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Abstract—Safety ranks the first in Air Traffic Management
(ATM). Accurate trajectory prediction can help ATM to forecast
potential dangers and effectively provide instructions for safely
traveling. Most trajectory prediction algorithms work for land
traffic, which rely on points of interest (POIs) and are only
suitable for stationary road condition. Compared with land traffic
prediction, flight trajectory prediction is very difficult because
way-points are sparse and the flight envelopes are heavily affected
by external factors. In this paper, we propose a flight trajectory
prediction model based on a Long Short-Term Memory (LSTM)
network. The four interacting layers of a repeating module in an
LSTM enables it to connect the long-term dependencies to present
predicting task. Applying sliding windows in LSTM maintains the
continuity and avoids compromising the dynamic dependencies
of adjacent states in the long-term sequences, which helps to
improve accuracy of trajectory prediction. Taking time dimension
into consideration, both 3-D (time stamp, latitude and longitude)
and 4-D (time stamp, latitude, longitude and altitude) trajectories
are predicted to prove the efficiency of our approach. The dataset
we use was collected by ADS-B ground stations. We evaluate our
model by widely used measurements, such as the mean absolute
error (MAE), the mean relative error (MRE), the root mean
square error (RMSE) and the dynamic warping time (DWT)
methods. As Markov Model is the most popular in time series
processing, comparisons among Markov Model (MM), weighted
Markov Model (wMM) and our model are presented. Our model
outperforms the existing models (MM and wMM) and provides
a strong basis for abnormal detection and decision-making.

I. INTRODUCTION

Over the past few years, with the rapid growth of traffic data,

transportation management and control becomes data driven

and requests significant increasing computing resources. As

one important means of modern traffic, civil aviation enjoys

a rapid development both in scale and technology. Up to the

year 2014, the total number of global civil flights was about

36.5 million, with an average of about 100,000 per day, and

has a sustained growth trend. In addition, chartered plane, low

altitude unmanned aerial vehicle, helicopters are very active in

the low altitude airspace in recent years. Though it leads to a

convenient and fast travel all around the world, civil aviation

brings huge burden to the Air Traffic Management (ATM)

systems. According to the Eurocontrol Base of Aircraft Data

(BADA) [1], the trajectories of aircrafts should be predictable

in the sense of ATM.

Forecasting is vital to avoid mistakes or reduce errors when

making decisions. Recently, forecasting has been widely used
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Fig. 1. Air accidents and casualties all over the world since 2000.

for traffic management, such as aircraft trajectory prediction,

maritime traffic forecasting, vehicle traffic predicting, traffic

flow prediction and pedestrian trajectory prediction. Accord-

ingly, there are a lot of long-term, medium-term, short-term

forecasting techniques presented. The most popular model may

be the Markov Model (MM) and its variants [2–4], which mod-

el trajectory sequentially. Besides MM, other methods used for

prediction include Autoregressive model [5], Clustering and

Artificial Neural Networks [6, 7], and Deep Neural Networks

[8–10].

Trajectory prediction methods for land traffic or pedestrian

are strictly constrained by the already-known and stationary

road and points of interest (POIs) in the horizontal plane.

While in the flight trajectory prediction, way-points are too

sparse to label a trajectory in the ascending, cruising and

descending phases. The flight envelopes are heavily affected

by the external factors, such as geographic factor, bad weather

or manual operations. Delays or collisions are mainly resulted

from the above mentioned problems. Prediction of flight

trajectory becomes more and more vital in ATM. Related

prediction works on flight trajectory are reviewed in the

following. Delay prediction [11–13] was widely studied, which

is related to commercial interests of airlines and choice of

passengers. In [14], five machine learning methods including

MLR-FS, Ridge, PCR, NNet and GBM were applied for

mass estimation for aircrafts at climbing phase. Despite the

application of advanced control and monitoring systems on

aircrafts, aviation safety still has to be very concerned. Fig. 1

shows the airspace accidents and casualties from the year 2000

to 2016. Potential risks and dangers can be warned in advance
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Fig. 2. The proposed LSTM-based flight trajectory prediction.

by estimating intentions through trajectory prediction. Future

dynamic features can be estimated or predicted by learning the

historical observations combined with static information such

as airways, airports and no-flight zones (NFZ).

Conventional methods relying on kinematics and aerody-

namic models can accurately describe the status of an aircraft

[15]. However, related to the types of aircrafts, the coeffi-

cients of the 6-DOF equation of motion (see details in III-B)

are required for ground stations to predict flight trajectory.

However, these coefficients are unobservable from the view

of surveillance, which makes it extremely difficult for ground

stations to predict the trajectory without knowledge of these

coefficients. Moreover, most of the existing methods predict

trajectory in 2-D space (i.e. in the horizontal plane). Errors

in modelling and sensing the complexity and difficulty in

trajectory processing when considering extra dimensional data.

In this paper, we are the first to propose a flight trajec-

tory prediction method based on Long Short-Term Memory

(LSTM) network, which can accurately predict 3-D and 4-

D flight trajectories without using the physical model of

aircraft. As shown in Fig. 2, our method has three major

steps, Historical dataset collecting, Coordinate transforming

and LSTM network building. Instructions or commands are

made by ATM based on the output of our LSTM-based model.

The major contributions of this research can be summarized

as follows.

• To the best of our knowledge, we are the first to introduce

LSTM network for flight trajectory prediction. Instead of

having a single layer, a common LSTM unit consists of

a cell, an input gate, an output gate and a forget gate.

The cell is responsible for keeping the characteristics of

sequence over arbitrary time intervals, which enables the

LSTM to process long-term sequences.

• Sliding windows is applied to our LSTM network. In

long-term sequences, dynamic features such as pitch or

acceleration may be weakened or averaged, which results

in low accuracy when predicting. Sliding windows not

only maintain the continuity of sequence, but also fully

excavate the dynamic dependencies of adjacent points

in each window, which helps to improve the prediction

precision.

• We are able to predict the trajectory in 4-D space. Mutual

constraints and couplings among position, speed and

heading are mined in the hidden layers of LSTM network,

which makes it possible for our model to output a smooth

and reasonable prediction trajectory in 4-D space.

II. RELATED WORKS

Advanced and densely distributed sensors make it possible

to characterize the transportation trajectories into time series.

Though the concept of Intelligent Transportation System (ITS)

has been proposed and seeking applications to the land,

maritime and aviation transport, accidents, breakdowns or

emergencies happen unpredictably, which poses a security

threat to the public. Detect these threatening events at an

early stage, i.e. before they happen will empower government

agencies and individual persons for effective and immediate

responses and help to minimize impact.

In land traffic, congestion is the primary issue need to be

solved in recent period. Traffic flow shows stochastic and non-

linear characteristics due to the practical cases, which makes

Kalman filters not able to fully reflect traffic features, though

it worked adaptability when traffic is volatile [16]. Cluster-

ing methods such as k-NN, performed with the equivalent

performance as the linear time-series approach according to

[17]. As early as 1970s, the autoregressive integrated moving

average (ARIMA) model [18] was applied to short-term traffic

flow prediction. And then according to [19], ARIMA (0,1,1)

model was the most outstanding forecast method in terms

of statistical significance. Recurrent neural network (RNN)

showed its advantage in time-series preprocessing, and was

applied to traffic prediction in [20]. However, disadvantages

of RNNs will be exposed in face of long sequences. Recently,

as one of the advanced RNNs, Long Short-Term Memory

(LSTM) network [10] was proposed for long-term sequence

prediction. In [9], an LSTM network with attention model was

utilized for encoding and decoding purpose of pedestrians,

combined soft and hardware the motion patterns were also

considered. Besides the traffic data, some contextual infor-

mation can provide significant help for forecasting. User’s

preferences, traffic police, roads and transportation engineers

were considered in [21]. What’s more, periodic characteristics

can also contribute, and a fuzzy neural network was proposed

[22] for forecasting travel speed. A dynamic traffic simulator

was first proposed in [5] to generate flows based on historic

traffic information. The original-to-destination (OD) matrices

were adjusted timely by an optimization methodology. Tem-

poral, spatial and multi-mode characteristics contributed to a



novel prediction approach, which was based on dynamic tensor

completion for short-term traffic flow forecast [23].

Maritime trajectories are more complex than the land traffics

with two-dimensional flexibility, as seaways are not strictly

fixed and sparser than roads. Navigation and surveillance infor-

mation cannot be updated as frequently as that in land traffic.

It is essential to extract vessels’ waterway pattern to iden-

tify regular seaways. Without incorporating motion patterns,

directly applying statistical or machine learning approaches

and neural networks may lead to large error. The pattern of

vessels can be extracted by clustering the trajectories, Lattice-

based DBSCAN and fuzzy c-means algorithms were proposed

in [7, 24]. With the assistance of automatic identification

system (AIS), the authors in [25] were able to predict future

trajectories of surrounding vessels in a recursively way.

Delay, 4-D trajectory prediction and collision risks have

attracted much research attentions in ATM research commu-

nity. Statistical methods analyzed air traffic delays in Long-

term and Short-term patterns [26]. Bayesian network [11] was

proposed to estimate delay propagation. Machine learning [12]

was also used for predicting air traffic delays. [13] modeled

the delayed flight of an individual airport by the LSTM

architecture. Turning points may provide rich information,

which were clustered and then used to build a stochastic model

[27]. Clustering models were used to identify the hot-spot

[28] where airspace collision may occur. Historic flight data

was trained on collision risk. Several key factors were also

taken into consideration, such as navigation accuracy, airway

structure, crossing tracks, aircraft size and the voyage. For

4-D trajectory prediction, K-means was carried out on radar

data for aircraft monitoring in actual operation rate. Fuzzy

clustering method was used to analyze flight data in arrival

phase. In [29], a clustering method combining time warp edit

distance (TWED) with K-means algorithm was proposed to

improve the accuracy of nominal flight profile.

The rest of the paper is organized as follows. We introduce

the assumptions and formulate the problem of flight trajectory

prediction in section III. In section IV, we introduce the LSTM

network for flight trajectory prediction. Section V presents

the experimental results and comparative tests. Concluding

remarks are described in section VI.

III. PROBLEM FORMULATION

Aircrafts must obey the traffic rules just like the vehicles

running on the land. The scheduled rules in air traffic are

usually called “flight plans”, which mainly include route

or flight paths, flight levels, special use airspace, alternate

airports, time-line and so on. It may be delayed for an aircraft

to take off when the ground runway or airways are busy or

beyond their capacity according to the timely traffic flow.

Though way-points and airways divide the airspace into grid-

like fixed routes, heavy rains, thunders, hails or mis-operation

still throw a threat on aircrafts when they start the cruising

phase. What’s more, pilots should keep constant attention on

the minimum separation in case of crash. Hidden dangers exist

in all phases. The primary task of ATM is to avoid colliding

among aircrafts or obstacles, so as to ensure the unimpeded

and orderly operate in the air traffic. Newly technologies are

imported to ATM according to the growing traffic flow, such as

radio, radar, navigation, communication, computer technology

and so on. In terms of the airlines, it is also primary to ensure

the safety of passengers and take the economic efficiency

(mainly the range and fuel consumption) into consideration.

In the Next-Gen air traffic architecture [30], trajectories will

be more flexible based on their performance rather than the

navigation-based strategy. It becomes more and more difficult

and important to predict trajectories precisely.

A. Assumptions

Aircraft model is defined by the main eight terms: aircraft

type, mass, flight envelope, aerodynamics, engine thrust, re-

duced power, fuel consumption and ground movement. The

performance will also be influenced by the atmospheric prop-

erties: pressure, temperature, density and speed of sound, all

these factors are functions of the altitude. In our paper, we

make assumptions as follows.

Assumption 1. In this paper, we consider the aircraft as a

rigid body for convenience of force analysis and the curvature

of the earth is not considered. The mass will affect the thrust

applied by the engines especially when climbing. Here, we

assume the mass of an aircraft be constant and within the

limitation throughout the entire flight mission.

Assumption 2. The speed amplitude is assumed to be

constant between the two report time. The ADS-B transmitter

messages in a very high frequency, and we record them every

10-30 seconds by ADS-B ground station. We consider the

speed to be constant during each period.

Assumption 3. The changes on temperature and pressure are

ignored when an aircraft climbs and descends. The effects of

earth curvature and wind are also not considered. The intention

we mentioned here refers to the changes on heading, speed and

altitude.

Assumption 4. Way-points are considered as a circle perpen-

dicular to the horizontal surface, positioned in certain latitude,

longitude and altitude. The radius is assumed to be equal with

that of the airways (flight envelop). Airways are assumed to

be regular cylinders, with standard radius (20km) and certain

altitudes.

B. Problem description

The behavior of an aircraft is determined by its classical

kinematics and aerodynamic models, ie. the 6-DOF equation

of motion [15] based on Assumption 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = CDρV 2S/2

L = CLρV
2S/2

Y = CY ρV
2S/2

l = ClρV
2Sb/2

M = CmρV 2Sc/2

N = CnρV
2Sb/2

(1)
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Fig. 3. Illustration of the taking-off phase of an aircraft.

where, ρ is the density of air, V is the true airspeed (TAS), D,

L, Y , l, M , N represent the aerodynamic drag, lift and lateral

force, roll, pitch and yaw moment of the aircraft, respectively.

CD, CL, CY , Cl, Cm, Cn represent the coefficients of drag,

lift and lateral force, roll, pitch and yaw moment of the

aircraft accordingly. S, b, c represent the wing area, wing span

and the average aerodynamic chord length respectively. The

performance of an aircraft can be specified into TAS, rate of

climb/descent and fuel flow for conditions of climb, cruise and

descent at various flight levels.

Flight trajectory is a sequence that the later state of the

aircraft is closely related to the former state, Statek+1 ∝
Statek. So, the current flying state of an aircraft is mainly

determined by the new instruction based on previous status.

Then we can probably predict the next near future state of an

aircraft by learning its historical trajectory within the physical

performance limits.

{
Posk+1 = Posk + V elkΔt+ 1/2Acck(Δt)2

V elk+1 = V elk +AcckΔt
(2)

The dynamic performance of an aircraft can be predicted

through changes of these state parameters in the experimental

environment. We take the climbing stage for an example,

as illustrated in Fig. 3, at any time the intended movement

and altitude of the aircraft in the air are determined by the

aerodynamic and aerodynamic moments it receives, as well as

the engine thrust and engine torque.

However, in the view of ATM, the kinematics and aero-

dynamic parameters are unobservable, we can hardly know

the real-time attitude information (pitch, yaw and roll) and it

will take a long time to estimate them with great uncertainty

and inaccuracy. Fortunately, characteristics on trajectory level

can be recorded and detected, such as 4-D position, speed,

heading, call sign, origin-destination (OD). Aided with Airport

Surveillance Radar, the Secondary Surveillance Radar (SSR)

and the Automatic Dependent Surveillance-Broadcast (ADS-

B), the surveillance system is able to monitor the trajectories of

objects in the air. Process and measurement noises exist during

the surveillance period, which aggravates the uncertainty and

difficulty on trajectory predicting.

IV. METHODOLOGY

Hidden relationship between internal parameters and tra-

jectories can be discovered by analyzing the behavior of

trajectory. Also the contextual and geographic environment

ADS-B OUT

Global Positioning System

ADS-B Ground Stations

ADS-B IN
Air Traffic Management

Fig. 4. An ADS-B system.

provide us rich auxiliary information. In this section, we

will introduce the key methods as shown in Fig. 2 and the

evaluation criterion.

A. Data Collection

Automatic Dependent Surveillance-Broadcast (ADS-B) is

gradually introduced to the ATM system due to its high

positioning accuracy (GPS level) and high broadcast frequen-

cy. It broadcasts position, heading, call-sign, departing and

landing airports three to four times per second. Messages are

transmitted via ground-to-air and air-to-air data links in certain

time period, as shown in Fig. 4.

Multiple ground stations were built to expand the surveil-

lance area, which leads to conflict or redundant data. In

addition, measurement and system errors can be different even

among the sensors with same type. Raw data recorded by

different stations need to be de-noised. The format should be

re-defined to map the data sheet. Redundant data is generated

in the intersecting surveillance area of sensors, when an

aircraft appears in this area. Abnormal data are retained and

marked.

B. Coordinate Transformation

As we know, Global Positioning System (GPS) uses the

Geocentric Coordinate System, which is one of the WGS-84

coordinate (World Geodetic System-1984 Coordinate System).

Elements will have different units of measurement. Intuitively,

the value of altitude can be hundreds or thousands times of

latitude or longitude, as they are limited to [0,±90◦] and

[0,±180◦] respectively. The unit used in North East Down

(NED) coordinate system is kilometer, which guarantee the

small difference in numerical values among different dimen-

sions, thereby decrease error in data processing.

Suppose (L,B,H) represents the 3-D position in GPS-84

coordinate system, accordingly, the position in NED (x, y, z)
can be transformed by⎧⎨

⎩
x =

[
NR

(
1− e21

)
+H

]
sinB

y = (NR +H) cosB cosL
z = (NR +H) cosB sinL

(3)

where e21 =
(
a2 − b2

)/
a2 represents the first eccentrici-

ty of ellipsoid. NR = a

/√
1− e21sin

2B, a is the semi-

major axe of the earth and b is the semi-minor axe of the
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earth. Corresponding to WGS-84, a = 1, 378, 137m and

b = 6, 356, 752m.

C. LSTM network

Recurrent Neural Network (RNN) shows its own advantages

on sequence prediction in recent years, however, gradients

exploding or vanishing when dealing with long-term series.

Essentially, LSTM is one of RNN, it has the same inputs and

outputs as RNN, but more complex network structure with

more parameters. Information passes optionally through the

gates and knowledge is encoded up to the observed step. The

gates make the cell of an LSTM network act as a memory unit

that keeps the features of the input and updates the cell state

according to the input of every time stamp. The structure of

an LSTM network is shown in Fig. 5.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ft = σ (Wf [ht−1, xt] + bf )

it = σ (Wi [ht−1, xt] + bi)

C̃t = tanh (WC [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ (Wo [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)

(4)

where, Wf , Wi, WC and Wo are the coefficient matrices, bf ,

bi, bC and bo are the bias matrices. ft decides what information

is going to cast away from the cell state, we often call this

layer as the “forget gate layer”. The output of this layer can

be a random value between 0 and 1. it and Ct decide the

newly added information to the cell state, this layer is known

as the “input gate layer”. The output is based on the filtered

cell state.

Normalization is necessary before folding the data as train-

ing set to LSTM network. Min-Max normalization is a linear

strategy, it transforms x to y = (x−min)/(max−min),
min and max are the minimum and maximum values of the

observed set X . The features of data are scaled between 0 and

1.

D. Index of Performance

Euclidean distance is the most direct way to measure the

similarity between two sequences. The mean absolute error

(MAE), the mean relative error (MRE) and the root mean

square error (RMSE) are most common indicators in many

practical applications. We also use the dynamic warping time

(DWT) to measure the similarity between predicted trajectory

and the ground truth.

Euclidean Distance

⎧⎪⎨
⎪⎩
MAE = 1

n

∑n
i=1 |fi − f̂i|

MRE = 1
n

∑n
i=1

|fi−f̂i|
fi

RMSE = [ 1n
∑n

i=1(|fi − f̂i|)2] 12
(5)

where fi is the observation and f̂i is the prediction.

Dynamic Time Warping (DTW)

DTW is known for the successful application in speech

recognition. It can be seen as an optimal match between two

given sequences with certain restrictions.

Let Tra1 =
(
tr11, tr

2
1, · · · , trm1

)
and Tra2 =(

tr12, tr
2
2, · · · , trn2

)
be any two trajectories with different

length. A m × n distance matrix Dism×n is constructed

by calculating the Euclidean distance among the points of

trajectories. The element in this distance matrix can be

represented by dij =
∣∣∣tri1 − trj2

∣∣∣, constrained by 1 ≤ i ≤ m

and 1 ≤ j ≤ n. W = (w1, w2, · · ·wk) is referred to the

warping path on the grid. The DTW distance between

Tra1, T ra2 is calculated as:

ddtw (Tra1, T ra2) = min

{
1

M

M∑
i=1

wi

}
(6)

An optimal path is generated by minimizing cumulative

distance by dynamic programming. Defining a cumulative ma-

trix Rm×n = [r (i, j)]m×n to measure the minimum distance

between two sequences. It can be calculated as:

r (i, j) = dij +min

⎧⎨
⎩

r (i, j − 1)
r (i− 1, j − 1)
r (i− 1, j)

(7)

Finally, the distance of two sequences can be denoted by

the cumulative distance, namely ddtw(L1, L2) = r(m,n).

V. EXPERIMENTS

The Markov Models are widely used in nonlinear systems as

heuristic methods. Based on probability transfer matrix, these

models have simple form. Taking fully advantage of historical

data, they can be applied to practical systems. As also popular

in time series processing, we compare LSTM network and

Markov Models in this part.

A. Data Description

Our data is collected by multiple ADS-B ground stations

every 15 seconds. The record period lasted from June 2017

to November 2017 for five months. Each trajectory trav-

eled for around two and half hours. Raw data may contain

redundant data, mistakes, noised data and conflict features.

Data compression, simplification, interpolation and abnormal

detection are needed before we use it. We selected an abnormal

trajectory as test data, others are input as the training set.



B. Network Training

We build our LSTM network based on Keras [31]. The

dynamic states of aircraft acts as the input to our LSTM

based network. Position, speed and heading are deeply coupled

and mutually constrained. The ideal length of input sequences

should not be too long or too short to mine these hidden

constrains reasonably. Sliding windows are used in the training

process, the length of window and step size can be set

experimentally according to practical applications.

According to the regional regulations and agreements, the

time interval between two aircrafts must be more than 10 min-

utes, and the vertical spacing should be over 300m. In addition,

an aircraft performs differently in each phase. Sliding windows

can avoid compromising the dynamic characteristics in long-

term sequences. Taking the sampling period into consideration,

the length of window is set to be 10, and shift by one each

time. This guarantees a constant overlap with prior windows.

Our LSTM-based network is structured in four layers with two

hidden layers, and predicts by 10 points (time interval be 5-10

minutes). The first hidden layer is designed with 30 neurons,

then feeds into the other layer with 60 neurons. Prediction

results will be outputted from the fully connected layer of one

neuron with a linear activation function.

Avoiding model over-fitting, dropout technique is used, with

the ratio of 0.2. When compiling the model, we choose the

mean squared error (mse) as the loss function, RMSprop as

the optimizer.

C. Experimental Results

The trajectories recorded in the past five months are used for

training the network. As the dynamic models in each phase are

partially known priorly, 5% of the training data are selected

as the validation set to train the hyper parameters.

For i > 1 and j > 1, the recursion in DTW is initialized

as, ⎧⎨
⎩

r (0, 0) = 0
r (i, 0) = +∞
r (0, j) = +∞

(8)

We compare our model with widely used Markov Model

and weighted Markov Model used in [2] [3]. Limitations of

Markov Models appear when the probabilities are close to

each other, only the maximum one is selected, which results

in inaccurate estimation of the stochastic process. Besides,

prediction by Markov Models relies on pre-defined classifi-

cation, while the range and number of this classification are

determined by the practical problems and may be decided by

artificial experience. While LSTM performs more adaptively

than Markov Models.

The indicators are listed in Table I. Difficulty increases

when we enlarge the dimensions of training data. Additional

errors will be generated by the coordinate transformation

and network prediction. We decompose the errors into three

dimensions in order to make a clear demonstration. From the

numerical analysis shown in Table I and the prediction of the

trend shown in Fig. 6a, we can see that, LSTM network can

predict a smoother trajectory than that in Markov Models. One

of the possible reasons is that LSTM keeps long-term features

of the sequence. Sharp and serrated trajectories are generated

by the Markov Models. The weighted Markov Model performs

better than the unweighted one. Since the adjacent states of

weighted MM are assigned with large weights, which weaken

the error between prediction and ground truth. In Fig. 6b,

all these models encounter large errors when considering the

altitude dimension. As the normalization and classification

in LSTM and Markov Models will be affected by the large

ranged amplitude. Fig. 7 shows detailed errors along the

three directions. Random maneuvering and bad weather create

fluctuating or sharp turns, lacking of such training data makes

us unable to capture the dynamic features. So spikes exist in

the output, but our model converges quickly.

We apply our LSTM model to a practical scene. An aircraft

takes off after taxiing on the runaway as usual. However,

it climbs with an abnormal heading but normal climb rate.

Along with its heading direction, a mountain exists whose

altitude is slightly higher than that of the aircraft. The aircraft

will hit the mountain if it continues to follow the normal

operation. Fortunately, ATM gave an urgent order timely,

which successfully avoided the accident. Our model can tell

the potential risk with predicted trajectory and environmental

factors.

VI. CONCLUSION

We formulated a trajectory prediction method based on

an LSTM network. This method was tested on the flight

trajectory recorded by ADS-B ground stations. Different from

conventional model-based methods used for flight trajectory

prediction, our method avoids the complicated coefficients

estimation process. Applying sliding windows makes the L-

STM network able to track every phase of the trajectory and

converge quickly. Moreover, our method can accurately predict

flight trajectory in both 3-D and 4-D space. Experiments

showed that our method outperforms the widely used methods,

such as MM and wMM.

This research is our initial step of applying LSTM for flight

trajectory prediction. In future, multi-modal data including

images, audios and videos will be considered. Our LSTM-

based trajectory prediction model will be modified to fuse

different modality data.
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