers, or unknowingly downloaded when visiting malicious
or compromised websites. Usually it will attack using a screen-
locking notification that lists the demands of the malicious
actors.

Sytro: Mass-mailing worm. This worm distributes by send-
ing itself through email.

6According to VirusTotal “first submitted” value, a commonly-used value
by security researchers



PolyRansom: Polymorphic file infector that infects the host
with ransomware.

Virut: Virus. It infects executables, ASP, HTML and PHP
files. It spreads by replicating itself to removable and network
drives.

WBNA: Worm. Spreads by replicating itself to removable
and network drives. May also download and execute other
malware.

Parite: Virus. It infects files on local file systems and on
network drives. The infection is by code injection. The infected
file executes the malicious code, which in turn return the
control to the original code, so there is no immediate indication
of malicious behavior.

C. Previously Unseen Malware Families

For the differentiation task, we had to choose malware that
appeared recently. Since in 2017 we witnessed a large number
of ransomware attacks, it would be suitable to distinguish
between “old” malware (that also includes some ransomware
families) and new ransomware families that caused several
billion dollars of damages throughout 2017. The following
are some of the new families that we chose for the test set.

Cerber: Ransomware. First seen in mid-June 2016. It
spreads via email attachment disguised as a Microsoft Word
document. When the recipient opens the attached file, a macro
executes automatically and downloads the Cerber ransomware.

HydraCrypt: Appeared in late 2016. It is distributed by
exploit kits, and through URLs embedded in spam e-mails.
Loading the URL will download the malware that in turn will
encrypt data.

WannaCry: One of the most famous recent ransomware.
Used in May 2017 to attack more than 230,000 machines in
150 Countries. Among the targeted services were hospitals,
telecom companies, train companies and many more.

Locky: Released in 2016, highly active in 2017. Also
delivered by email, as an artifact downloaded by a malicious
macro within a Microsoft Word document.

NotPetya: Together with WannaCry, one of the most
damaging ransomware. It had massive success in infecting
thousands of machines throughout 2017. One of its main
differences from previously seen ransomware is that it spreads
on its own (in contrast to the others that required it to be
downloaded from a spam email). The most disturbing fact
about this malware is that although it acts like ransomware,
it actually is not. The file encryption is beyond repair, and
paying the ransom will not help with decrypting the data.

D. Sandboxing

All the files mentioned above are executed using Cuckoo7

sandbox. Cuckoo is a popular file analysis tool which exe-
cutes the file in a secluded environment, and records various
static and dynamic aspects of it (e.g., API calls along with
arguments, network behavior, open ports, strings, registry
manipulation, etc.). The results are saved in a structured JSON

7https://cuckoosandbox.org/

Fig. 2. Proposed DNN diagram. All layers are separated by batch normal-
ization and dropout.

file and tokenized as presented in the previous section. After
the tokenization, we project them to a 20,000-dimensional
binary vector. These vectors serve as input to the deep neural
network classifier.

E. Training the DNN classifier

To create low dimensional signatures, we trained a 9-layer
DNN classifier. The network consists of 20,000 dimensional
input layer, additional fully connected layers of 5,000, 1,000,
1,000, 1,000, 1,000, 100, 30 dimensions respectively, and a
final 14-neurons softmax layer (Figure 2). We applied batch
normalization [7] before each layer to deal with internal
covariate shift. Internal covariate shift occurs where the dis-
tribution of inputs per layer changes following changes in
the network parameters during the training phase. Applying
batch normalization helps to gain faster convergence, and also
adds another layer of regularization. We also applied dropout
with the rate of 0.4, i.e., for each layer 40% of randomly
chosen neurons are turned off for each training sample, making
neurons more independent of one another. Input noise was also
applied at the same rate. While dropout is applied to reduce
dependence between neurons, input noise is applied to achieve
a higher variance of the input. Since we are projecting each
Cuckoo report on a 20,000-dimensional vector, it is possible
for two different files to have the same initial representation.
By randomly turning off some of the indicators, we are making
it almost impossible for the network to encounter the same
input vectors.

When comparing the test set classification accuracy between
PReLU and ReLU activated models, PReLU provides much-
improved accuracy (97% vs. 91.9%). The difference between
the two activation functions appears below. While ReLU
cancels all negative feedback, PReLU allows it. Note that
PReLU includes a slope argument α which is updated during
training.

PReLU(α, x) =

{
αx for x < 0

x for x ≥ 0

ReLU(x) =

{
0 for x < 0

x for x ≥ 0

https://cuckoosandbox.org/


To summarize the network parameters: 10% of training
samples were used for validation. We applied dropout ratio
0.4 on each layer, including the input layer; We also applied
batch normalization on each layer’s input, using momentum
of 0.99, centering and scaling, beta initialization of zeroes,
gamma initialization of ones, moving mean initial values of
ones, and moving initial variance values of ones. We used
the PReLU activation function, initializing alpha with zeros.
For the last layer, as stated before, we used a 14-dimensional
softmax layer. The training ran for 1000 epochs, using a batch
size of 32 samples with Adam optimizer [10]. Training was
conducted on a single Nvidia GeForce GTX 1080 GPU.

The classifier achieved 98.1% validation accuracy and 97%
test accuracy. We then stripped the model of the softmax
layer. Thus, each forward pass on the model would produce a
30-dimensional output vector of floating point values. These
values are used as the low dimensional fingerprint of the
malicious file. Note that we did not use benign files for this
model since our goal is to differentiate between known and
unknown families of malicious files (given the fact that the
file is malicious).

F. Visualization of New Malware

Recapping our original assumption: for new malware fami-
lies, the pre-softmax layer will not fire extreme output values,
placing the 30-dimensional point closer to the origin, in
comparison to known malware families. 8

Using dimensionality reduction methods such as t-SNE [11]
the distance between clusters is meaningless. Therefore, we
trained another model, using a two-dimensional pre-softmax
layer (two neurons in the last hidden layer). This layer’s
output can be easily plotted, an example of which is shown
in Figure 3. While this is different from the original model
(since changing a layer within a network will affect all the
learned parameters), it does provide a visualization of how
this layer affects the final classification decision, and how the
model interprets known and unknown malware families.

Notice that unseen malware seems to group closer to the
origin point than most the other clusters. We can still see other
clusters close to the origin point, due to loss of information
when thinning the pre-softmax layer from 30D to 2D. Another
way to explain the proximity is by the similarity in behavior
of the said malware due to, e.g., a mislabeled malware
sample (since the current labeling process is manual). When
measuring distributions of the 30D signatures, the unseen
cluster appears to be by far the closest one. We show these
measurements below.

G. Analyzing Signature Space and Decision Boundary

Visualizing the two-dimensional signature space (Figure 3)
provides basic intuition to the pre-softmax layer behavior.
This view is merely an approximation of the 30-dimensional
signature space. To obtain a clearer picture we need to assess

8Note that we’re not dealing with benign files at all, the goal is, having
a malicious file, assess its novelty. We’re not interested in how benign files
would appear in this signature space.

Family Distance from origin
mean std.

Blocker 14.244988 2.674046
Delf 14.978935 2.001384

Dinwod 27.014787 2.105340
Expiro 20.268087 3.465324

Kykymber 23.500490 2.690603
Nimnul 17.992709 2.705298
Parite 20.872712 4.088434

PolyRansom 15.263254 4.904691
PornoAsset 16.534225 3.367623

Sytro 22.870228 0.980014
Virut 15.750393 3.520776

WBNA 20.325697 1.412213
Wabot 23.067854 0.498773
Zbot 14.457342 1.951387

Recent Ransomware 7.920390 2.198623
TABLE I

DISTRIBUTION OF THE DIFFERENT MALWARE FAMILIES OVER THE 30D
SIGNATURE SPACE.

some of the clusters‘ probabilistic properties. Measuring mean
and variance of each cluster will provide sufficient view on the
pre-softmax output. As shown in Table I, the distribution of the
recent malware samples is considerably closer than the test set
points of known families. The separation between the different
groups allows for a classifier based on a certain threshold of
the distance from the origin (i.e., if a file signature is closer to
the origin than a certain threshold T , the classifier will infer
this point as unseen malware).

Finally, we created a threshold-based classifier. To find
the decision boundary (that is, the distance under which the
malware is considered new), we used ROC statistics: Using the
test set samples, we plotted True Positive Rate (TPR) vs. False
Positive Rate (FPR), as shown in Figure 4. The calculated
AUC was 0.996, and the best balance between TPR and FPR
was obtained using a threshold of 10.2, which resulted in
96.3% TPR, 2.1% FPR, and accuracy of 97.7%. The statistics
were created using a new set of 3,800 malicious samples,
evenly balanced between the seen and unseen malware fami-
lies.

V. CONCLUDING REMARKS

In this paper, we presented a method for separating be-
tween known and unknown malware families. To capture each
file’s behavioral and static nature, we ran it in a sandbox
environment and generated a textual report. The report was
tokenized and later converted to a large sparse vector. We fed
the resulting vectors (of known malware families) to a deep
neural network. We then removed the pre-softmax layer to
create a signature generation model that converted each sample
to a 30-dimensional vector. We analyzed the output vector
space to obtain a decision boundary based on the Euclidean
distance of each point from the origin. This distance is a
metric that measures the novelty of a malware family, i.e.,
its behavioral difference from existing families.

To the best of our knowledge, this method was never used
for such tasks within cybersecurity, and can be used as a
practical tool in a security researcher’s arsenal; knowing that



Fig. 3. Pre-softmax layer visualization of the 2D model version. Recent unseen malware is represented by a rectangular marker.

Fig. 4. ROC curve of the final classifier that is used to differentiate between
known and unknown malware.

one is dealing with new malware that was never seen in the
wild usually means that extensive measures should be applied
to this sample, since early recognition of new malware families
substantially mitigates the threat.

By detecting such new malware early, fewer machines will
be infected, less private and sensitive information will be
stolen, and less money will be lost due to ransom payments
and other damages.

Our future work would consist of scaling our method by
training the initial DNN using extended datasets of more
known malware families. We will also explore unsupervised
training approaches for this task.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, may 2015.

[2] E. David and N. S. Netanyahu, “Deepsign: Deep learning for automatic
malware signature generation and classification,” in International Joint
Conference on Neural Networks, 2015, pp. 1–8.

[3] P. M. Comar, L. Liu, S. Saha, P.-N. Tan, and A. Nucci, “Combining
supervised and unsupervised learning for zero-day malware detection,”
in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 2022–2030.

[4] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion
detection,” in International Workshop on Recent Advances in Intrusion
Detection. Springer, 2004, pp. 203–222.

[5] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013, pp. 3422–3426.

[6] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[7] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[8] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.” Journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[10] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[11] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.


	I Introduction
	II Background and Related Work
	III Proposed Methodology
	III-A Initial File Vectorization
	III-B Training the Deep Neural Network
	III-C Visualization

	IV Experimental Results
	IV-A Dataset
	IV-B Previously Known Malware Families
	IV-C Previously Unseen Malware Families
	IV-D Sandboxing
	IV-E Training the DNN classifier
	IV-F Visualization of New Malware
	IV-G Analyzing Signature Space and Decision Boundary

	V Concluding Remarks
	References

