
10.1109/IJCNN.2018.8489690 Version Accepted at IEEE 2018 International Joint Conference on Neural Networks (IJCNN) ©2018 IEEE

Computing Vertex Centrality Measures in Massive
Real Networks with a Neural Learning Model

Felipe Grando
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil
fgrando@inf.ufrgs.br

Luís C. Lamb
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil
lamb@inf.ufrgs.br

Abstract—Vertex centrality measures are a multi-purpose
analysis tool, commonly used in many application environments
to retrieve information and unveil knowledge from the graphs
and network structural properties. However, the algorithms of
such metrics are expensive in terms of computational resources
when running real-time applications or massive real world
networks. Thus, approximation techniques have been developed
and used to compute the measures in such scenarios. In this
paper, we demonstrate and analyze the use of neural network
learning algorithms to tackle such task and compare their
performance in terms of solution quality and computation time
with other techniques from the literature. Our work offers
several contributions. We highlight both the pros and cons of
approximating centralities though neural learning. By empirical
means and statistics, we then show that the regression model
generated with a feedforward neural networks trained by the
Levenberg-Marquardt algorithm is not only the best option
considering computational resources, but also achieves the best
solution quality for relevant applications and large-scale
networks.

Keywords—Vertex Centrality Measures, Neural Networks,
Complex Network Models, Machine Learning, Regression Model

I. INTRODUCTION
The increasing development and ubiquity of large-scale

networks poses several technological challenges for both
researchers and professionals. Network digital and physical
connections such as digital links between webpages, friend lists
on social networks, wireless vehicular networks, cable
connection between routers, streets paths and energy grids raise
a growing number of complex questions. As a result, analyzing
and understanding network properties is fundamental in several
application domains [1] [2]. Therefore, the development of
network analysis tools that provide information about the large
number of existing networks is clearly relevant [3] [4].

One particular class of metrics known as vertex centrality
are particular relevant, given their general applicability. Such
metrics and associated algorithms aim at evaluating, ranking
and identifying the importance of vertices (elements of a given
network) using only the network basic structural properties as
input information [5].

Centrality measures have been used in many areas over the
last years, including: computer networks [6] [7], complex

networks construction [8] [9], artificial intelligence
applications [10] [11], social network analysis [12] [13], traffic
and transport flow [14] [16], game theory, problem-solving
[17][18][19] and biology [20] [21].

However, some of these metrics are computationally
expensive even when their algorithms are polynomial in time;
this is due to their use in massive networks with millions or
even billions of vertices [22]. To tackle such complexity, we
apply and experiment with a methodology that uses a complex
network model and machine learning techniques to
approximate two of the mostly used centrality measures
(namely, betweenness and closeness centralities) in real world
networks. Further, we use as input the information provided by
two other centrality measures (degree and eigenvector).

In order to obtain training samples for the neural learning
step, we use the Block Two-Level Erdős and Rényi – BTER
[23] [24] generative network model. By using the BTER
model, one can generate networks with diminished size, but
with the same structural properties of massive real networks.
The data obtained with the BTER synthetic networks is proven
effective in training the neural network model, which is then
able to generalize for the real datasets.

In the coming sections, we also identify the appropriate
combination of meta-parameters for an optimized learning
process, including insights about the best options for neural
network structure, training algorithm, multitasking and training
information.

In this paper, we illustrate the effectiveness of the proposed
method on thirty real world scenarios comprising networks
with sizes ranging from thousands to hundreds of thousand
vertices. Finally, we compare the results of the neural learning
model with other approximation techniques and with the exact
computation of the centrality values. We show how the
machine learning methodology is considerably faster than the
others are and - at the same time – we show that it renders
competitive results in comparable quality with other
approximations methods, but not in all experiments.

The remainder of our paper is organized as follows. First,
we introduce centrality measures, complex network models
and related work in Section II. In Section III we explain our
methodology and experimental analysis. Section IV concludes
and points out future research avenues.

II. BACKGROUND AND RELATED WORK

A. Centrality Measures: A Summary
In a nutshell, centrality measures quantify the centrality of

each vertex of a network, usually creating a rank of vertices, or
the entire network itself, by computing how centralized a given
network is [3] [5]. The term centrality in this context can admit
several meanings depending on the application domain under
analysis. It may stand for power, influence, control, visibility,
independency and/or contribution for instance [1] [3] [4] [5].

The vertex centrality measures are important to identify
elements behavior and roles within a network and are usually
employed to create ranks among vertices that are used as
comparison factors with others domain specific metrics [3] [4].
Such metrics are characterized by deterministic algorithms.
Each algorithm tries to capture a distinct idea or concept of
“centrality of a vertex”. Each algorithm and measure are
distinct from the others although they frequently share a
common goal and produce similar/close results. Some of these
metrics are adaptations from the others to enable their use on
digraphs or weighted networks [3]. In this work, we will use
four centrality measures, namely: degree, eigenvector,
betweenness and closeness. They are the most widely applied
metrics and are some of the only metrics in which exact
computation it is still possible for massive networks due to
their lower complexity. This is important to allow our
empirical and statistical analysis on massive networks within
feasible time with resources available for our research (the
experiments and further justifications are explained in detail in
Section III). The centrality C of a vertex w can be computed
with the formulas depicted in Table I.

Table I also shows the algorithm time complexity
considering a graph with n vertices and m edges. It is important
to notice that although the complexity of eigenvector is
quadratic there is a simpler computation method known as the
power method, which is an iteration algorithm that
approximates the exact metric within few steps and avoids
numerical accuracy issues [30].

TABLE I. VERTEX CENTRALITY MEASURES FORMULAE

Centrality Measure Formulae Algorithm
Complexity

Degree [5]

Θ(m)

Betweenness [25] [26]

O(mn)

Closeness [27] [28]

O(mn)

Eigenvector [29] [30]

O(n2)

a(i,w) admits value 1 when vertices i and w are adjacent;
gij(w) is the number of shortest paths between vertices i and j
that passes through w; d(i,w) is the length (distance) of the

shortest path between vertices i and w; A is the adjacency
matrix of a graph, E is the eigenvector (initialized with ones on
iteration 1) and it is the current iteration.

B. On Complex Network Models
In complex networks research, one aims at understanding

and proposing models and theories about the formation of real
world networks and their structural properties. The field
attracted a lot of attention recently, due to the high availability
of large networks and connected knowledge bases. Such
studies have aimed at understanding networks’ common
characteristics and at creating models capable of generating
networks stochastically with similar properties. These models
became a valuable research tool for many disciplines [1] [22].

Several complex network models were developed and
studied over the last years. However, some of them are unable
to capture and represent some properties of real networks,
while others are only conceptualizations and unfortunately are
not designed for generating synthetic networks [4] [22]. The
Block Two-Level Erdős and Rényi (BTER) model [23]
generates networks with very similar properties of real
networks. It builds a network based on a desired degree
distribution and clustering coefficients (average clustering for
each set of vertices with same degree or the global clustering of
the network).

The BTER model is divided into three steps [24]:

(i) the vertices are grouped by degree in communities with
size equal to the degree of its members plus one;

(ii) each community is considered an Erdős and Rényi
graph [31] with a probability of connection among
vertices equals to the clustering coefficient;

(iii) connections among communities are generated
proportionally to the excess degree of each vertex
(number of connections that a vertex needs to match its
desired degree). This weighted distribution is similar to
the Chung and Lu graphs [32] [33].

C. On Approximating Centrality Measures
Typical centrality measures algorithms do not scale up to

massive graphs (such as large social networks and web
graphs). This can be even more critical when one needs to
compute many centrality queries, particularly when one is
interested in the centrality of all vertices or whenever the
network structure is dynamic in time.

Several authors address the high computational complexity
of the centrality measures algorithms [34] [36]. They usually
propose approximation techniques for specific network metrics
based on sampling methodologies in which, the exact
computation of the metric is realized for sampled vertices and
then is used as reference to estimate the centrality values of the
others vertices of the network. For instance, the betweenness
and closeness centralities share a quite similar foundation. One
computes the single source shortest path (SSSP) for a given
number of sample vertices. Each SSSP tree gives the exact
centrality value for its source vertex. At the same time, one can
use them as an approximation for the other vertices considering

that all previously computed SSSP trees are partial solutions
for such vertices. Therefore, a given vertex not sampled will
have its centrality value approximated by an average result
given by all SSSP trees from the sampled vertices. An
algorithm for such objectives was defined and tested in real
case scenarios by Bader et al. [34] for betweenness and by
Eppstein and Wang [35] for closeness centralities. However,
the simple approach given by the sampling technique has a few
drawbacks and leads to relevant questioning such as: how
many vertices should be sampled and how should one select
them? Or, how can one efficiently parallelize the sampling
technique considering that it is no longer possible to compute
each vertex centrality independently?

Brandes and Pich [36] studied the vertices selection
problem. They proposed many heuristics to choose vertices for
the sampling techniques, starting with simple ones, such as
picking the high degree vertices and finishing with more
complex ones, which consider vertices distances and mixed
strategies. Despite their attempts to find an optimal heuristic
for such problem, they concluded that picking vertices
uniformly at random on average is the best strategy when
considering different types of network structures. Some authors
[22] [37] [38] tried other kind of approximation methodologies,
based mainly on machine learning and neural networks. The
strength of these methodologies is their adaptability (they can
be used to approximate several distinct centrality measures)
and they are able to compute the centrality measures a lot faster
than any other method after the model is trained.

The main problems with a neural machine learning
approach are their configuration and training for this task.
Complex network models were applied to generate synthetic
networks providing plentiful training data for the training
algorithm. However, one asks how and what is the best option
to generate such networks? And, which attributes should be
used to train the models? These are still open issues. In order to
answer such questions, we put the ideas into a comprehensive
experimentation. This will serve to illustrate the capabilities of
the method in validation and comparative analyses.

III. METHODOLOGY AND EMPIRICAL ANALYSIS
The methodology applied in our experiments is divided in

four main steps:

(A) acquiring test (real world networks) and training data
(synthetic networks generated with the BTER complex
network model);

(B) testing and validating the meta-parameters of the
artificial neural networks and training algorithms;

(C) computing the centrality measures using the exact
algorithms, the model generated by the artificial neural
network and the sampling-based algorithms in real
networks;

(D) comparing the results of the approximation techniques.

A. Acquisition of Testing and Training Data
The testing data was selected from four freely available

data repositories: Stanford large network dataset collection,

social computing data repository, BGU social networks
security research group and the Klobenz network collection.

The selected networks are symmetric and binary
(unweighted edges). Only the largest connected component
(LCC) was used for the tutorial experiments, which was
computed for all analyzed networks. Thirty real networks were
selected with sizes ranging from a thousand to 1.5 million
vertices.

The BTER complex network model was used to obtain
enough and consistent training data. The BTER complex
network model was chosen for such a task as it is one of the
best models to reproduce real world networks structural
properties. Moreover, it is easy to implement and configure and
capable to generate plentiful networks with reduced size
keeping the most relevant structural properties presented by
massive networks.

BTER requires two configuration parameters: the desired
degree distribution and the clustering coefficient (which can be
configured as a global value, by vertices degree or by
community structure).

In our experiments, we applied both a heavy-tailed and a
lognormal distribution (parameters provided by [37] [44] [45])
as degree distribution to provide generic data to train and learn
the model. Both distributions are known as the best
representatives of most real networks degree distribution
studied in the literature [44] [45]. For these networks the
clustering coefficients were chosen at random in the interval
[0,0.7]. A total of 300 generic networks with sizes ranging
from a hundred to a thousand vertices were generated at this
step. We also generated networks with the degree distributions
of six real networks (described in Table II) with their
respective clustering coefficients to test the effect of specific
vs. generic training data in the machine learning model. These
networks were selected as they presented the worst (Amazon,
Euroroad, Facebook and PowerGrid networks) and the best
(Blog3 and Foursquare networks) overall results obtained by
the model trained with the generic training data amongst the
thirty real networks selected.

A transformation function (parameters estimated for each
degree distribution using as reference a heavy-tailed function
model) was applied in the degree distribution to reduce the size
of the generated networks. A total of 2400 specific networks
(400 for each set of parameters), half with 2000 vertices and
half with 3000 vertices.

TABLE II. REAL NETWORKS DESCRIPTION

Network Type Vertices Edges

Amazon [39] Co-Purchasing 334,863 925,872

Facebook [12] Social 4,039 82,143

Blog Catalog 3 [40] Social 10,312 333,983

Foursquare [40] Social 639,014 3,214,986

US Power Grid [41] [42] Supply Lines 4,941 6,594

Euroroad [42][43] Road 1,174 1,305

B. Parameters Configuration and Validation
We applied the neural network toolbox from Matlab 2015

to configure and train the neural networks. This toolbox
comprises most of the algorithms that are well established in
the field with a built-in parallelism pool and a robust
implementation for industrial, academic and research use.

Following the results in [37] and [38] we selected a fully-
connected multi-layer perceptron artificial neural network
trained by the Levenberg-Marquardt algorithm (LM) [47].

We tested a full set of combination of parameters with 10-
fold cross-validation using the generic training set. The
parameters tested were: number of neuron in each layer (from
2 to 100), number of hidden layers (from 1 to 5), the
Marquardt adjustment (mu - from 5.10-6 to 5.10-3), mu
decrease factor (from 0.1 to 1) and mu increase factor (from 1
to 25).

Additionally, we set the activation function of all hidden
layers to hyperbolic tangent (any sigmoid function would
suffice for such task) and the activation function of the output
layer as a linear function (due to the regression task in hand).
The batch method was used to update the training parameters.

Our objective here was to find out the most efficient
configuration of parameters considering both its
computational costs and solution quality. The quality of the
solution was measured by the determination coefficient (R²)
using only the test set results, which considers 10% of total
available training data.

In addition, we also computed the Kendal τ-b correlation
coefficient in order to evaluate the quality of the solution of
the networks. The Kendall’s correlation is a nonparametric
measure of strength and association (interval [-1,1]) that exists
between two variables measured on at least an ordinal scale.
Notice that for most applications the ordering (rank) of the
vertices by their centrality values is more important than the
centrality value itself.

Each centrality measure uses complex properties of the
graph representing the network and the computation of most
of these properties are the main reason that centrality
measures are time expensive. For such reason, we selected the
fastest centrality measures (degree and eigenvector), which are
computationally feasible even for massive networks and are
highly related to the other metrics [3]. Therefore, we
computed both centralities (degree and eigenvector) and
ranked the vertices. Such information is then used as input
data to train the neural network. We select the vertices rank
produced by betweenness and closeness centralities as desired
values.

In the experiments, a three-hidden layer network with 20
neurons in each layer achieved the best performance results
(considering quality and training speed). Larger networks
achieved equally good results in quality but at the expanse of
more computational resources. Excluding the mu decrease
factor that is optimal when configured inside the interval
[0.1,0.5], the other parameters of the LM algorithm showed

little influence on the overall results displaying no statistical
relevance.

This configuration was used for the final training of the
artificial neural network. The final training used the same
training data (the generic synthetic networks) but with 15% as
validation set to prevent overfitting (the training algorithm
stops when the performance does not improve in the validation
set for ten consecutive batches).

C. Computation of the Approximation Techniques
In the sequel, we computed each of the four exact centrality

measures (eigenvector – CE, betweenness – CB, closeness – CC,
and degree – CD) for the thirty selected real networks. The
computation of eigenvector and degree centralities is
sequential, while betweenness and closeness centralities are
computed simultaneously with a merged algorithm keeping the
same time complexity upper bounds and using parallelism [28].
All algorithms were programmed in C and the parallel
computations used the native OpenMP (Open Multi-Processing
interface).

The computation of the metrics used a SGI Altix Blade
with 2 AMD Opteron 12-core 2.3GHz, 64GB DDR3 1333MHz
RAM memory, Red Hat Enterprise Linux Server 5.4. The
computation time of degree centrality required less than 1s to
compute for all networks. Eigenvector centrality took at most
2min for the largest network, while betweenness and closeness
centralities, even using 24 cores in a parallel environment, took
9 days for the largest network (Hyves). We adopted two
sample sizes for each network: 2.5% and 5% of the number of
total vertices for the computation of the sampling algorithms.
The samples were uniformly randomized and five independent
trials with distinct random seeds were executed for each
sample size for each network.

The computation of the approximation algorithm was run in
the same machine, but in a sequential environment because it
would require a larger number of dependent variables between
different threads. However, the computation of both algorithms
shared similar parts; therefore, their computation was
simultaneous for performance improvement. The largest
network required almost 2 days for their computation with 5%
sampled vertices and took about half for the 2.5% sample.

Next, we computed the centrality measures for all thirty
real networks with the trained neural network model (Section
III B) and used the Kendall correlation as quality parameter.
The results showed a great majority of variability: the model
performed poorly for some of the networks (Euroroad, Power
Grid, Facebook and Amazon for instance) with coefficients
lower than 0.4 and really well in others (Blog3 and Foursquare)
with coefficients above 0.7. We think that this behavior is
mainly caused by the data used during the training, which was
generic for all networks and unable to fulfill specificities for
some of the real networks. For such reason, we trained a
specific neural network model for each of the six networks that
presented the lower and higher results (Euroroad, Power Grid,
Foursquare, Amazon, Blog3 and Facebook) with specific
generated networks with the parameters provided by each of
these networks (Section III A).

We also tested multitasking neural networks capable of
learning both centralities (closeness and betweenness) at the
same time. Moreover, we tried to add another attribute for the
training. In addition to the degree and eigenvector, we added a
metric composed by the sum of the vertex degree with the
degree of his neighbors (second level degree).

The experiments comprised all the combinations of sizes of
training set networks (2000 or 3000), three or just two
attributes (addition second level degree or not) and the use of
multitasking or not. We generated networks with the same size
of the original network exclusively for the Euroroad real
network due to its original size of less than 2000 vertices.

To simplify the visualization of the comparative analysis
we used the code NN (baseline) for the neural network model
trained with the generic dataset and the code NNTAM for the
model trained with the specific training set. T assumes value 2
for the networks with size 2000 and 3 for the size 3000, A
assumes the quantity of attributes used (2 or 3) and M assumes
1 for simple tasking and 2 for multitasking networks.

D. Comparative Analisis
First, we have compared and analyzed the correlation

values between the approximation methods. The sampling
techniques performed better than all neural models tested but
the difference is minimal is some cases. The neural models
trained with generic networks performed considerably worse
than the ones trained with the specific training set of networks
excluding one case (Facebook network), where the generic
model performed a little better. The difference among the
neural models is greater on networks where the first model
performed worse.

Amongst the parameters tested, we noticed that the size of
the specific networks used for training the model was
statistically irrelevant for the results. This was also true in most
cases for the multitasking. The addition of a third attribute
seems to contribute for the overall performance when
approximating the closeness centrality, but sometimes it is
harmful to approximate betweenness.

Tables III and IV summarizes the correlation results of
some of the combinations tested with best neural network
model for each network highlighted in gray. The other tests
(3xx and 231) were omitted because they generated results
similar to their counterparts.

TABLE III. CORRELATIONS COEFFICIENTS FOR BETWEENNESS

Network
Approximation Technique

Sample Neural Network Model
2.5% 5.0% NN 211 212 221 222 232

Amazon 0.91 0.91 0.27 0.35 0.32 0.26 0.26 0.27

Blog3 0.89 0.90 0.73 0.80 0.80 0.71 0.70 0.71

Euroroad 0.86 0.88 0.16 0.41 0.41 0.44 0.44 0.46

Facebook 0.67 0.75 0.36 0.30 0.35 0.24 0.20 0.29

Foursquare 0.89 0.92 0.73 0.75 0.72 0.66 0.66 0.68

PowerGrid 0.93 0.92 0.21 0.57 0.51 0.43 0.42 0.45

TABLE IV. CORRELATION COEFFICIENTS FOR CLOSENESS

Network
Approximation Technique

Sample Neural Network Model
2.5% 5.0% NN 211 212 221 222 232

Amazon 0.99 0.99 0.10 0.42 0.52 0.66 0.65 0.65

Blog3 0.95 0.96 0.69 0.89 0.89 0.92 0.93 0.93

Euroroad 0.87 0.90 0.09 0.60 0.60 0.62 0.62 0.62

Facebook 0.87 0.93 0.26 0.38 0.34 0.35 0.36 0.43

Foursquare 0.93 0.94 0.48 0.85 0.84 0.88 0.88 0.88

PowerGrid 0.90 0.93 0.12 0.03 0.14 0.26 0.26 0.24

Table V compares the mean determination coefficient (R²)
of the NN baseline model with models generated with the same
training data but with other machine learning algorithms using
10-fold cross-validation. Notice that even small differences in
the R² are considerable due to large amount of data. We also
see that the NN model performed consistently better than all
other methods considering that the 99% confidence intervals
for all algorithms lie on the fourth decimal place.

TABLE V. REAL NETWORKS DESCRIPTION

Algorithm
R²

Closeness Betweenness

NN 0.97 0.92

Linear Regression 0.95 0.87

Coarse Tree 0.95 0.89

Gaussian SVM 0.96 0.88

Next, we computed and analyzed the percentage of
correctly classified vertices by their rank considering percentile
sets of the network. For this analysis, we ordered the vertices
by their exact centrality values, divided such set of vertices in
percentiles (from 0.2% of the first ranked vertices to the first
25% vertices), and computed the percentage of these vertices
for each percentile that appears in the same percentile in each
one of the approximations techniques ranked the vertices. A
100% match means that every element from one set is on the
other (perfect classification), while 0% means that both sets are
completely disjoint.

Such kind of analysis is important to give us an idea of how
close/distant the rankings of the vertices are considering only
the more important vertices of the network (generally speaking,
the ones of interest for most applications). It also shows us
better and gives insights “where” the mistakes are, fact that is
obscured when considering only the correlation coefficients.

Figure 1 compares the results of the approximation
methodologies for each network. Only the best approximation
techniques (5% sample and best neural models) are showed to
facilitate the reading of the figures. We already expected that
the sampling-based techniques performs better than the
machine learning models simply because they have access to
more information about the overall network structure with the

drawback of requiring a lot more of computation time to
acquire such information.

We can see that the Blog3 network was the only case
scenario where the neural models performed as good as or a
little better that the sampling methodologies. The Blog3
network probably has a simpler structure, therefore the
information contained in the Degree and Eigenvector
centralities (used as training inputs) fully characterize the

network structure while in the other networks more complex
information is needed.

One should also consider that the neural learning model is
capable to compute the centrality for all vertices of a given
network in seconds (even for massive networks) and that the
sampling techniques takes at least some minutes for the smaller
networks and hours or even days for the biggest networks.

Fig. 1. Percentage of correct classified vertices by percentil set of the network

Fig. 2. Comparison between different sampling sizes

In addition, the NN232 configuration seems better than the
other NN architectures to rank the first 25% ranked vertices
except for betweenness centrality in Foursquare network and
for both centralities in Facebook network.

Figure 2 presents the effect of different sampling sizes
considering the mean results over the six networks analyzed. It
only reinforces what the correlation values already show
(Tables III and IV). The upgrade in solution quality for the 5%
sample is minimal comparing that it costs twice in terms of
computational time.

IV. CONCLUSIONS
The growing relevance of network research and

applications demand the development of appropriate tools and
methods for network analysis. These methods include vertex
centrality measures. However, as networks grow in size, their
computational costs present challenges which may hinder some
important applications. Machine learning techniques have
recently been successful in a number of relevant applications
tackling large amounts of data [46] [47] [48]. Moreover, the
referred growing availability of massive network databases
demands the use of effective techniques to better exploit and to
interpret these data. In this context, we presented a
comprehensive empirical analysis on the use of artificial neural
networks learning to estimate centrality measures. We have

tested and identified the best configuration for the artificial
neural network training, including network structure, training
algorithm, and training meta-parameters. The experimental
results revealed that the neural network model is able to
approximate the target centrality measures with considerable
accuracy and reduced computational costs in 30 real-world
experimental case scenarios.

Our research also shows that the data used for training the
model is one major factor that affects the learning model. In
the real world experiments where generated networks with
specific parameters were applied during the training, the
performance of the neural model improved considerably.
Considering this result, one should always use the knowledge
(degree distribution and clustering coefficients) about the
network of interest to generate specialized training data; this
will lead to improvements in the performance of the artificial
neural learning model.

The model showed a noticeable and clear advantage and
tradeoff with respect to computational costs, making it a viable
option for applications where accuracy is not the only
fundamental goal, but in scenarios and configurations in which
computation resources are limited. In such common situations,
approximations via machine learning are an effective
alternative, in particular in the context of large scale complex
network applications.

REFERENCES
[1] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning

About a Highly Connected World. Cambridge University Press, 2010.
[2] S. Yu, M. Liu, W. Dou, X. Liu, Sanming Zhou: Networking for Big

Data: A Survey. IEEE Comm. Surv. & Tut., 19(1): 531-549, 2017.
[3] F. Grando, D. Noble, and L. C. Lamb, “An analysis of centrality

measures for complex and social networks”, Proc. of IEEE Global
Communications Conference, 1-6, 2016.

[4] L. F. Costa, F. A. Rodrigues, G. Travieso and P. R. Villas Boas,
“Characterization of complex networks: a survey of measurements”,
Advances in Physics, 56:167-242, 2008.

[5] L. C. Freeman, “Centrality in social networks: conceptual clarification”,
Social Network, 1:215-239, 1978/79.

[6] L. Maccari, Q. Nguyen, and R. L. Cigno, “On the computation of
centrality metrics for network security in mesh networks”, Proc. of the
Global Communications Conference, 1-6, 2016.

[7] P. Pantazopoulos, M. Karaliopoulos, and I. Stavrakakis, “Distributed
placement of autonomic internet services”, IEEE Transactions on
Parallel and Distributed Systems, 25(7):11702-1712, 2014.

[8] M. König, C. Tessone and Y. Zenou, “Nestedness in networks: a
theoretical model and some applications”, Theoretical Economics,
9:695-752, 2014.

[9] M. E. J. Newman, and M. Girvan, “Finding and evaluating community
structure in networks”, Physical Review E, 69(2):026113, 2004.

[10] P. Kazieenko, T. Kajdanowicz, “Label-dependent node classification in
the network”, Neurocomputing, 75(1):199-209, 2012.

[11] X. Cao, L. Wang, B. Ning, Y. Yuan, and P. Yan, “Pedestrian detection
in unseen scenes by dynamically updating visual words”,
Neurocomputing, 119:232-242, 2013.

[12] J. Mcauley and J. Leskovec, “Learning to discover social circles in ego
networks”, Proc. NIPS, 2012.

[13] X. Li, Y. Liu, Y. Jiang, and X. Liu, “Identifying social influence in
complex networks: a novel conductance eigenvector centrality model”,
Neurocomputing, 210:141-154, 2016.

[14] A. Jayasinghe, K. Sano and H. Nishiuchi, “Explaining traffic flow
patterns using centrality measures”, International Journal for Traffic and
Transport Engineering, 5(2):134-149, 2015.

[15] P. X. Zhao and S. M. Zhao, “Understanding urban traffic flow
characteristics from the network centrality perspective at different
granularities”, Intern. Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLI-B2:263-268, 2016.

[16] S. Gao, Y. Wang, Y. Gao and Y. Liu, “Understanding urban traffic-flow
characteristics: a rethinking of betweenness centrality”, Environment
and Planning B: 40(1):135-153, 2013.

[17] D. Noble, F. Grando, R. M. Araújo, and L. C. Lamb, “The impact of
centrality on individual and collective performance in social problem-
solving systems”, Proc. GECCO, 2015.

[18] D.V. Noble, M.O.R. Prates, Daniel Bossle, Luís C. Lamb:
“Collaboration in Social Problem-Solving: When Diversity Trumps
Network Efficiency”. AAAI 2015: 1277-1283.

[19] T. P. Michalak, K. V. Aadithya, P. L. Szczepański, B. Ravindran, and N.
R. Jennings, “Efficient computation of the Shapley value for game-
theoretic network centrality”, JAIR, 46:607-650, 2013.

[20] M. P. van den Heuvel and O. Sporns, “Network hubs in human brain”,
Trends in Cognitive Sciences, 17(12):683-696, 2013.

[21] W. Xiong, L. Xie, S. Zhou and J. Guan, “Active learning for protein
function prediction in protein-protein interaction networks”,
Neurocomputing, 145:44-52, 2014.

[22] F. Grando, L.C. Lamb. On approximating networks centrality measures
via neural learning algorithms. “Proc. of the IEEE International Joint
Conference on Neural Networks - IJCNN”. 1-7, 2016.

[23] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure and
scale-free collections of Erdős-Rényi graphs”, Physical Review E,
85(5):056109, 2012.

[24] T. G. Kolda, A. Pinar, T. Plantenga and C. Seshadhri, “A scalable
generative graph model with community structure”, SIAM Journal on
Scientific Computing, 36(5):424-452, 2014.

[25] L. C. Freeman, “A set of measures of centrality based on betweenness”,
Sociometry, 40:35-41, 1977.

[26] U. Brandes, “A faster algorithm for betweenness centrality”, Journal of
Mathematical Sociology, 25:163-177, 2001.

[27] G. Sabidussi, “The centrality index of a graph”, Psychometrika, 31:581-
603, 1966.

[28] U. Brandes, “On variants of shortest-pat betweenness centrality and their
generic computation”, Social Networks, 30:136-145, 2008.

[29] P. Bonacich, “Factoring and weighting approaches to status scores and
clique identification”, Journal of Math Sociology, 2:113-120, 1972.

[30] W. Richards and A. Seary, “Eigen analysis of networks”, Journal of
Social Structure, 1, 2000.

[31] Erdős, P.; Rényi, A.. On random graphs I. “Publicationes
Mathematicae”. 6:290-297, 1959.

[32] Chung, F.; Lu, L.. Connected components in random graphs with given
degree sequences. “Annals of Combinatorics”. 6:125, 2002.

[33] Chung, F.; Lu, L.. “The average distances in random graphs with given
expected degrees”. PNAS, 99:15879, 2002.

[34] D A. Bader, S. Kintali, K. Madduri and M. Mihail, “Approximating
betweenness centrality”, Proc. Of the 5th International Conference on
Algorithms and Models for the Web-Graph, 124-137, 2007.

[35] D. Eppstein and J. Wang, “Approximating centrality”, Journal of Graph
Algorithms and Applications, 8(1):39-45, 2004.

[36] U. Brandes and C. Pich, “Centrality estimation in large networks”,
International Journal of Bifurcation and Chaos, 17(7):1-30, 2007.

[37] F. Grando and L. C. Lamb, “Estimating complex networks centrality via
neural networks and machine learning”, Proc. of the International Joint
Conference on Neural Networks (IJCNN-2015), 1-8, 2015.

[38] A. Kumar, K. G. Mehrotra and C. K. Mohan, “Neural networks for fast
estimation of social network centrality measures”, Proc. FANCCO, 175-
184, 2015.

[39] J. Yang and J. Leskovec, “Defining and evaluating network
communities based on ground-truth”, Proc. of the IEEE ICDM, 2012.

[40] R. Zafarani and H. Liu, “Social computing data repository at ASU”,
Arizona State University, School of Computing, informatics and
Decision Systems Engineering, 2009.

[41] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks”, Nature, 393(6684):440-442, 1998.

[42] Network Dataset, KONECT, at http://konect.uni-koblenz.de/, 2016.
[43] L. Šubelj and M. Bajec, “Robust network community detection using

balanced propagation”, The European Physical Journal J. B., 81(3):353-
362, 2011.

[44] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D-U. Hwang,
“Complex networks: Structure and dynamics”, Physics Reports,
424:175-308, 2006.

[45] M. Mitzenmacher, “A brief history of generative models for power law
and lognormal distributions”, Internet Mathematics, 1(2):226-251, 2003.

[46] A. Garcez, L. de Raedt, L.C. Lamb, R. Miikkulainen, P. Hitzler, T.
Icard, T. Besold, P. Foldiak, D. Silver and K. Kuehnberger. “Neural-
Symbolic Learning and Reasoning: Contributions and Challenges”,
Proc. AAAI Spring Symposium on Knowledge Representation and
Reasoning: Integrating Symbolic and Neural Approaches, Stanford, pp.
18-21, AAAI Press, 2015

[47] Hagan, M. T.; Menhaj, M.. Training feed-forward networks with the
Marquardt algorithm. “IEEE Transactions on Neural Networks”.
5(6):989-993, 1994.

[48] Y. LeCun, Y. Bengio and G.E. Hinton. Deep Learning. Nature
521:14539, May 2015.

