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Abstract—Skin cancer is a widespread, global, and potentially 
deadly disease, which over the last three decades has afflicted more 
lives in the USA than all other forms of cancer combined.  There 
have been a lot of promising recent works utilizing deep network 
architectures, such as FCNs, U-Nets, and ResNets, for developing 
automated skin lesion segmentation.  This paper investigates var-
ious pre- and post-processing techniques for improving the per-
formance of U-Nets as measured by the Jaccard Index.  The da-
taset provided as part of the “2017 ISBI Challenges on Skin Lesion 
Analysis Towards Melanoma Detection” was used for this evalua-
tion and the performance of the finalist competitors was the stand-
ard for comparison. The pre-processing techniques employed in 
the proposed system included contrast enhancement, artifact re-
moval, and vignette correction. More advanced image transfor-
mations, such as local binary patterns and wavelet decomposition, 
were also employed to augment the raw grayscale images used as 
network input features.  While the performance of the proposed 
system fell short of the winners of the challenge, it was determined 
that using wavelet decomposition as an early transformation step 
improved the overall performance of the system over pre- and 
post-processing steps alone. 
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I. INTRODUCTION 
   Each year in the USA, over 5.4 million cases of Non-Mela-
noma skin cancer are treated in more than 3.3 million people 
[1].  Over the past three decades, more people have had skin 
cancer than all other cancers combined [3]. The risk of skin can-
cer also increases with age, and between 40 and 50 percent of 
Americans who live to the age of 65 will encounter at least one 
episode of Basal Cell Carcinoma or Squamous Cell Carcinoma 
in their lifetime [5]. And tragically, one person dies of Mela-
noma every 54 minutes in the USA [2]. 
   There are three main types of skin cancer, namely: Basal Cell 
Carcinoma, Squamous Cell Carcinoma, and Melanoma.  Basal 
Cell Carcinoma is the most common form of skin cancer, with 
over 4 million cases treated each year in the USA [1]. Squa-
mous Cell Carcinoma is the second most common form of skin 
cancer, with 1 million cases treated in the USA each year [1]. 
Melanoma accounts for <1% of all cases of skin cancer, but 
contributes to the largest number of deaths [2]. 
   Diagnosis of skin cancer begins with an examination of the 
skin lesion by a dermatologist, and this procedure is enhanced 
using a dermoscope. Dermoscopy images captured during the 

inspection are characterized by their high resolution and in-
creased magnification (typically > 10x).  The field of view has 
focused illumination and polarized light, which allows visuali-
zation of deeper skin structures and helps to cancel out surface 
reflections.  In a clinical setting, dermoscopes often have fixed 
mountings, with durable chassis to achieve regulatory compli-
ance.  Recent accessories, such as the HandyScope [34], allow 
smartphones to operate as portable digital dermoscopes.  These 
devices could help early diagnosis of skin cancer in the home 
healthcare environment, and enable lesions to be more fre-
quently monitored and changes tracked over time. 
   Characteristics of malignant skin lesions can be described by 
the following defining features: Asymmetry, Border, Colour, 
Diameter, and Evolving [35].  Benign lesions are symmetrical, 
with smooth and even boards, consistent colour (often a single 
shade of brown) and are constant over time.  While malignant 
skin lesions are asymmetrical, with uneven borders (can be 
scalloped or notched), contain a number of different shades (can 
be brown, tan, black, red, white, or blue), have larger diameters 
(often >6mm), and change over time (e.g. size, colour, shape, 
elevation, itching, crusting, or bleeding).  Skin lesion segmen-
tation is an important initial analysis step to be able to quantify 
these features. Segmentation has been demonstrated to improve 
classification accuracy [17], support treatment planning, and al-
low changes that occur to lesion boundaries to be tracked over 
time. 

II. BACKGROUND REVIEW 
   Deep learning is a recent and disruptive specialization of ma-
chine learning, which utilizes representation learning to organ-
ize and automatically extract progressive layers of features ab-
straction directly from raw data [6]. Deep learning networks 
have been demonstrated as very effective techniques for seman-
tic segmentation in applications for machine vision [7].  Con-
volutional Networks (ConvNets) provide a foundation from 
which many more complex network architectures have been 
based for both image classification and segmentation tasks 
[7,8,9]. For example, Fully Connected Networks (FCNs) were 
one of the first network architectures to utilize ConvNets for 
end-to-end, pixel-to-pixel semantic segmentation [9].  FCNs 
utilized a convolution-deconvolution architecture and does not 
contain any fully connected layers. 
   AlexNet was introduced at the ImageNet 2012 competition, 
where it produced a top five test error of 15.4% on the difficult 
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ImageNet dataset, consisting of over 15 million images and rep-
resenting over 22000 categories (the next best competitor 
achieved a 26.2% top 5 error rate) [7].  AlexNet consisted of 5 
convolutional and 3 fully connected layers AlexNet utilized im-
portant concepts such as using ReLU as an activation function, 
and data augmentation and dropout to help manage overfitting 
[7].  
   Deep residual networks (ResNets) were introduced by the Mi-
crosoft Research Group as part of the ImageNet and COCO 
competitions in 2015, where they garnered first place in the cat-
egories of ImageNet detection, ImageNet localization, COCO 
detection, and COCO segmentation [10]. These ResNets were 
deeper than previous networks with up to 152 layers and offered 
a solution to the degradation problem that occurs in deep net-
work structures, where a saturation and then rapid decrease in 
accuracy occurs during training. These degradations are not due 
to overfitting in the model, but rather are attributed to vanishing 
gradients. To address degradation problems in deep networks, 
ResNets utilizes shortcuts where outputs from previous layers 
skip one or more stacked layers and bring image content di-
rectly to deeper layers. 
   A special convolution-deconvolution architecture, referred to 
as U-Nets, was introduced as part of the ISBI cell tracking chal-
lenge in 2015 [11]. These U-Nets address special challenges 
with medical image segmentation, such as limited numbers of 
labelled training and testing cases, and the importance of preci-
sion in boundary definition.  The U-Net architecture contains a 
contracting path where image features are extracted and a sub-
sequent expanding path that supports localization of the seg-
mentation borders.  The U-Nets were demonstrated as success-
ful segmentation methods against a number of biomedical 
tasks, including segmentation of neuronal structures in electron 
microscope stacks, and cell segmentation in light microscopic 
images. 
   The International Skin Imaging Collaboration (ISIC) is a part-
nership between industry and academia to promote the devel-
opment of digital skin imaging applications and to help to re-
duce the global mortality rate from Melanoma.  This consor-
tium proposes standards for dermatologic imaging to improve 
quality and usefulness, and publishes public datasets with gold 
standard labels for the validation and development of diagnos-
tic algorithms.  On December 10, 2017, the ISIC launched the 
“2017 ISBI Challenges on Skin Lesion Analysis Towards Mel-
anoma Detection”, as an open competition to accelerate tech-
nology development in three areas of investigation: Lesion seg-
mentation, detection and localization of visual dermoscopic 
features/patterns, and disease classification [20]. 
   In the concluding results from the 2017 ISBI Challenge, the 
top five competing entries utilized deep network architectures 
with either FCNs, U-Nets, or ResNets [12,13,14,15,16]. The 
top results were obtained by a team at Mount Sinai, where they 
trained an FCN with 29 layers that used both RGB and HSV 
channels as inputs, achieving an official Jaccard Index of 0.765 
in the competition [12].  U-Nets were utilized by the second-
place entry with 3 down sampling layers and reflected up-sam-
pling layers, and a fully connected layer at the bottom [13]. This 

entry utilized data augmentation to produce 20,000 training im-
ages and achieved an official Jaccard Index of 0.762 in the chal-
lenge. 

III. DATASET 
   The dataset provided as part of the lesion segmentation sec-
tion of the 2017 ISBI Challenge, consisted of dermoscopy im-
ages with a ground truth segmentation mask annotated by an 
expert clinician.  The annotation process was done with either 
a semi-automated process (a user-provided seed point, a user-
tuned flood-fill algorithm, and morphological filtering) or a 
manual process (from a series of user-provided polyline points) 
[20].  The lesion segmentation dataset consisted of 2000 train-
ing images, 150 validation images, and 600 testing images.  To 
augment the data available for training deep networks, 90° ro-
tation, 180° rotation, 270° rotation, x-axis mirror, and y-axis 
mirror transformations were applied to the original image (see 
Figure 1).  The validation images were combined with the orig-
inal training images to produce a total of 12900 training images 
and 3600 testing images. 

 
Original image 90° rotation 180° rotation 

 

 

 

270° rotation X-axis mirror Y-axis mirror 
 

 

  

 
Figure 1: Data Augmentation: Original image, 90° rotation, 

180° rotation, 270° rotation, x-axis mirror, y-axis mirror 
 
    
   There are many challenges with skin lesion segmentation, as 
demonstrated within the 2017 ISBI Challenge training dataset.  
Dermoscopy images can include dark hairs that occlude the le-
sion boundaries, and lesions can exist anywhere on the body, 
which can challenge visibility.  Vignettes around strongly illu-
minated fields of view provide difficult shadow regions, and 
annotation marks used to establish image scale can confuse ob-
ject detection algorithms.  These images can also be of very low 
contrast, and the variety of skin pigmentations in a properly rep-
resented global population also adds to the complexity of the 
analysis.  Examples of these challenges have been illustrated in 
Figure 2. 
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Figure 2: Challenges in the 2017 ISBI Challenges on Skin Le-

sion Analysis Towards Melanoma Detection dataset 
 

IV. PROPOSED SOLUTION 
 
   The architecture of the proposed solution includes five core 
processing stages, which can be defined by image preparation, 
image pre-processing, image transformations, U-Net, and im-
age post processing.  In Figure 4, the stages of processing for 
the proposed system have been sequentially outlined, and the 
combined outputs of the proposed analysis at each step are il-
lustrated. 
 

A. Image Preparation 
   The first step of the outlined solution is to prepare the der-
moscopy images for analysis.  These source images are variable 
in size, are high resolution, and have 24-bit colour depth.  The 
images are first resized to a more computationally manageable 
216x216 dimensions.  A 20-pixel border is then added around 
the image to buffer the outer image content, as the U-Net pro-
cessing crops these external regions due to the loss of border 
pixels in every convolution.  The image is then converted to 
grayscale to further reduce the image dimensions, and to match 
the format of images used in the original U-Net reference [11]. 

B. Image Pre-Processing 
   Segmentation techniques that were developed prior to the in-
troduction of deep convolution-deconvolution networks relied 
on many pre-processing techniques.  Important pre-processing 
steps included color space transformations, contrast enhance-
ment, appropriate lesion localization, and artifact removal [21].  
Common artifacts in dermoscopy images include: vignette 
frames, ink markings, scale rulers, skin lines, blood vessels, and 

hairs [21]. The DullRazor method is a commonly cited hair re-
move algorithm, which uses morphological closing to detect 
hairs and then removes them using bilinear interpolation [22].  
To remove the vignette effect Wang et al, [23] utilize a three-
step process that begins with isolating the image in the red co-
ordinate of RGB.  Concentric circular regions, with a tunable 
diameter, are first defined.  The analysis process is then started 
at the center of the image.  In the last step, the brightness of 
each concentric region is adjusted so that the average intensity 
is the same as the center region [23].  
   The first stage of pre-processing employed by the proposed 
system was to perform contrast enhancement.  This ensures the 
images have consistent contrast between neighbouring areas 
and the region of interest.  Contrast enhancement was accom-
plished by first calculating the histogram of the grayscale im-
age.  The top and bottom 2% of histogram intensities were then 
selected and used as cut off values.  The histogram was then 
stretched to remap the darkest pixel to 0 and lightest pixel to 
255 against the selected cut off thresholds. 
   The second step performed for pre-processing was for hair 
removal.  Hairs were first identified by using an edge detection 
with 1-pixel silhouette.  The method used for edge detection 
was the Python ImageFilter FIND_EDGES in the Python Im-
aging Library (PIL) [24]. Filtered output is then superimposed 
on the original image to reduce the identified line width by 2 
pixels.  As the lesions are defined by their darker colours, the 
edges detected were just filled in with white (instead of a blur-
ring method with the neighboring skin colour). 
   The final stage in the image pre-processing procedure was to 
remove the defined vignette frame found in some images.  
These dark frames are caused from the strong illumination at 
the center of view because of the lighting from the dermoscope, 
or from the restricted diameter of the cannula on the dermo-
scope tip.  The pseudocode for the vignette frame removal al-
gorithm is seen below in Figure 3. 
 

Figure 3: Pseudocode for vignette removal algorithm 
 

For up to 10 iterations 
       Create a circular mask with  

radius = half the height of the input image – 
20 pixels + iteration*5 pixels 

 Calculate the mean of the outer circle 
If the mean pixel value of the outer ring < 
6.0 then 

Fill the outer ring with the mean 
pixel value of the center region 
Return the corrected image 
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 Figure 4: Five core processing stages of the proposed solution 

 

 

The end result of the three combined pre-processing steps is 
illustrated in Figure 5 below. 

 Contrast En-
hancement 

Vignette Cor-
rection 

Hair Removal 

Original 
Image 

   
Pre-Pro-
cessed 
Image 

   

Figure 5: Pre-processing steps in the proposed system 
 

C. Image Transformations 
   A number of more advanced image transformation techniques 
were considered in an effort to have the U-Net converge faster 
and with fewer training images.  The first image transformation 
technique investigated was Local Binary Patterns (LBP).  LBP 
was first proposed by Ojala et al. [25] as a means to capture 
important textural information in an image.  The LBP algorithm 
uses the value of the center pixel as a threshold in a neighbour-
ing mask.  The output from the thresholding process is then 
translated to a binary value.  This technique has been used to 

define features for facial recognition [26] and medical image 
retrieval [27].  
    

   Wavelet transforms are another image transformation ap-
proach that has been important for image compression [28] and 
de-noising techniques [29].  The wavelet transform is time-fre-
quency method where the optimal frequency band is adaptively 
determined to provide the best time-frequency resolution.  The 
effects of applying the wavelet transform iteratively is to con-
struct a multi-residual pyramidal representation of the image.  
In each subsequent layer of representation, the horizontal, ver-
tical, and diagonal residuals are stored along with the approxi-
mation image.  For the application of wavelet transforms for the 
proposed approach, the PyWavelet library [36] was used with 
the Daubechies 1 mother wavelet and three levels of decompo-
sition were performed.  The approximation image at each sub-
band was resized to 216x216 images with a 20-pixel boundary 
added.  See a sample of one level of decomposition illustrated 
in Figure 6. 
 

D. U-Net 
   The U-Net architecture, as defined by Ronneberger et al. [11] 
for biomedical image segmentation, was utilized for the pro-
posed system.  The U-Net was configured for 3 layers, with 64 
filters in the initial convolution bank, a convolution filter size 
of 3x3, and an average pooling filter size of 2x2.  The architec-
ture of the U-Net used for investigations is illustrated in figure 
7.  The Python library used for the U-Net was adapted from the 
code source provided by Akeret et al. [30].  An Adam optimizer 
[31] was used with a fixed learning rate of 0.0001, and batch 
normalization was added to improve the accuracy of the system 
and enable faster convergence [32].  The loss function used a 
mean cross-entropy measure and the system was trained for 20 
epochs.  
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Figure 6: Wavelet pyramid representation of dermoscopy image 

 

 
Figure 7: U-Net architecture for skin lesion segmentation 

 
 

E. Image Post-Processing 
   The output from the U-Net are two pixel-by-pixel reconstruc-
tions of the segmentation mask.  It was noted during experimen-
tation that one of the masks represented more of the noise con-
tent in the image and the other the true lesion segment.  Thus, 
instead of a binary argmax between the maximum of the two 
outputs, a static threshold cut off level of 0.5 was used against 
the better of the two images.   
   The binary segmentation mask that is produced by the binary 
thresholding, often contained regions representing noise arti-
facts.  To remove these competing objects, and identify just the 
true single lesion object, a post-processing algorithm was ap-
plied.  This algorithm leveraged on the intuition that the skin 
lesions were typically centered in the image and were one of the 
largest objects in the frame of view.  The pseudocode for this 
algorithm is listed below in Figure 8.  

V. EXPERIMENTS AND RESULTS 
   The quality metric used to assess the performance of the 
training and testing output was the Jaccard Index:  
 

𝐽 𝐴, 𝐵 = 	 '∩)
'∪)

. 

This metric was the gold standard used to rank the performance 
of submissions for the 2017 ISBI Challenges on Skin Lesion 
Analysis Towards Melanoma Detection.   
   Each of the 20 training epochs consisted of 32 iterations (or 
segments) with batches of 16 randomly selected images.  
Testing was performed against 72 randomly selected batches 
from the testing set that consisted of 16 images in each.  The 
Jaccard Index reported represents the last epoch in training.  The 
mean and standard deviation of the Jaccard Index for all 72 
testing batches is also presented as assessment criteria. 
 

Figure 8: Pseudo code for post-processing in proposed system 
 

Find the objects in the binary image 
      Select the 3 objects with the largest surface area 
      Locate the centroid of these objects 

Determine the distance of the centroid to the 
nearest bounding edge. 
Select the object that is the furthest distance 
from an edge and return this mask 
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Figure 9: Examples of processed dermoscopy images by the proposed system 

 

 A B C D 

Training 51.62 61.97 59.70 62.85 
Testing µ 51.13 57.17 56.20 59.73 
Testing σ 0.08 0.07 0.08 0.07 

Table 1: Training and testing results for the proposed system: A) Baseline U-Net, B) U-Net plus pre- and post-processing, C) U-
Net plus pre- and post-processing plus LBP, D) U-Net plus pre- and post-processing plus wavelets 

   Computations were run on an Amazon Web Service virtual 
instance, configured as a Windows Server 2016 machine with 4 
CPUs, 16 GB of default memory, and a single Tesla K80 GPU. 
Tensorflow 1.4.1 was used with GPU processing enabled. The 
computation time to complete 20 training epochs for each pro-
posed scenario was approximately 6 hours.  The final training 
and testing results are presented in Figure 9 and in Table 1 
above.  The assessment criteria used to compare the perfor-
mance of the different configurations was the Jaccard Index as 
a percentage calculated from the ground truth.  Individual eval-
uations are given in Table 1 for five different scenarios, namely: 

1) Baseline U-Net (raw grayscale input images with no pre-pro-
cessing), 2) U-Net with pre- and post-processing, 3) U-Net with 
pre- and post-pressing and an LBP transformation, and 3) U-
Net with pre- and post-processing and three layers of wavelet 
decomposition. 
   From the results in Table 1, it can be seen that the pre- and 
post-processing improved the U-Net performance on the testing 
set by an increase of 6.04% points above that of the baseline 
configuration.  Adding the LBP to the network input produced 
a degradation in system performance, as seen in column 4 of 
Table 1.  However, the use of wavelet decomposition improved 
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the overall performance of the network by an additional 2.56% 
points above the scenario where just the pre- and post-pro-
cessing techniques were used.  The best performance was 
achieved when using pre- and post-processing in conjunction 
with the three layers of wavelet decomposition.  The average 
Jaccard Index on the testing folds for the best configuration was 
59.73%, which would translate to a ranking of 18 out of 20 on 
the final ranking leader board of the 2017 ISBI Challenge.    
   In Figure 9, the output of the different proposed configura-
tions is illustrated using five different example images.  These 
images represent more challenging cases and include poor con-
trast, small lesions, marker annotations, hair, and faint lesions. 
    

VI. CONCLUSIONS AND FUTURE WORK 
   In conclusion, pre- and post-processing of dermoscopy im-
ages improved the performance of U-Nets for skin lesion seg-
mentation.  When local binary patterns were extracted from the 
processed dermoscopy images and used as additional inputs 
into the U-Net, weaker performance was demonstrated than 
when pre- and post-processing techniques were used in isola-
tion. Wavelet decompositions of the pre-processed image did 
provide additional performance improvements over pre- and 
post-processing of inputs and outputs alone.  This is hypothe-
sized to be due to the feature extraction and de-noising benefits 
of the wavelet transformation. 
   Future work would include making additional improvements 
to both the pre- and post-processing techniques, as they demon-
strated direct positive impact on the resultant Jaccard Index.  
Specific areas of focus would include enhancements to both the 
hair removal and vignette correction pre-processing steps. 
   The U-Net training and testing for this research was con-
ducted with constrained computational resources, but the effect 
of running with much larger datasets, increased network layers, 
and over more epochs should be investigated further.  It would 
be beneficial to determine if the use of wavelet decomposition 
could improve on the accuracy achieved by Yading et al. [12], 
and if the technique translates to improvements for many dif-
ferent kinds of image data and ConvNet architectures. 
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