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Abstract 

 

We devise an algorithm using a Bayesian optimization 

framework in conjunction with contextual visual data for 

the efficient localization of objects in still images. Recent 

research has demonstrated substantial progress in object 

localization and related tasks for computer vision. 

However, many current state-of-the-art object localization 

procedures still suffer from inaccuracy and inefficiency, in 

addition to failing to provide a principled and interpretable 

system amenable to high-level vision tasks. We address 

these issues with the current research.  

 

Our method encompasses an active search procedure that 

uses contextual data to generate initial bounding-box 

proposals for a target object. We train a convolutional 

neural network to approximate an offset distance from the 

target object. Next, we use a Gaussian Process to model 

this offset response signal over the search space of the 

target. We then employ a Bayesian active search for 

accurate localization of the target.  

 

In experiments, we compare our approach to a state-of-the-

art bounding-box regression method for a challenging 

pedestrian localization task. Our method exhibits a 

substantial improvement over this baseline regression 

method. 

 

1. Introduction 

Precise object localization remains an enduring, open 

challenge in computer vision. For example, fine-grained 

pedestrian localization in images is an active area of 

research with  rich application potential [42]. More 

generally, accurate object localization is a vital task for 

many real-word applications of computer vision including: 

autonomous driving [12], cancer detection [21], image 

captioning [29], scene recognition [10] and robotics [24]. 

Current benchmark approaches [32] in object localization 

commonly apply a form of semi-exhaustive search, 

requiring a high volume—oftentimes thousands—of 

potentially expensive function evaluations, such as 

classifications by a convolutional neural network (CNN). 

Because of their black box nature, these methods often lack 

interpretability and neglect to incorporate top-down 

information including contextual and scene attributes.  

 

 
Figure 1: Idealization of localization process for pedestrian 

image using contextual data. Contextual data is shown in green; 

the ground-truth of the target is shown in blue, and target 

proposals are in red. Beginning with context-supported initial 

proposals, the GP-CL algorithm efficiently refines the 

localization process (All figures in this paper are best viewed in 

color.) 

 

With [13][14], Girshick et al. achieved state-of-the-art 

performance on several object detection benchmarks using 

a “regions with convolutional neural networks” (R-CNN) 

approach. R-CNN comprises two phases: the region 

proposal generation and the proposal classification. 

Regional proposal generation renders rectangular regions 

of interest (ROIs) that are later classified by a deep CNN 

during proposal classification.   

While the various R-CNN models perform well on 

general detection tasks, R-CNN-based approaches 

nonetheless suffer from at least (4) serious shortcomings 

and challenges: (1) the efficiency of the region proposal 

method, (2) the computational cost of evaluating the deep 

CNN, (3) localization accuracy and (4) the ability to 

successfully calibrate the R-CNN framework with top-

down information, including context and feedback, in a 

principled, Bayesian manner.  

We address each of these four areas by proposing a 

Bayesian optimization scheme in conjunction with 

contextual visual data for efficient object localization.  

Our work provides the following contributions: (1) We 

demonstrate that CNN features computed from an object-

proposal bounding box can be used to predict spatial offset 

from a target object. (2) We frame the localization process 
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as an active search integrating top-down information in 

concert with a dynamic Bayesian optimization procedure 

requiring very few bounding-box proposals for high 

accuracy. (3) By rendering an active Bayesian search, our 

method can provide a principled and interpretable 

groundwork for more complex vision tasks, which we show 

explicitly through the incorporation of flexible context 

models. We compare our approach with the bounding-box 

regression method used in R-CNN approaches through 

experiments that test efficiency and accuracy for a 

challenging localization task.  

The subsequent sections give some background on 

related work, the details of our method and algorithm, 

experimental results, summary remarks, and considerations 

of future work.  

 

2. Background and Related Work  

Object localization is the task of locating an instance of 

a particular object category in an image, typically by 

specifying a tightly-cropped bounding box centered on the 

instance. An object proposal specifies a candidate bounding 

box, and an object proposal is said to be a correct 

localization if it sufficiently overlaps a human-labeled 

“ground truth” bounding box for the given object. In the 

computer vision literature, overlap is measured via the 

intersection over union (IOU) of the two bounding boxes, 

and the threshold for successful localization is typically set 

to 0.5 [11]. In the literature, the “object localization” task is 

to locate one instance of an object category, whereas 

“object detection” focuses on locating all instances of a 

category in a given image. 

For humans, recognizing a visual situation—and 

localizing its components—is an active process that unfolds 

over time, in which prior knowledge interacts with visual 

information as it is perceived to guide subsequent eye 

movements. This interaction enables a human viewer to 

very quickly locate relevant aspects of the situation [27].  

 Our method supports this more human-like approach of 

active object localization (e.g., [7], [15], [23]), in which a 

search for objects likewise unfolds over a series of time 

steps.  At each time step the system uses information gained 

in previous time steps to decide where to search. 

More recent variants of R-CNN, including, notably,  

Faster R-CNN [32], have attempted in the main to improve 

the efficiency of the core R-CNN pipeline  by refining 

either the region proposal generation stage or the proposal 

classification stage of the localization algorithm.  Faster R-

CNN trains a region-proposal network (RPN) that shares 

full-image convolutional features with the detection 

network used in Fast R-CNN [13] to simultaneously predict 

object bounds and objectness scores. Other related methods 

(e.g., [18], [36]), attempt to simplify the CNN structure to 

improve computation time. Despite offering improvements, 

these methods still require considerable computing power 

[20].  

Setting aside computational efficiency concerns, 

achieving accurate localization results is often an additional 

challenge in the R-CNN framework [43]. In particular, 

Hoiem et al. [17] show that inaccurate or “misaligned” 

bounding-boxes (i.e., boxes with a small IOU or 

intersection over union: 0.05 < IOU < 0.5) exacerbate 

localization error for R-CNN. As such, R-CNN models are 

critically reliant on high-quality (i.e., IOU > 0.5) initial 

proposals; when no such proposals are present, R-CNN can 

render much weaker results [42]. We use a context-situation 

model, incorporating top-down, “situational” information 

to efficiently generate region proposals and then 

incorporate a Bayesian optimization scheme to further 

refine these proposals for accurate localization. The various 

R-CNN models all use category-specific “bounding-box 

regression” (BB-R) models to refine object proposals made 

by the system. In experiments, we compare our results 

against the BB-R models used by R-CNN for localization.  

As an additional innovation, and in contrast to using the 

CNN as a discriminative object detector, we use features 

computed by a pretrained CNN to provide a localization 

“signal.” We show that this signal (a function of the 

normalized offset distance of a bounding-box from the 

target ground-truth object) can be used effectively in a 

Bayesian optimization setting to quickly localize a target 

object.  

The work of Zhang et al. [43] provides an extension of 

R-CNN that relates closely to the present work due to its 

use of Bayesian optimization. Despite this similarity, our 

work differs significantly in several important ways. Zhang 

et al., for instance, train their classifier as an object detector, 

whereas we instead train an offset-prediction signal. 

Furthermore, where Zhang et al. demonstrate a marginal 

improvement over baseline R-CNN on localization tasks, 

our method is fine-tuned for refining object proposals to 

guide an active localization procedure, particularly in the 

case of only marginally accurate initial proposals.  

Context is described in terms of information that is 

necessary to characterize a visual situation. Recently, 

contextual information has been identified to improve 

several vectors of analysis in computer vision, including 

localization [39]. Indeed, the effective use of context is 

critical for future A.I. systems that aim to exhibit more 

comprehensive capabilities, including scene and situation 

“understanding” [30]. Nonetheless, many current systems 

disregard the use of context entirely, and its apposite use in 

vision tasks remains an open question.  

Torralba and Murphy [25] incorporate global contextual 

features to learn context priors for object recognition. [26] 

frame localization as a MDP and apply unary and binary 

object contextual features to improve the search for a target 

object. Another successful use of context for localization 

includes [1] for which the class-specific search algorithm 
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learns a strategy to localize objects by sequentially 

evaluating windows, based on statistical relation between 

the position and appearance of windows in the training 

images to their relative position with respect to the ground-

truth. See also: [16], [6], [4], [28].  

In the present work, related to [1], we learn contextual 

priors that model target object location and size. Together, 

we call the set of contextual priors a “context-situation 

model”. [30] show that contextual information learned from 

situation-specific images can be successfully leveraged to 

improve localization. Using known contextual data from 

situation-specific images, we generate initial target 

proposals and then actively execute the search process 

using a Bayesian methodology – in this way the information 

gleaned from the prior can be weighed actively against 

evidence collected during the localization procedure.   

3. Gaussian Processes with Context-

Supported Priors for Active Object 

Localization  

Gaussian Processes used in conjunction with a Bayesian 

optimization framework are frequently applied in domains 

for which it is either difficult or costly to directly evaluate 

an objective function. In the case of object detection and 

localization, it is computationally prohibitive to extract 

CNN features for numerous bounding-box proposals (this 

is why, for instance, Faster R-CNN utilizes shared 

convolutional features). There consequently exists a 

fundamental tension at the heart of any object localization 

paradigm: with each bounding box for which we extract 

CNN features, we gain useful knowledge that can be 

directly leveraged in the localization process, but each such 

piece of information comes at a price.  

  A Bayesian approach is well-suited for solving the 

problem of function optimization under these challenging 

circumstances. In the case of accurate object localization, 

we are attempting to minimize the spatial offset from a 

ground-truth bounding box (Figure 1). To do this, we train 

a model – described in Section 3.1 – to predict spatial offset 

of a proposal using CNN features extracted from the 

proposal. Once trained, the model output can be used to 

minimize the predicted offset. Ideally, this output is 

minimal when the proposal aligns with the actual ground-

truth bounding box for the target object.  

In our approach, we optimize a cheap approximation—

the surrogate (also called the response surface) to the offset 

prediction—over the image space for efficiency. We give 

details of the realization of the surrogate function as a 

Gaussian process in Section 3.3.  

 Finally, after rendering this approximation, we determine 

where to sample next according to the principle of 

                                                           
1 We use the Euclidean distance between the centers of two bounding 

boxes, scaled by the square root of the area of the image for the measure 

of “normalized offset distance.” 

maximum expected utility. We identify utility using a 

dynamically defined acquisition function that strikes a 

balance between minimizing uncertainty and greedy 

optimization. This method is described in more detail in 

Section 3.4.  

3.1 Training an Offset-Prediction Model 

We train a model that predicts the normalized offset 

distance1 from a target ground-truth object for a misaligned 

object proposal. The output of this model is the predicted 

distance of a proposal’s center from the center of the target 

object, and the inverse of the output is the predicted 

proximity.  We call the latter the “response signal.”  The 

higher the response signal, the closer the proposal is 

predicted to be to the target.   

For each image in the training set, we generate a large 

number of image crops that are offset from the ground-truth 

pedestrian by a random amount. These randomized offset 

crops cover a wide range of IOU values (with respect to the 

ground-truth bounding box). These offset crops are also 

randomly scaled, so that the offset-prediction model can 

learn scale-invariance (with regard to bounding box size) 

for approximating offset distance. For each of the offset 

crops, we extracted CNN features using the pre-trained 

imagenet-vgg-f network in MatConvNet [44]. 

Using these features, we trained a ridge regression model 

mapping features to normalized offset distance from the 

ground-truth bounding box center. Next, we transformed 

this mapping in two steps using: (1) a scale transformation 

so that our feature-mapping scale corresponds to the 

bandwidth parameter used in the Gaussian process (see 

Section 3.3); and (2) a Gaussian-like transformation so that 

our prediction model renders an appropriate basin of 

attraction around the center of a target object that coheres 

with basic Gaussian process model assumptions. Note that 

in our regime, small offsets from the center of the target 

ground will yield (ideally) a maximum response signal. To 

improve the accuracy of our offset predictor, we average an 

ensemble of model outputs ranging over five different 

bounding-box scales.  

The performance results of the offset-prediction model 

are plotted in Figure 2.  

 

3.2 Context-Situation Learning  
 We define a context-situation model as a distribution of 

location and size parameters for a target object bounding-

box, given various location and size parameters for a 

particular visual situation: 

 

𝑝(𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡|{𝑥𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑠𝑐𝑜𝑛𝑡𝑒𝑥𝑡}1:𝐶)        (1) 
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where 𝑥 ∈ ℝ2 is the normalized bounding-box center, 𝑠 ∈
ℝ2 has components equal to the log bounding-box area-

ratio (relative to the entire image) and log aspect-ratio, 

respectively; C represents the number of known context 

objects.  

In our experiments, we use a set of pedestrian images for 

our dataset (see section 4.1 for more detail) that comprise 

instances of a “dog-walking” visual situation; [17] showed 

that this learned context-situation facilitates improved 

object localization.  

More specifically, this learned model consists of a set of 

probability distributions modeling the joint locations of the 

primary objects in the image as well as the joint area-ratios 

and aspect-ratios of bounding-boxes for these objects. 

These distributions capture the expected relationships 

among the objects with respect to location and size/shape 

of bounding-boxes. Naturally, these context-situation 

models can be extended and augmented as needed to 

improve compatibility and model expressiveness for a wide 

array of visual situations.  

For simplicity and as a general proof of concept, we 

model context-situation as decoupled2 size and shape MVN 

(multi-variate Normal) distributions. See Section 5 for 

comments regarding considerations of more robust density 

models for context-situation learning.  

3.3 Gaussian Processes  

We use a Gaussian Process (GP) to compute a surrogate 

function f using observations  {𝑦} of response signals from 

our prediction model:  𝑦(𝑥) = 𝑓0(𝑥) + 𝜀. (Recall that the 

signal y is high when the input proposal is predicted to be 

close to the target object.) The surrogate function 

approximates f0, the objective signal value for coordinates 

x in the image space, with ε connoting the irreducible error 

for the model.   

GPs offer significant advantages over other general-

purpose approaches in supervised learning settings due in 

part to their non-parametric structure, relative ease of 

computation and the extent to which they pair well with a 

Bayesian modeling regime. GPs have been applied recently 

with success in a rich variety of statistical inference 

domains, including [5], [41], [9]. 

More formally, we let  𝑥𝑖 ∈ ℝ2 be the ith observation 

from a dataset 𝐷1:𝑇 = {𝑥1:𝑇 , 𝑦(𝑥1:𝑇)} consisting of T total 

pairs of object-proposal coordinates x in the image space 

and response signals y, respectively. We wish to estimate 

the posterior distribution 𝑝(𝑓|𝐷1:𝑇) of the objective 

function given these data: 𝑝(𝑓|𝐷1:𝑇) ∝ 𝑝(𝐷1:𝑇|𝑓)𝑝(𝑓). 

This simple formula allows us to iteratively update the 

posterior over the signal as we acquire new data. 

                                                           
2 By “decoupled” we mean that the location and size parameters are 

treated as independent densities, to minimize overfitting for photographic 

bias.  

A GP for regression defines a distribution over functions 

with a joint Normality assumption. We denote f, the 

realization of the Gaussian process:  

 

𝑓~𝐺𝑃(𝑚, 𝑘)         (2) 

 

Here the GP is fully specified by the mean m and covariance 

k. A common kernel function that obeys suitable continuity 

characteristics for the GP realization is the squared-

exponential kernel, which we use here:   

 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2𝑒𝑥𝑝 [−

1

2𝑙2
‖𝑥 − 𝑥′‖2] + 𝜎𝜀

2𝛿𝑥𝑥′      (3) 

 

where 𝜎𝑓
2 is the variance of the GP realization, which we set 

heuristically; 𝜎𝜀
2 is the variance of the ε parameter that we 

estimate empirically; and 
xx 

 is the Kroenecker delta 

function which is equal to 1 if and only if 𝑥 = 𝑥′ and is 

equal to zero otherwise. GPs are particularly sensitive to the 

choice of the length-scale/bandwidth parameter l, which we 

optimize with grid search for the reduced log marginal 

likelihood (see [18] for additional details).   

The posterior predictive of the surrogate function for a 

new datum 𝑥∗ is given by [3]:  

 

𝑝(𝑓∗|𝑥∗, 𝑋, 𝑦) = 𝑁(𝑓∗|𝑘∗
𝑇𝐾𝜎

−1𝑦, 𝑘∗∗ − 𝑘∗
𝑇𝐾𝜎

−1𝑘∗)      (4) 

 

where X is the data matrix (all prior observations x), 𝑘∗ =
[𝑘(𝑥∗, 𝑥1), … , 𝑘(𝑥∗, 𝑥𝑇)], 𝑘∗∗ = 𝑘(𝑥∗, 𝑥∗) 

and 𝐾𝜎 = 𝐾 + 𝜎𝑦
2𝐼𝑇, where 𝐾 = 𝑘(𝑥𝑖 , 𝑥𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑇.  

For our algorithm, we compute posterior predictive 

updates using equation (4) in batch iterations (see Section 

4.2). At each iteration, the realization of the GP is 

calculated over a grid of size M corresponding with the 

image space domain of the object localization process. This 

grid size can be chosen to match a desired 

granularity/computational overhead tradeoff.  

Considering equation (4) further, we note that posterior 

predictive updates entail a one-time (per iteration) inversion 

of the matrix 𝐾𝜎 , requiring 𝑂(𝑇3) operations, where T is 

the number of calls to the offset-prediction model. 

Naturally, choosing information-rich bounding-box 

proposals (see Section 3.4) will improve the efficiency of 

the localization process and thus keep T reasonably small in 

general. To this end, we furthermore incorporate a “short 

memory” mechanism in our algorithm so that older 

proposal query values, which convey less information 

pertinent to the current localization search, are “forgotten” 

(see Section 4).  For improved numerical stability, we apply 

a Cholesky decomposition prior to matrix inversion [31].  



                                            

 5 

3.4 Bayesian Optimization for Active Search  

In the regime of Bayesian optimization, acquisition 

functions are used to guide the search for the optimum of 

the surrogate approximating the true objective function. 

Intuitively, acquisition functions are defined in such a way 

that high acquisition indicates greater likelihood of an 

objective function optimum. Most commonly, acquisition 

functions encapsulate a data query experimental design that 

favors either regions of large signal response, large 

uncertainty, or a combination of both.  

One can formally express the utility of a Bayesian 

optimization procedure with GP parameter θ, 

observations {𝑦}, and acquisition function instantiated by 

𝑎(𝜉) with design parameter ξ≥ 0, as the information gained 

when we update our prior belief 𝑝(𝜃|𝑎(𝜉)) to the posterior, 

𝑝(𝜃|𝑦, 𝑎(𝜉)), after having acquired a new observation [3]. 

At each iteration of our algorithm, the acquisition 

function, defined below, is maximized to determine where 

to sample from the objective function (i.e., the response 

signal value) next. The acquisition function incorporates 

the mean and variance of the predictions over the image 

space to model the utility of sampling [3]. We then evaluate 

the objective function at these maximal points and the 

Gaussian process is updated appropriately. This procedure 

is iterated until the stopping condition is achieved.  

A standard acquisition function used in applications of 

Bayesian optimization is the Expected Improvement (EI) 

function [37]. We define a dynamic variant of EI that we 

call Confidence-EI (CEI) that better accommodates our 

problem setting: 

 

𝑎𝐶𝐸𝐼(𝑥, 𝜉) ≜ {

(𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)𝛷(𝑍) + 𝜎(𝑥)𝜑(𝑍) 

𝑍 =
𝜇(𝑥) − 𝑓(𝑥+) − 𝜉

𝜎(𝑥)

(5) 

 

In equation (5), 𝑓(𝑥+) represents the incumbent maximum 

of the surrogate function, 𝜇(𝑥) is the mean of the surrogate 

at the input point x in the image space, 𝜎(𝑥) > 0 is the 

standard deviation of the surrogate at the input; 𝜑(∙) 

and 𝛷(∙) are the pdf and cdf of the Gaussian distribution, 

respectively; and ξ is the dynamically-assigned design 

parameter. The design parameter controls the exploration-

exploitation tradeoff for the Bayesian optimization 

procedure; if, for instance, we set 𝜉 = 0, then EI performs 

greedily.  

 For our algorithm, we let 𝜉 vary over the course of 

localization run by defining it as a function of a per-iteration 

total confidence score. Lizotte [22] showed that varying the 

design parameter can improve performance for Bayesian 

optimization. With each iteration of localization, we set the 

current total confidence value equal to the median of the 

response signal for the current batch of bounding-box 

proposals. In this way, high confidence disposes the search 

to be greedy and conversely low confidence encourages 

exploration.  

 

4. Algorithm and Experimental Results 

4.1 Dataset  

Following [30] and [33], in the current study we use a 

dataset consisting of single pedestrian instances from the 

Portland State Dog-Walking Images for our proof of 

concept and comparative experiments [45]. This dataset 

contains 460 high-resolution annotated photographs, taken 

in a variety of locations. Each image is an instance of a 

“Dog-Walking” visual situation in a natural setting 

containing visible pedestrians. Quinn et al. [30] used this 

dataset to demonstrate the utility of applying prior situation 

knowledge and active, context-directed search in a 

structured visual situation for efficient object localization. 

These images represent a challenging benchmark for 

pedestrian localization, due to its high degree of variability 

and large image resolution.  

4.2 GP-CL Algorithm  

Below we present details of the Gaussian Process 

Context Localization (GP-CL) algorithm. To begin, we 

randomly set aside 400 images from our dataset for training 

and 60 for testing. We train the prediction model, y, using 

features computed by the pre-trained imagenet-vgg-f 

network in MatConvNet [44]. The features we use are from 

the last fully-connected layer, which yields feature vectors 

of dimension 4096. During training, we generated 100k 

offset crops of pedestrians from the training images.  

For our context-situation model, we fit joint log-Normal 

distribution𝑠:  𝑝(∙)𝑥, 𝑝(∙)𝑠 , for target object location and 

size, respectively, conditioned on the known location and 

size of the contextual objects consisting of dog and leash. 

For our purposes, we assume that these context objects are 

“perfectly” localized – only to prove that contextual data in 

concert with a Gaussian Process-directed search yields very 

efficient and precise localizations in general. To this end, 

[30] showed that “imperfect” contextual data is still viable 

for use in a refined localization procedure; in addition, the 

Bayesian nature of the present work effectively mitigates 

the influence of poor initial proposals. Note that because 

GP-CL algorithm employs a 2-d realization of a Gaussian 

Process for object location, 𝑝(∙)𝑥 serves as a prior for target 

location and 𝑝(∙)𝑠 functions as a prior for target size with 

regard to the initial proposal set. Thereafter, the Bayesian 

optimization procedure generates subsequent location 

proposals, while the size proposals continue to be drawn 

from the context-situation model for 𝑝(∙)𝑠. 

We optimize the hyperparameter θ for the Gaussian 

process using grid search. The design parameter ξ is set as 

a function of the per-step total. Lastly, we set the size of the 
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GP realization, 𝑀 = 5002 (i.e., the realization occurs over 

a 500x500 grid). We found that this size achieved a suitable 

balance between localization precision and computational 

overhead.  

For GP-CL, we begin by generating a set of (𝑛0 = 10). 

initial bounding-box proposals from the learned context-

situation model. We then use our trained off-set prediction 

model to compute response signal values for this proposal 

set, yielding 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(0)

. At each subsequent step of the GP-

CL algorithm we generate a GP realization using the 

proposal set (step 4). To find the next batch (n = 5) of 

proposals, we use the top-n ranked points in the space, 

ranked using the CEI acquisition function defined in 

Section 3.4. We then augment the proposal set with this new 

batch of points and the previous generations of proposals 

specified by the GPmem parameter, which indicates the 

number of batches contained in the algorithm “memory” 

(steps 10 and 11). For our experiments, we set GPmem= 3 

with T = 10, for a total of 50 proposals per execution of GP-

CL. 

 

 

Algorithm: Gaussian Process Context Localization 

(GP-CL)  

 

Input: Image I, a set of C context objects, trained model y 

giving response signals, learned context-situation model 

𝑝(𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡| ·), n0 initial bounding-box proposals for 

target object generated by the context-situation model,  and 

corresponding response signal values:  𝐷𝑛0
=

{(𝑥𝑖,𝑠𝑖), 𝑦(𝑥𝑖,𝑠𝑖)}
𝑖=1

𝑛0
, GP hyperparameters θ, size of GP 

realization space M, dynamic design parameter for 

Bayesian active search 𝜉, size of GP memory GPmem (as 

number of generations used), batch size n, number of 

iterations T, current set of bounding-box proposals and 

response signals 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(𝑡)

. 

 

1:Compute n0 initial bounding box proposals: 

      {(𝑥𝑖,𝑠𝑖)}
𝑖=1

𝑛0
~𝑝(𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡| ·)  

2: 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(0)

⟵  𝐷𝑛0
 

3:for t = 1 to T do 

4:   Compute 𝜇(𝑥)(𝑡) and σ(𝑥)(𝑡) for the GP realization    

        𝑓𝑀
(𝑡)

  of  𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(𝑡−1)

 over grid of M points  (Equation 4) 

5:   for i = 1 to n do 

6:     𝑧𝑖 = argmax
𝑥

𝑎𝐶𝐸𝐼 (𝑓𝑀
(𝑡)

 \{𝑧𝑗}
𝑗=1

𝑗=𝑖−1
, 𝜉) (Equation 5) 

7:      𝑠𝑎𝑚𝑝𝑙𝑒: 𝑠𝑖~𝑝(∙)𝑠  

8:      𝑝𝑖 = (𝑧𝑖 , 𝑠𝑖) 

9:   end for 

10:  𝐷(𝑡) ⟵ {(𝑥𝑖,𝑠𝑖), 𝑦(𝑥𝑖,𝑠𝑖)}
𝑖=1

𝑛
 

11:  𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(𝑡)

⟵ ⋃ 𝐷(𝑗)𝑡
𝑗=𝑡−𝐺𝑃𝑚𝑒𝑚

 

12: end for 

13: Return argmax
𝑥

𝜇(𝑥)(𝑇)  

 

4.3 Experimental Results 

We evaluate the GP-CL algorithm described in Section 

4.1 in comparison with the benchmark bounding-box 

regression model used in Faster R-CNN [32] for the task of 

pedestrian localization. Both the GP and bounding-box 

regression models were trained with 100k offset image 

crops taken from the test image set. For the bounding-box 

regression trials, the algorithm receives a randomized offset 

crop in the IOU range [0, 0.7], and then outputs a refined 

bounding box. In the case of GP-CL, the algorithm is 

initialized with a small set (𝑛0 = 10) of proposals drawn 

from the context-situation model; this likewise resulted in 

initial proposals in the range [0, 0.7]. Because of both the 

challenging nature of our dataset and various simplifying 

assumptions implicit in the context model we used, in a 

small number of cases the context-situation model 

produced erroneous initial proposals (e.g. proposals 

centered outside the test image). In these cases we 

initialized the proposals with a random offset value. The 

data transformations applied to produce the offset-

prediction model described in Section 3.1 were determined 

heuristically 

The median IOU over all the initial proposal bounding-

boxes for the GP-CL experimental trials was 0.23. Our 

context data consisted of perfect localizations of dogs and 

leashes in the “dog-walking” visual situation with 

pedestrians. [30] showed that imperfect context-based 

priors are still effective for improving the efficiency of 

localization. Our method, furthermore, is general enough to 

incorporate a variety of contextual models to serve as priors 

for the GP. In the case of the absence of contextual data, our 

approach also serves very effectively as a proposal 

“refinement” procedure.  

The output of the GP-CL algorithm is a single bounding-

box, as in the case of the regression model. For each 

method, we compare the final bounding-box with the 

ground-truth for the target object. In total, we tested each 

method for 440 experimental trials, including multiple runs 

with different initializations on test images.  

 Girshick et al. [14] thresholded their training regime for 

localization with bounding-box regression at large 

bounding-box overlap (IOU ≥ 0.6). To comprehensively 

test our method against bounding-box regression (BB-R), 

we trained two distinct regression models: one with IOU 

thresholded for training at 0.6, as used with R-CNN, and 

one with IOU thresholded at 0.1.   

Results for our experiments are summarized in Table 1 

and Figure 4. We report the median and standard error (SE) 

for IOU difference (final – initial), the median relative IOU 

improvement (final – initial) / initial, the total percentage of 
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the test data for which the method yielded an IOU 

improvement, in addition to the total percentage of test data 

for which the target was successfully localized (i.e., final 

IOU ≥ 0.5).  

 

 

Figure 2: Performance of the offset-prediction model on test data 

(n = 1000 offset image crops). The mean (center curve) and +/−1 

standard deviations (outer curves) are shown. As desired, the 

response signal yields a Gaussian-like peak around the center of 

the target object bounding-box (i.e., zero ground-truth offset). The 

bumps present in the range of values above 0.35 offset from the 

ground truth is indicative of noisy model outputs when offset 

crops contain no overlap with the target object.  (Figure is best 

viewed in color.)  

 
Method IOU 

Difference 
Median 

(SE) 

Median 

Relative IOU 
Improvement 

% of Test 

Set with IOU 
Improvement 

% of Test 

Set  
Localized 

BB-R 
(0.6) 

.1065 
(.004) 

32.35% 93.86% 48.2% 

BB-R 

(0.1)  

.1034 

(.009) 

29.0% 71.1% 44.1% 

GP-CL .4938 

(.012) 
134.7% 87.1% 75.7% 

 
Table 1: Summary statistics for the pedestrian localization task. 

BB-R (0.6) indicates the bounding-box regression model with 

training thresholded at initial IOU 0.6 and above; BB-R (0.1) 

denotes the bounding-box regression model with training 

thresholded at initial IOU 0.1 and above; GP-CL denotes Gaussian 

Process Context Localization. GP-CL can be seen to consistently 

outperform BB-R methods.  

 

4.4 Discussion 

Our experimental results are strongly favorable for the 

GP-CL algorithm. Using only a small number of total 

bounding box proposals (50) per trial, GP-CL performed 

comparably with BB-R for percentage of test images for 

which the IOU improved. In addition, GP-CL significantly 

outperformed BB-R for all other localization metrics, 

including the percentage of test set images achieving 

successful localization and the median relative IOU 

improvement.  

During our experimental trials, we discovered a 

substantial disparity in performance for BB-R depending on 

the training regime. In general, BB-R (0.6), as used in R-

CNN, yielded inferior localization results in general when 

compared to BB-R (0.1) (see Table 1). In particular, BB-R 

(0.1) was much stronger for low initial IOU values than BB-

R (0.6). However, as initial IOU increased, localization 

results deteriorated starkly with BB-R (0.1) due to 

overfitting. For larger initial IOU values (e.g., IOU > 0.4), 

BB-R (0.1) yielded IOU improvement on only 22.1% of the 

experimental trials; when the IOU threshold was increased 

to 0.5 this IOU improvement percentage dropped even 

further to 13.0%. In contrast, GP-CL indicated no signs of 

deterioration in localization performance when given initial 

offset proposals with a large IOU. For separate test runs of 

100 trials each, GP-CL achieved an IOU improvement on 

97% of the trials (for median initial IOU > 0.4) and an IOU 

improvement on 99% of the trials (for median initial IOU > 

0.5). 

 In addition to this strong experimental performance, GP-

CL provides several broad methodological advantages over 

previous techniques, particularly in applications requiring 

fast and precise object localization. Most importantly, by 

working within a Bayesian framework, GP-CL is able to 

perform an efficient, active search by “learning” 

continuously from its response signal at each step of the 

algorithm. Because GP-CL renders both the mean and 

standard deviation for the predictive posterior,  the GP-CL 

model maintains a measure of uncertainty that can be 

applied in systems as a potential (early) stopping condition 

when real-world resources are limited (e.g. robotics, video 

tracking using Kalman filters). As we show, a context 

model can be naturally and successfully integrated into the 

Gaussian Process framework. 

 

5. Conclusion and Future Work  

We have presented a novel technique for the challenging 

task of efficient object localization. Our method trains a 

predicted-offset model, demonstrating successfully the 

ability of CNN-based features to serve as the input for an 

object localization method.  Using Bayesian optimization, 

we surpass the state-of-the-art regression method employed 

in R-CNN (and its extensions) for the localization of 

pedestrians in high-resolution still images with 

computational efficiency.  

With future research, we plan to extend our approach to 

gradient-based GPs and massively scalable GPs, so that our 

model can directly incorporate bounding-box size 

parameters, as well as leverage additional sources of visual 

context for localization. More generally, we aim to apply 
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these approaches to broader, “big data” and related high-

dimensional problem regimes.   
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Figure 4: Graph of BB-R (0.6), BB-R (0.1) and GP-CL localization results for test images. The horizontal axis indicates the median IOU for 

the initial proposal bounding boxes, while the vertical axis designates the final IOU with the target object ground truth. The line depicted 

indicates “break-even” results. GP-CL reliably improves target object IOU for a broad range of initial IOU values.  

 

 

 

 
 

 
Figure 3: Examples of runs on two test images with the GP-CL algorithm. In each row the test image is shown on the far-left; the “search IOU 

history” is displayed in the second column, with the algorithm iteration number on the horizontal axis and IOU with the ground-truth target 

bounding box on the vertical axis. The remaining columns present the GP-CL response surface for the posterior mean and variance for target 

object location. In the first row, this pair of boxes reflect the third iteration of the algorithm and the last pair show the second iteration, 

respectively; in the second row, these pairs of boxes represent the sixth and fifth iterations of the algorithm, respectively. The red rectangle 

signifies the target object ground-truth bounding box, while the blue rectangle indicates the highest posterior mean response for the target 

object location at the current iteration. The colored dots in the “posterior mean” image show the sample batch for the current iteration; the 

colored dots in the “posterior variance” image indicate points with maximum CEI (confidence-expected improvement) scores following the 

current sampling batch.   In each case localization occurs rapidly thus requiring a very small number of proposals.  
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