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Abstract—Vertex centrality measures are a multi-purpose 
analysis tool, commonly used in many application environments 
to retrieve information and unveil knowledge from the graphs 
and network structural properties. However, the algorithms of 
such metrics are expensive in terms of computational resources 
when running real-time applications or massive real world 
networks. Thus, approximation techniques have been developed 
and used to compute the measures in such scenarios. In this 
paper, we demonstrate and analyze the use of neural network 
learning algorithms to tackle such task and compare their 
performance in terms of solution quality and computation time 
with other techniques from the literature. Our work offers 
several contributions. We highlight both the pros and cons of 
approximating centralities though neural learning. By empirical 
means and statistics, we then show that the regression model 
generated with a feedforward neural networks trained by the 
Levenberg-Marquardt algorithm is not only the best option 
considering computational resources, but also achieves the best 
solution quality for relevant applications and large-scale 
networks. 
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I. INTRODUCTION 
The increasing development and ubiquity of large-scale 

networks poses several technological challenges for both 
researchers and professionals. Network digital and physical 
connections such as digital links between webpages, friend lists 
on social networks, wireless vehicular networks, cable 
connection between routers, streets paths and energy grids raise 
a growing number of complex questions. As a result, analyzing 
and understanding network properties is fundamental in several 
application domains [1] [2]. Therefore, the development of 
network analysis tools that provide information about the large 
number of existing networks is clearly relevant [3] [4]. 

One particular class of metrics known as vertex centrality 
are particular relevant, given their general applicability. Such 
metrics and associated algorithms aim at evaluating, ranking 
and identifying the importance of vertices (elements of a given 
network) using only the network basic structural properties as 
input information [5]. 

Centrality measures have been used in many areas over the 
last years, including: computer networks [6] [7], complex 

networks construction [8] [9], artificial intelligence 
applications [10] [11], social network analysis [12] [13], traffic 
and transport flow [14] [16], game theory, problem-solving 
[17][18][19] and biology [20] [21]. 

However, some of these metrics are computationally 
expensive even when their algorithms are polynomial in time; 
this is due to their use in massive networks with millions or 
even billions of vertices [22]. To tackle such complexity, we 
apply and experiment with a methodology that uses a complex 
network model and machine learning techniques to 
approximate two of the mostly used centrality measures 
(namely, betweenness and closeness centralities) in real world 
networks. Further, we use as input the information provided by 
two other centrality measures (degree and eigenvector). 

In order to obtain training samples for the neural learning 
step, we use the Block Two-Level Erdős and Rényi – BTER 
[23] [24] generative network model. By using the BTER 
model, one can generate networks with diminished size, but 
with the same structural properties of massive real networks. 
The data obtained with the BTER synthetic networks is proven 
effective in training the neural network model, which is then 
able to generalize for the real datasets. 

In the coming sections, we also identify the appropriate 
combination of meta-parameters for an optimized learning 
process, including insights about the best options for neural 
network structure, training algorithm, multitasking and training 
information. 

In this paper, we illustrate the effectiveness of the proposed 
method on thirty real world scenarios comprising networks 
with sizes ranging from thousands to hundreds of thousand 
vertices. Finally, we compare the results of the neural learning 
model with other approximation techniques and with the exact 
computation of the centrality values. We show how the 
machine learning methodology is considerably faster than the 
others are and - at the same time – we show that it renders 
competitive results in comparable quality with other 
approximations methods, but not in all experiments. 

The remainder of our paper is organized as follows. First, 
we introduce centrality measures, complex network models 
and related work in Section II. In Section III we explain our 
methodology and experimental analysis. Section IV concludes 
and points out future research avenues. 



II. BACKGROUND AND RELATED WORK 

A. Centrality Measures: A Summary 
In a nutshell, centrality measures quantify the centrality of 

each vertex of a network, usually creating a rank of vertices, or 
the entire network itself, by computing how centralized a given 
network is [3] [5]. The term centrality in this context can admit 
several meanings depending on the application domain under 
analysis. It may stand for power, influence, control, visibility, 
independency and/or contribution for instance [1] [3] [4] [5]. 

The vertex centrality measures are important to identify 
elements behavior and roles within a network and are usually 
employed to create ranks among vertices that are used as 
comparison factors with others domain specific metrics [3] [4]. 
Such metrics are characterized by deterministic algorithms. 
Each algorithm tries to capture a distinct idea or concept of 
“centrality of a vertex”. Each algorithm and measure are 
distinct from the others although they frequently share a 
common goal and produce similar/close results. Some of these 
metrics are adaptations from the others to enable their use on 
digraphs or weighted networks [3]. In this work, we will use 
four centrality measures, namely: degree, eigenvector, 
betweenness and closeness. They are the most widely applied 
metrics and are some of the only metrics in which exact 
computation it is still possible for massive networks due to 
their lower complexity. This is important to allow our 
empirical and statistical analysis on massive networks within 
feasible time with resources available for our research (the 
experiments and further justifications are explained in detail in 
Section III). The centrality C of a vertex w can be computed 
with the formulas depicted in Table I. 

Table I also shows the algorithm time complexity 
considering a graph with n vertices and m edges. It is important 
to notice that although the complexity of eigenvector is 
quadratic there is a simpler computation method known as the 
power method, which is an iteration algorithm that 
approximates the exact metric within few steps and avoids 
numerical accuracy issues [30]. 

TABLE I.  VERTEX CENTRALITY MEASURES FORMULAE 

Centrality Measure Formulae Algorithm 
Complexity 

Degree [5] 
 

Θ(m) 

Betweenness [25] [26] 
 

O(mn) 

Closeness [27] [28] 
 

O(mn) 

Eigenvector [29] [30] 
 

O(n2) 

 

a(i,w) admits value 1 when vertices i and w are adjacent; 
gij(w) is the number of shortest paths between vertices i and j 
that passes through w; d(i,w) is the length (distance) of the 

shortest path between vertices i and w; A is the adjacency 
matrix of a graph, E is the eigenvector (initialized with ones on 
iteration 1) and it is the current iteration. 

B. On Complex Network Models 
In complex networks research, one aims at understanding 

and proposing models and theories about the formation of real 
world networks and their structural properties. The field 
attracted a lot of attention recently, due to the high availability 
of large networks and connected knowledge bases. Such 
studies have aimed at understanding networks’ common 
characteristics and at creating models capable of generating 
networks stochastically with similar properties. These models 
became a valuable research tool for many disciplines [1] [22]. 

Several complex network models were developed and 
studied over the last years. However, some of them are unable 
to capture and represent some properties of real networks, 
while others are only conceptualizations and unfortunately are 
not designed for generating synthetic networks [4] [22]. The 
Block Two-Level Erdős and Rényi (BTER) model [23] 
generates networks with very similar properties of real 
networks. It builds a network based on a desired degree 
distribution and clustering coefficients (average clustering for 
each set of vertices with same degree or the global clustering of 
the network). 

The BTER model is divided into three steps [24]: 

(i) the vertices are grouped by degree in communities with 
size equal to the degree of its members plus one; 

(ii) each community is considered an Erdős and Rényi 
graph [31] with a probability of connection among 
vertices equals to the clustering coefficient; 

(iii) connections among communities are generated 
proportionally to the excess degree of each vertex 
(number of connections that a vertex needs to match its 
desired degree). This weighted distribution is similar to 
the Chung and Lu graphs [32] [33]. 

C. On Approximating Centrality Measures 
Typical centrality measures algorithms do not scale up to 

massive graphs (such as large social networks and web 
graphs). This can be even more critical when one needs to 
compute many centrality queries, particularly when one is 
interested in the centrality of all vertices or whenever the 
network structure is dynamic in time. 

Several authors address the high computational complexity 
of the centrality measures algorithms [34] [36]. They usually 
propose approximation techniques for specific network metrics 
based on sampling methodologies in which, the exact 
computation of the metric is realized for sampled vertices and 
then is used as reference to estimate the centrality values of the 
others vertices of the network. For instance, the betweenness 
and closeness centralities share a quite similar foundation. One 
computes the single source shortest path (SSSP) for a given 
number of sample vertices. Each SSSP tree gives the exact 
centrality value for its source vertex. At the same time, one can 
use them as an approximation for the other vertices considering 



that all previously computed SSSP trees are partial solutions 
for such vertices. Therefore, a given vertex not sampled will 
have its centrality value approximated by an average result 
given by all SSSP trees from the sampled vertices. An 
algorithm for such objectives was defined and tested in real 
case scenarios by Bader et al. [34] for betweenness and by 
Eppstein and Wang [35] for closeness centralities. However, 
the simple approach given by the sampling technique has a few 
drawbacks and leads to relevant questioning such as: how 
many vertices should be sampled and how should one select 
them? Or, how can one efficiently parallelize the sampling 
technique considering that it is no longer possible to compute 
each vertex centrality independently?  

Brandes and Pich [36] studied the vertices selection 
problem. They proposed many heuristics to choose vertices for 
the sampling techniques, starting with simple ones, such as 
picking the high degree vertices and finishing with more 
complex ones, which consider vertices distances and mixed 
strategies. Despite their attempts to find an optimal heuristic 
for such problem, they concluded that picking vertices 
uniformly at random on average is the best strategy when 
considering different types of network structures. Some authors 
[22] [37] [38] tried other kind of approximation methodologies, 
based mainly on machine learning and neural networks. The 
strength of these methodologies is their adaptability (they can 
be used to approximate several distinct centrality measures) 
and they are able to compute the centrality measures a lot faster 
than any other method after the model is trained. 

The main problems with a neural machine learning 
approach are their configuration and training for this task. 
Complex network models were applied to generate synthetic 
networks providing plentiful training data for the training 
algorithm. However, one asks how and what is the best option 
to generate such networks? And, which attributes should be 
used to train the models? These are still open issues. In order to 
answer such questions, we put the ideas into a comprehensive 
experimentation. This will serve to illustrate the capabilities of 
the method in validation and comparative analyses. 

III. METHODOLOGY AND EMPIRICAL ANALYSIS 
The methodology applied in our experiments is divided in 

four main steps: 

(A) acquiring test (real world networks) and training data 
(synthetic networks generated with the BTER complex 
network model); 

(B) testing and validating the meta-parameters of the 
artificial neural networks and training algorithms; 

(C) computing the centrality measures using the exact 
algorithms, the model generated by the artificial neural 
network and the sampling-based algorithms in real 
networks; 

(D) comparing the results of the approximation techniques. 

A. Acquisition of Testing and Training Data 
The testing data was selected from four freely available 

data repositories: Stanford large network dataset collection, 

social computing data repository, BGU social networks 
security research group and the Klobenz network collection. 

The selected networks are symmetric and binary 
(unweighted edges). Only the largest connected component 
(LCC) was used for the tutorial experiments, which was 
computed for all analyzed networks. Thirty real networks were 
selected with sizes ranging from a thousand to 1.5 million 
vertices. 

The BTER complex network model was used to obtain 
enough and consistent training data. The BTER complex 
network model was chosen for such a task as it is one of the 
best models to reproduce real world networks structural 
properties. Moreover, it is easy to implement and configure and 
capable to generate plentiful networks with reduced size 
keeping the most relevant structural properties presented by 
massive networks. 

BTER requires two configuration parameters: the desired 
degree distribution and the clustering coefficient (which can be 
configured as a global value, by vertices degree or by 
community structure). 

In our experiments, we applied both a heavy-tailed and a 
lognormal distribution (parameters provided by [37] [44] [45]) 
as degree distribution to provide generic data to train and learn 
the model. Both distributions are known as the best 
representatives of most real networks degree distribution 
studied in the literature [44] [45]. For these networks the 
clustering coefficients were chosen at random in the interval 
[0,0.7]. A total of 300 generic networks with sizes ranging 
from a hundred to a thousand vertices were generated at this 
step. We also generated networks with the degree distributions 
of six real networks (described in Table II) with their 
respective clustering coefficients to test the effect of specific 
vs. generic training data in the machine learning model. These 
networks were selected as they presented the worst (Amazon, 
Euroroad, Facebook and PowerGrid networks) and the best 
(Blog3 and Foursquare networks) overall results obtained by 
the model trained with the generic training data amongst the 
thirty real networks selected. 

A transformation function (parameters estimated for each 
degree distribution using as reference a heavy-tailed function 
model) was applied in the degree distribution to reduce the size 
of the generated networks. A total of 2400 specific networks 
(400 for each set of parameters), half with 2000 vertices and 
half with 3000 vertices. 

TABLE II.  REAL NETWORKS DESCRIPTION 

Network Type Vertices Edges 

Amazon [39] Co-Purchasing 334,863 925,872 

Facebook [12] Social 4,039 82,143 

Blog Catalog 3 [40] Social 10,312 333,983 

Foursquare [40] Social 639,014 3,214,986 

US Power Grid [41] [42]  Supply Lines 4,941 6,594 

Euroroad [42][43]  Road 1,174 1,305 

 



B. Parameters Configuration and Validation 
We applied the neural network toolbox from Matlab 2015 

to configure and train the neural networks. This toolbox 
comprises most of the algorithms that are well established in 
the field with a built-in parallelism pool and a robust 
implementation for industrial, academic and research use. 

Following the results in [37] and [38] we selected a fully-
connected multi-layer perceptron artificial neural network 
trained by the Levenberg-Marquardt algorithm (LM) [47]. 

We tested a full set of combination of parameters with 10-
fold cross-validation using the generic training set. The 
parameters tested were: number of neuron in each layer (from 
2 to 100), number of hidden layers (from 1 to 5), the 
Marquardt adjustment (mu - from 5.10-6 to 5.10-3), mu 
decrease factor (from 0.1 to 1) and mu increase factor (from 1 
to 25). 

Additionally, we set the activation function of all hidden 
layers to hyperbolic tangent (any sigmoid function would 
suffice for such task) and the activation function of the output 
layer as a linear function (due to the regression task in hand). 
The batch method was used to update the training parameters. 

Our objective here was to find out the most efficient 
configuration of parameters considering both its 
computational costs and solution quality. The quality of the 
solution was measured by the determination coefficient (R²) 
using only the test set results, which considers 10% of total 
available training data. 

In addition, we also computed the Kendal τ-b correlation 
coefficient in order to evaluate the quality of the solution of 
the networks. The Kendall’s correlation is a nonparametric 
measure of strength and association (interval [-1,1]) that exists 
between two variables measured on at least an ordinal scale. 
Notice that for most applications the ordering (rank) of the 
vertices by their centrality values is more important than the 
centrality value itself. 

Each centrality measure uses complex properties of the 
graph representing the network and the computation of most 
of these properties are the main reason that centrality 
measures are time expensive. For such reason, we selected the 
fastest centrality measures (degree and eigenvector), which are 
computationally feasible even for massive networks and are 
highly related to the other metrics [3]. Therefore, we 
computed both centralities (degree and eigenvector) and 
ranked the vertices. Such information is then used as input 
data to train the neural network. We select the vertices rank 
produced by betweenness and closeness centralities as desired 
values. 

In the experiments, a three-hidden layer network with 20 
neurons in each layer achieved the best performance results 
(considering quality and training speed). Larger networks 
achieved equally good results in quality but at the expanse of 
more computational resources. Excluding the mu decrease 
factor that is optimal when configured inside the interval 
[0.1,0.5], the other parameters of the LM algorithm showed 

little influence on the overall results displaying no statistical 
relevance. 

This configuration was used for the final training of the 
artificial neural network. The final training used the same 
training data (the generic synthetic networks) but with 15% as 
validation set to prevent overfitting (the training algorithm 
stops when the performance does not improve in the validation 
set for ten consecutive batches). 

C. Computation of the Approximation Techniques 
In the sequel, we computed each of the four exact centrality 

measures (eigenvector – CE, betweenness – CB, closeness – CC, 
and degree – CD) for the thirty selected real networks. The 
computation of eigenvector and degree centralities is 
sequential, while betweenness and closeness centralities are 
computed simultaneously with a merged algorithm keeping the 
same time complexity upper bounds and using parallelism [28]. 
All algorithms were programmed in C and the parallel 
computations used the native OpenMP (Open Multi-Processing 
interface). 

The computation of the metrics used a SGI Altix Blade 
with 2 AMD Opteron 12-core 2.3GHz, 64GB DDR3 1333MHz 
RAM memory, Red Hat Enterprise Linux Server 5.4. The 
computation time of degree centrality required less than 1s to 
compute for all networks. Eigenvector centrality took at most 
2min for the largest network, while betweenness and closeness 
centralities, even using 24 cores in a parallel environment, took 
9 days for the largest network (Hyves). We adopted two 
sample sizes for each network: 2.5% and 5% of the number of 
total vertices for the computation of the sampling algorithms. 
The samples were uniformly randomized and five independent 
trials with distinct random seeds were executed for each 
sample size for each network. 

The computation of the approximation algorithm was run in 
the same machine, but in a sequential environment because it 
would require a larger number of dependent variables between 
different threads. However, the computation of both algorithms 
shared similar parts; therefore, their computation was 
simultaneous for performance improvement. The largest 
network required almost 2 days for their computation with 5% 
sampled vertices and took about half for the 2.5% sample. 

Next, we computed the centrality measures for all thirty 
real networks with the trained neural network model (Section 
III B) and used the Kendall correlation as quality parameter. 
The results showed a great majority of variability: the model 
performed poorly for some of the networks (Euroroad, Power 
Grid, Facebook and Amazon for instance) with coefficients 
lower than 0.4 and really well in others (Blog3 and Foursquare) 
with coefficients above 0.7. We think that this behavior is 
mainly caused by the data used during the training, which was 
generic for all networks and unable to fulfill specificities for 
some of the real networks. For such reason, we trained a 
specific neural network model for each of the six networks that 
presented the lower and higher results (Euroroad, Power Grid, 
Foursquare, Amazon, Blog3 and Facebook) with specific 
generated networks with the parameters provided by each of 
these networks (Section III A). 



We also tested multitasking neural networks capable of 
learning both centralities (closeness and betweenness) at the 
same time. Moreover, we tried to add another attribute for the 
training. In addition to the degree and eigenvector, we added a 
metric composed by the sum of the vertex degree with the 
degree of his neighbors (second level degree). 

The experiments comprised all the combinations of sizes of 
training set networks (2000 or 3000), three or just two 
attributes (addition second level degree or not) and the use of 
multitasking or not. We generated networks with the same size 
of the original network exclusively for the Euroroad real 
network due to its original size of less than 2000 vertices. 

To simplify the visualization of the comparative analysis 
we used the code NN (baseline) for the neural network model 
trained with the generic dataset and the code NNTAM for the 
model trained with the specific training set. T assumes value 2 
for the networks with size 2000 and 3 for the size 3000, A 
assumes the quantity of attributes used (2 or 3) and M assumes 
1 for simple tasking and 2 for multitasking networks. 

D. Comparative Analisis 
First, we have compared and analyzed the correlation 

values between the approximation methods. The sampling 
techniques performed better than all neural models tested but 
the difference is minimal is some cases. The neural models 
trained with generic networks performed considerably worse 
than the ones trained with the specific training set of networks 
excluding one case (Facebook network), where the generic 
model performed a little better. The difference among the 
neural models is greater on networks where the first model 
performed worse. 

Amongst the parameters tested, we noticed that the size of 
the specific networks used for training the model was 
statistically irrelevant for the results. This was also true in most 
cases for the multitasking. The addition of a third attribute 
seems to contribute for the overall performance when 
approximating the closeness centrality, but sometimes it is 
harmful to approximate betweenness. 

Tables III and IV summarizes the correlation results of 
some of the combinations tested with best neural network 
model for each network highlighted in gray. The other tests 
(3xx and 231) were omitted because they generated results 
similar to their counterparts. 

TABLE III.  CORRELATIONS COEFFICIENTS FOR BETWEENNESS 

Network 
Approximation Technique 

Sample Neural Network Model 
2.5% 5.0% NN 211 212 221 222 232 

Amazon 0.91 0.91 0.27 0.35 0.32 0.26 0.26 0.27 

Blog3 0.89 0.90 0.73 0.80 0.80 0.71 0.70 0.71 

Euroroad 0.86 0.88 0.16 0.41 0.41 0.44 0.44 0.46 

Facebook 0.67 0.75 0.36 0.30 0.35 0.24 0.20 0.29 

Foursquare 0.89 0.92 0.73 0.75 0.72 0.66 0.66 0.68 

PowerGrid 0.93 0.92 0.21 0.57 0.51 0.43 0.42 0.45 

TABLE IV.  CORRELATION COEFFICIENTS FOR CLOSENESS 

Network 
Approximation Technique 

Sample Neural Network Model 
2.5% 5.0% NN 211 212 221 222 232 

Amazon 0.99 0.99 0.10 0.42 0.52 0.66 0.65 0.65 

Blog3 0.95 0.96 0.69 0.89 0.89 0.92 0.93 0.93 

Euroroad 0.87 0.90 0.09 0.60 0.60 0.62 0.62 0.62 

Facebook 0.87 0.93 0.26 0.38 0.34 0.35 0.36 0.43 

Foursquare 0.93 0.94 0.48 0.85 0.84 0.88 0.88 0.88 

PowerGrid 0.90 0.93 0.12 0.03 0.14 0.26 0.26 0.24 

 

Table V compares the mean determination coefficient (R²) 
of the NN baseline model with models generated with the same 
training data but with other machine learning algorithms using 
10-fold cross-validation. Notice that even small differences in 
the R² are considerable due to large amount of data. We also 
see that the NN model performed consistently better than all 
other methods considering that the 99% confidence intervals 
for all algorithms lie on the fourth decimal place. 

TABLE V.  REAL NETWORKS DESCRIPTION 

Algorithm 
R² 

Closeness Betweenness 

NN 0.97 0.92 

Linear Regression 0.95 0.87 

Coarse Tree 0.95 0.89 

Gaussian SVM 0.96 0.88 

 

Next, we computed and analyzed the percentage of 
correctly classified vertices by their rank considering percentile 
sets of the network. For this analysis, we ordered the vertices 
by their exact centrality values, divided such set of vertices in 
percentiles (from 0.2% of the first ranked vertices to the first 
25% vertices), and computed the percentage of these vertices 
for each percentile that appears in the same percentile in each 
one of the approximations techniques ranked the vertices. A 
100% match means that every element from one set is on the 
other (perfect classification), while 0% means that both sets are 
completely disjoint. 

Such kind of analysis is important to give us an idea of how 
close/distant the rankings of the vertices are considering only 
the more important vertices of the network (generally speaking, 
the ones of interest for most applications). It also shows us 
better and gives insights “where” the mistakes are, fact that is 
obscured when considering only the correlation coefficients. 

Figure 1 compares the results of the approximation 
methodologies for each network. Only the best approximation 
techniques (5% sample and best neural models) are showed to 
facilitate the reading of the figures. We already expected that 
the sampling-based techniques performs better than the 
machine learning models simply because they have access to 
more information about the overall network structure with the 



drawback of requiring a lot more of computation time to 
acquire such information. 

We can see that the Blog3 network was the only case 
scenario where the neural models performed as good as or a 
little better that the sampling methodologies. The Blog3 
network probably has a simpler structure, therefore the 
information contained in the Degree and Eigenvector 
centralities (used as training inputs) fully characterize the 

network structure while in the other networks more complex 
information is needed. 

One should also consider that the neural learning model is 
capable to compute the centrality for all vertices of a given 
network in seconds (even for massive networks) and that the 
sampling techniques takes at least some minutes for the smaller 
networks and hours or even days for the biggest networks. 

 

 

 

 

 



 
Fig. 1. Percentage of correct classified vertices by percentil set of the network 

 

Fig. 2. Comparison between different sampling sizes 

In addition, the NN232 configuration seems better than the 
other NN architectures to rank the first 25% ranked vertices 
except for betweenness centrality in Foursquare network and 
for both centralities in Facebook network. 

Figure 2 presents the effect of different sampling sizes 
considering the mean results over the six networks analyzed. It 
only reinforces what the correlation values already show 
(Tables III and IV). The upgrade in solution quality for the 5% 
sample is minimal comparing that it costs twice in terms of 
computational time. 

IV. CONCLUSIONS 
The growing relevance of network research and 

applications demand the development of appropriate tools and 
methods for network analysis. These methods include vertex 
centrality measures. However, as networks grow in size, their 
computational costs present challenges which may hinder some 
important applications. Machine learning techniques have 
recently been successful in a number of relevant applications 
tackling large amounts of data [46] [47] [48]. Moreover, the 
referred growing availability of massive network databases 
demands the use of effective techniques to better exploit and to 
interpret these data. In this context, we presented a 
comprehensive empirical analysis on the use of artificial neural 
networks learning to estimate centrality measures. We have 

tested and identified the best configuration for the artificial 
neural network training, including network structure, training 
algorithm, and training meta-parameters. The experimental 
results revealed that the neural network model is able to 
approximate the target centrality measures with considerable 
accuracy and reduced computational costs in 30 real-world 
experimental case scenarios. 

Our research also shows that the data used for training the 
model is one major factor that affects the learning model. In 
the real world experiments where generated networks with 
specific parameters were applied during the training, the 
performance of the neural model improved considerably. 
Considering this result, one should always use the knowledge 
(degree distribution and clustering coefficients) about the 
network of interest to generate specialized training data; this 
will lead to improvements in the performance of the artificial 
neural learning model. 

The model showed a noticeable and clear advantage and 
tradeoff with respect to computational costs, making it a viable 
option for applications where accuracy is not the only 
fundamental goal, but in scenarios and configurations in which  
computation resources are limited. In such common situations, 
approximations via machine learning are an effective 
alternative, in particular in the context of large scale complex 
network applications. 
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