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Abstract—The recent success of brain-inspired deep neural
networks (DNNs) in solving complex, high-level visual tasks has
led to rising expectations for their potential to match the human
visual system. However, DNNs exhibit idiosyncrasies that suggest
their visual representation and processing might be substantially
different from human vision. One limitation of DNNs is that they
are vulnerable to adversarial examples, input images on which
subtle, carefully designed noises are added to fool a machine
classifier. The robustness of the human visual system against
adversarial examples is potentially of great importance as it
could uncover a key mechanistic feature that machine vision
is yet to incorporate. In this study, we compare the visual
representations of white- and black-box adversarial examples in
DNNs and humans by leveraging functional magnetic resonance
imaging (fMRI). We find a small but significant difference in
representation patterns for different (i.e. white- versus black-
box) types of adversarial examples for both humans and DNNs.
However, human performance on categorical judgment is not
degraded by noise regardless of the type unlike DNN. These
results suggest that adversarial examples may be differentially
represented in the human visual system, but unable to affect the
perceptual experience.

Index Terms—fMRI; adversarial example; noise; visual per-
ception; neural network; representational similarity

I. INTRODUCTION

State-of-the-art machine vision systems based on deep neu-
ral networks (DNNs) achieve remarkable performance in high-
level visual tasks such as object recognition [[1]]-[3[]. However,
existing DNNs are vulnerable to adversarial examples [4],
[Sl, which are generated by adding subtle noises that lead
a machine classifier, but not a human observer, to misidentify
the target image.

While adversarial inputs are a serious security threat for
DNN:s, they have a negligible influence on humans. Motivated
by the difference in degree of robustness, the present work
examines the representation of adversarial examples in DNNs
and humans.

Specifically, our contributions are as follows:

« We obtain feature representations of adversarial examples
in the human visual cortex with fMRI and compute their
similarity to feature representations produced by hierar-
chical layers of a DNN using representational similarity
analysis [6].
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o Along with white-box examples that exploit access to
a DNN structure, adversarial examples with Gaussian
black-box noises are presented to humans and a DNN
in parallel to investigate their respective neural responses
to structured and random noise.

e Concurrently with fMRI measurements, categorization
decision performance is recorded in humans to examine
whether behavioral judgment and neural representation
align for different types of adversaries.

The rest of the paper is organized as follows: In Section
II, background and prior works are introduced on comparing
human and DNN visual systems and adversarial examples.
Section III describes methods for fMRI and behavioral exper-
iments. Section IV shows experimental results and analysis.
Finally, Section V discusses implications of the results.

II. BACKGROUND AND RELATED WORK
A. Comparison of Human and DNN Visual Processing

DNNs, especially convolutional neural networks (CNNs),
have recently achieved human performance in various visual
tasks [1]]-[3]]. Like their biologically inspired neural network
predecessors [7]-[9], CNNs share key structural similarities
with the ventral visual pathway of the biological brain, in-
cluding neural receptive fields and hierarchical cortical or-
ganization. More importantly, successful CNN variants have
shown to exhibit surprising similarities to humans in terms
of visual representation and behavior. Neuroimaging studies
reported that features from higher layers of DNNs can accu-
rately predict fMRI data from human inferior temporal (IT)
cortex and cell recording data from monkey IT, indicating
that higher layers of DNNs have obtained similar underlying
representations as primate IT for visual object recognition
[10], [11]. Representations from DNNs can be also adapted
to reliably model human judgment patterns in letter and
image recognition, shape sensitivity, and categorical similarity
[12]-[15]. Findings that DNNs can closely predict aspects of
biological visual processing have suggested their usefulness as
a model for biological vision [16], [[17].

Despite promising potentials, DNNs exhibit considerable
discrepancies from biological vision. Despite initially reported
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Fig. 1. A canonical adversarial example adapted from [5]. An adversarial
example is created by generating adversarial noise clipped to be human-
imperceptible and adding it to an image of a panda, which is then classified
as a gibbon by a deep neural network. See the main text for more detail on
adversarial example generation.

similarities, [18|] showed that the representations of DNNs
are significantly non-predictive of primate IT data on an
individual image level. Furthermore, DNNs are significantly
more susceptible to image distortions such as additive noise,
contrast reduction, and reversed brightness [[19]—[21]. This
suggests that DNNs are far less robust than humans, especially
in impoverished settings. Finally, psychophysical judgment
differences in humans and DNNs [22f], [23]] suggest that the
underlying visual processing might be substantially different.

B. Adversarial Examples

An adversarial example is a case that demonstrates DNNs
shortcomings to extremes. Adversarial examples are images
modified to fool a machine classifier by adding malicious
noises to the original [4], [S]]. A canonical example is shown in
Fig.[I] where an image of a panda is misclassified to a gibbon
after a human imperceptible noise is added. The generation
of an adversarial example can be formally stated as follows,
where x’ is the adversarial example from the original image
z and € is the noise level:

¥ =x + e-n, where f(z') # y* (1)

The perturbation noise 7 is constructed by an optimization
process that maximizes misclassification of the target image.
Such attacks exploit an access to the structure of the neural
network they aim to fool and thus are considered white-box
attacks (see Generating Adversarial Stimuli in the Methods
section for details). However, [4], [24], [25] showed that
adversarial examples created for one network transfer to other
networks with similar structures, enabling black-box attacks.
In fact, [25]] showed that an adversarial example created based
on optimization on multiple networks is more likely to fool
another arbitrary network. Arbitrary noises such as Gaussian
blur or salt and pepper noises that are inherently independent
of any specific network architecture can, by definition, serve
as black-box attacks when added to an image until it is
misclassified. Adversarial examples also transfer to the real
world when captured with cameras or other sensors despite
substantial transformations caused by lighting and camera
properties [26].

While adversarial examples pose a serious security concern
for machine classifiers, they are known to have limited impact
on humans. [27|] examined the representation of an image of

adversarial noise (not of adversarial example) in humans by an
fMRI experiment, showing that hierarchical representations of
the adversarial noise in humans are increasingly less similar
to those of DNN going from low to high layers in the visual
cortex. This reaffirms the notion that adversarial noise contains
structure meaningful for visual processing of DNNs, but not
humans. On the other hand, a psychophysics experiment of
[28]] suggested that humans, too, are fooled by adversarial
examples if exposed to them briefly, i.e. {71, 63} ms. It
was observed that adversarial examples effective for humans
tended to entail visually identifiable modulations in texture,
contrast, and edge information, in line with previous accounts
that adversarial perturbations sometimes induce semantically
meaningful features that are relevant to the target class [29]].

With seemingly equivocal reports of adversarial effects on
humans, it is integral to consider the distinction between
visual and perceptual representations. Contrary to our subjec-
tive impression, our initial sensory representation and final
perceptual awareness can well be discrepant. For example,
categorical representation in the human IT departs from human
judgments such that human categorical judgments, but neither
human nor monkey IT representation obtained by fMRI, reflect
human-related sub-categorization within the animate class into
human vs. nonhuman animals and the inanimate class into
natural vs. artificial objects [30]. More relevantly, [31]] report
that the ventral visual pathway representation measured by
fMRI is more prominently guided by animal appearance over
animacy, while the reverse is true for human judgment and
DNN representation.

In the present work, both visual representations and per-
ceptual performance are considered as we examine fMRI
and behavioral patterns of human observers in response to
adversarial examples. In addition, effects of white-box and
black-box noises are examined symmetrically in humans and
their machine counterparts to elucidate whether the neural and
behavioral responses to adversarial examples are specific to
adversarial noise, as opposed to arbitrary, random noise.

III. METHODS

A. Stimulus Image

Stimuli presented to human subjects and a DNN model were
adapted from [32]], [33]]. The original human fMRI experiment
consisted of presenting 96 color images (175 x 175 pixels)
of categorical real-world objects, including animates (faces
or bodies of human and nonhuman animals) and inanimates
(natural and artificial objects). Time constraint posed by the
need to repeat fMRI experiments for several experimental
conditions motivated us to exclude the "human body’ and
‘nonhuman body’ subcategories in our experiment, leaving
only 12 images of human face and 12 images of nonhuman
face in the animate category. Twelve images from naturalistic
and artificial objects in the inanimate category were selected
to match per category image count based on non-ambiguity
e.g. selecting a single object image over a scenery. The final
stimuli consisted of 48 images (see Table , resized to 224 X



TABLE I
STIMULUS IMAGE SET

Category Class Instance Examples
Animate Human face 12 ‘%\ B a e
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Animal face 12 e )
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Inanimate Natural objects 12 &
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224 pixels to enable the use of a DNN pre-trained with images
of the same size.

B. Generating Adversarial Stimuli

For our DNN model, we used the PyTorch implementation
of the VGG19 network to produce adversarial examples and
to compute DNN features [2]]. The VGG19 model consists of
sixteen convolutional layers and three fully connected layers.
The network was pre-trained with 1.2 million labelled images
of 1000 categories from ImageNet [34].

We generated adversarial images with two types of white-
box attacks (with respect to DNN): Projected Gradient Descent
(PGD) and Carlini and Wagner (C&W) attacks. With both
white-box attacks, we designated the target class to be the
gibbon class in ImageNet (”368: *gibbon, Hylobates lar’”). For
black-box adversarial images, we generated Gaussian noise not
designed to deceive a specific target network. With all attacks,
we verified that the top one classification result successfully
changed to the target class for all 48 stimuli images. A sample
image of the generated stimuli in each adversarial condition
is provided in Table [

a) PGD: PGD is a sub-type of a gradient-based attack
referred to as fast gradient sign method (FGSM) [35] in
which the adversarial noise is determined by a gradient of
loss between the predicted output, f(x), and the ground truth,
y*, as follows:

=z + €- Sign(vx J(f(x)v y*)) 2

PGD is a multi-step variant of FGSM in that it finds the
adversarial perturbation by using the same equation as FGSM,
but iteratively. The algorithm finds the adversary starting with
random e-uniform perturbation clipped in the range of the pixel
values of [0, 255]. An image was put into the target boundary
by subtracting the sign of a loss between f(z],) and yiarget:

xy = Clipy(xz + uniform(—e,e)),

!

x{n+1 = Clsz,e(x{n - a- Slgn(vw J(f(‘rn)a ytarget)))

We chose a of 1 and ¢ of 48 with n = 20 steps, but stopped
early when the prediction matched the target.

TABLE II
EXAMPLE STIMULUS IMAGE

Condition

(a) Clean

(d) Gaussian

(b) PGD  (c) C&W

b) C&W: C&W attack [36] is a strong optimization-
based attack in which the adversarial noise is defined with
learnable parameters optimized by Adam [37]]. We used the
loss function suggested by the original paper as follows:

fla) = maz(Z(@), ~ mar(Z(x)). ), @
where Z(x) is a logit space through the network given an input
x and k is the parameter that controls confidence of finding an
adversarial example. We minimized equation (@) using PGD,
and we chose € of 48 with 100 iterations and learning rate of
0.004.

¢) Gaussian: For the black-box attack, we added Gaus-
sian noise with mean and standard deviation of 0.0 and 0.5,
respectively. We empirically determined the proper value of
standard deviation by comparing the resulting level of intensity
to other types of noise with the naked eye.

C. fMRI Experiment

1) Participants: Fourteen healthy subjects were recruited
for the study (3 females, mean age 23.68, range 21-30). All
subjects had normal or corrected-to-normal visual acuity of
20/40 or above and no neurological or psychiatric history.
Subjects provided written informed consent regarding their
participation. Experiments were in compliance with the safety
guidelines for MRI research and approved by the Institutional
Review Board for research involving human subjects at Korea
Advanced Institute of Science and Technology.

2) MRI Acquisition: Experiments were performed with
a 12-channel 3T MR scanner (Siemens Magnetom Verio,
Germany). The functional images were acquired with a T2*-
weighted gradient recalled echo-planar imaging (EPI) se-
quence (TR, 2,000 ms; TE, 30 ms; flip angle, 90°; FOV: 64 x
64 mm; voxel size, 3 x 3 x 3 mm, number of slices, 36). Upon
completion of functional imaging, T1-weighted magnetization-
prepared rapid-acquisition gradient echo (MPRAGE) images
were acquired for normalization purposes (TR, 1,800 ms; TE,
2.52 mx; FA, 9°; FOV, 256 x 256 mm; voxel size, 1 x 1 x
1 mm).

Subjects were briefed on MR safety and experimental proce-
dures and guided through a practice run of the behavioral task
(see below, Experimental Design and Tasks) before entering
the scanner. They held a button press handle in each hand for
the behavioral task throughout the experiment. Experimental
stimuli were presented with MR-compatible video goggles
(Nordic Neuro Lab, Norway).
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Fig. 2. Experimental design. Each subject completed 8 runs, each of which
consists of 60 trials (48 visual stimuli in one of 4 adversary conditions and
12 blank trials). Subjects were instructed to perform categorical one-back,
pressing the button if subsequent visual stimuli belonged to the same semantic
category.

3) Experimental Design and Tasks: The experimental task
was programmed with PsychoPy v2.0 for Windows [38].
Stimuli images were presented foveally for a duration of 300
ms. The stimulus onset asynchrony (SOA) was 2 s. Null trials
were randomly inserted in each run, producing the the effect
of jittered interstimulus intervals The resulting SOA for image
stimuli trials ranged from 2 s to 12 s. A centered fixation cross
appeared throughout the runs.

Each subject completed a total of eight runs, with each
run lasting for 4 m and 12 s, all presented on the same day
(total duration, 33 m 6 s). Each run belonged to one of four
conditions: (1) Clean (unattacked), (2) PGD, (3) C&W, or (4)
Gaussian noise attacked images. Each condition constituted a
separate run such that a single run consisted of images from
the same condition. Each condition was presented twice in a
pseudo-randomly assigned order. Each of the runs randomly
presented one of 48 images (visual angle, 9°) exactly once,
along with randomly interspersed 12 blank null trials showing
gray background only. Each run contained 6 s of pre- and
post-rest (3 volumes each). Subjects were encouraged to take
a break between runs.

Subjects were instructed to fixate on a fixation cross
throughout the experiment and to perform a behavioral task
of categorical one-back. In this behavioral task, subjects were
to press the button with the thumb of their preferred hand if
the presented image stimulus belonged to the same category
as the previous one (Fig. [2). The category used as the basis of
the decision was animate (human and animal faces) versus
inanimate (naturalistic or artificial objects). Thus, subjects
pressed the button if two immediately subsequent stimuli
belonged to the animate (or inanimate) class. The button
responses were recorded for response accuracy, sensitivity,
specificity, and latency, which were respectively calculated as
follows:

sccuracy — LETTN 5)
YTTPYN
TP

sensitivity = —————— (6)

TP+ FN

TABLE III
REGIONS OF INTEREST (ROI) DEFINITION FOR HUMAN AND DNN

Anatomical region ROI Abbr.
Human | Gyrus fusiformis {FG1 FG2 FG3 FG4} FG
2 hoC1 {hoC1} hoC1
3 hoC2 {hoC2} hoC2
4 Ventral extrastriate cortex {hOC3d hOC3v} hOC3d/4d
5  Dorsal extrastriate cortex {hOC4d hOC4v} hOC3v/4v
6 Lateral occpital cortex {hOC4la hOC4lp} hOC41
DNN 1 {convl_1 convl_2} convl
2 {conv2_1 conv2_2} conv2
3 {conv3_1 conv3_2 conv3_3 conv3_4} conv3
4 {conv4_1 conv4_2 conv4_3 conv4_4} conv4
5 {conv5_1 conv5_2 conv5_3 conv5_4} con5
6 {fc1} fel
7 {fc2} fe2
8 {fc3} fe3
TN
specificity = ——————— 7
pecificity = o )
latency = tresponserp — tonsetrp 3

TP, TN, FP, and FN indicate the number of true positive,
true negative, false positive, and false negative, respectively.
P is the total positive case of TP 4+ F'N, and N is the total
negative case of T'N + F'P. tresponserp aNd Consetyp, Tefer to the
time of response and the time of stimulus onset for a true
positive instance, respectively. One-way analysis of variances
(ANOVAs) was performed to detect significant effects of the
noise type in each of these measures.

4) Data Preprocessing: tMRI data preprocessing was per-
formed using Statistical Parameter Mapping (SPM12, Well-
come Trust Centre for Neuroimaging, London, UK). The
first three volumes of each run were discarded automatically
during the scanning process for magnetic field stabilization.
We performed a rigid body transform motion correction across
runs in each subject using the middle volume as a reference.
Functional images were directly normalized to the Montreal
Neurological Institute (MNI) template (East Asian brains).
The normalized images were rewritten at 3mm isometric
voxels. No spatial smoothing was applied as recommended
for representational similarity analysis.

5) Regions of Interest (ROI) Definition: Beta maps were
extracted from normalized functional volumes for regions of
interest (ROI). ROIs were generated based on anatomical
probability maps provided by SPM Anatomy Toolbox [39].
A total of 12 maps including V1-4 (i.e. hOC1-4) and fusiform
gyrus (i.e. FG) were chosen to represent the visual area (See
Table ). The number of voxels per mask ranged from 316
to 3331. MarsBaR [40] was used to produce masks from the
probability maps and to extract the masked beta maps. For beta
map extraction, we masked functional images obtained 6 s (3
volumes) after the stimuli onset to account for hemodynamic
delays. Each of these beta vectors was taken as the neural
representation for an image stimulus in each visual area.
Extracted beta vectors b . from ROI 7 and condition ¢ were
further normalized with mean i, . and standard deviation o



before using them as input for the representational similarity
analysis:
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D. Representational Similarity Analysis

Representational similarity analysis [6] is a framework
that enables comparisons of representations from different
modalities, e.g. computational models and fMRI patterns,
by comparing the dissimilarity patterns of the representa-
tions. Representations from different modalities are compared
by first constructing representational dissimilarity matrices
(RDMs). RDM is a square symmetric matrix that contains
pairwise (dis)similarity values between response patterns of
all stimuli pairs. Using the representational similarity analysis
toolbox [@], we constructed RDM for every ROI (shown
in Table x condition {Clean, PGD, C&W, Gaussian}
x subject {Human 1, 2, ... , 14, DNN}. Given 48 stimuli
images used in our experiment, each RDM was a 48 x 48
matrix containing dissimilarity values between the response
patterns (fMRI or DNN features) elicited by two stimuli. The
dissimilarity measure was 1 minus the Pearson correlation.

We then constructed the second-level correlation matrix of
RDMs by computing the pairwise similarities of individual
RDMs, which visually demonstrates the relatedness of brain
and DNN representation patterns from each ROI and condi-
tion. The similarity measure was the Kendall’s rank correlation
coefficient 74.

Finally, we performed statistical inference with a one-sided
signed-rank test to assess the degree of relatedness between
RDMs. This procedure can be used, for example, to test
whether a given computational model (’candidate RDM’)
explains some brain representation (‘reference RDM’) better
than others, cf. . In our experiment, we set the subject-
average human RDMs in response to the clean stimuli as the
reference RDM and related them to other brain RDMs or to
DNN RDMs. We repeated the process in reverse, with the
ROI average of DNN RDMs in response to clean stimuli as
the reference RDM.

IV. RESULTS
A. Comparison of Visual Representations

Fig. 3] shows the correlation matrix of subject-average
human and DNN RDMs produced from the representational
similarity analysis. Each cell represents a Kendall’s 74 rank
correlation coefficient between two RDMs, with each RDM
containing response patterns for 48 stimuli (not shown). Each
row or column represents correlations between RDMs from
a single ROI and the other RDMs. Correlations for the same
stimuli condition are grouped together, forming square regions
for high within-condition correlations. Correlations between
the identical RDMs fill the diagonal with the value of 1.

Visual inspection of the correlation matrix reveals that
human RDMs have relatively small within-group correlations
(upper left quadrant) compared to DNN RDMs (lower right
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Fig. 3. The correlation matrix of subject-average human and DNN RDMs.
Each cell represents a pairwise similarity between two RDMs computed with
Kendall’s rank correlation coefficient 74 in the range [-1, 1].

quadrant), reflecting the difference in noise levels (not cor-
rected).

Within-group correlations in DNNs exhibit distinctive ad-
versary effects reflected by condition-dependent representa-
tions in the fully connected layers (fc1-3): Features from fully
connected layers of DNNs in response to clean stimuli show
a moderate similarity to features of Gaussian-attacked stimuli,
but not with those of PGD- or C&W-attacked stimuli.

Correlations between human and DNN RDMs (lower left
quadrant) also show varying patterns by noise type: Human
RDMs of clean stimuli (1% column) show small positive cor-
relations with DNN RDMs from convolutional layers (convl1-
5), but negative correlations with the higher fcl-3 layers,
especially for PGD and C&W adversarial conditions; Human
RDMs of PGD adversary (2" column) show more positive
correlations with DNN RDMs compared to other human
conditions; Human RDMs of C&W and Gaussian adversary
(3" and 4™ columns) also show moderate positive correlations
with DNN, less in convolutional layers than in fully connected
layers.

The correlation matrix is further supplemented with statis-
tical inference results, shown in Fig. @ Here, stars represent
significant correlations (p<0.05), and the gray box represents
noise ceilings.

Fig. f{a) shows that the ROI- and subject-average human
RDM from the clean condition has small negative correlations
with human RDMs from other conditions, all correlations
significant. From this, it seems that the human representations
of the clean images are significantly different from all the
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Fig. 4. Kendall-T4 correlations between (a) human RDMs of adversarial
images and human RDMs of clean images (reference), (b) human RDMs
and DNN RDMs of clean images (reference), (c) DNN RDMs of adversarial
images and DNN RDMs of clean images (reference), (d) DNN RDMs and
human RDMs of clean images (reference).

noise conditions, but whether it is so to a different degree by
noise type is hard to determine due to the small magnitude
of correlations among human RDMs caused by low signal-to-
noise ratio of fMRI.

A between-group comparison in Fig. f[b) shows that there
is a condition-dependent difference in humans by relating
each human RDM to the reference DNN RDM in the clean
condition, averaged across 8 ROIs. The significance test shows
that human RDMs from the white-box adversary conditions
(PGD in FG, hOCl1, hOC2, hOC4la/4lp, hOC3d/4d, hOC3v/4v
and C&W in hOCl1, hOC2, FG), but neither clean nor Gaus-
sian conditions, have significant positive correlations with the
reference DNN RDMs from the clean condition.

For comparison to the DNN representations, Fig. f[c) shows
the relatedness of all DNN RDMs with the same average DNN
RDMs from the clean condition as above, where all correla-
tions are significant. Here, representations from conv3/4/1/2 of

TABLE IV
CATEGORICAL JUDGEMENT PERFORMANCE IN ACCURACY (ACC),
SPECIFICITY (SPE), AND SENSITIVITY (SEN)

ACC SPE SEN
Subject Clean  PGD C&W  Gaussian  Clean PGD C&W  Gaussian Clean PGD C&W  Gaussian
1 0.989  0.968 1.000 1.000 0957 0981 0.958 1.000 1.000  0.941 1.000 0.978
2 0.947 0979 0978 0.980 0979 0909  0.980 1.000 0.989  0.977  0.980 0.977
3 0.989 0979 0978 1.000 1.000  0.976  1.000 1.000 0.989  1.000  1.000 0.950
4 1.000 1000 1.000 1.000 0989 1.000 1.000 0.968 0979 0976  1.000 1.000
5 0.989 1.000 1.000 0.984 0.989  0.982 1.000 1.000 1.000 1.000 1.000 1.000
6 0.947 0968  0.963 0.979 0.968 0944 0938 1.000 0.979  0.957  0.950 1.000
7 0.989  0.989 1.000 1.000 0989 0975 0976 1.000 1.000  0.981 1.000 1.000
8 1.000 0947 0941 1.000 0.989  1.000  0.889 1.000 0.979  0.978 1.000 0.983
9 0915 0989 0981 1.000 0.968 0923 0981 1.000 0.989 0925  0.905 1.000
10 1.000  1.000  0.833 1.000 1.000  1.000  1.000 0.848 0.840  1.000  1.000 1.000
11 0.989 0989 0978 1.000 1.000  0.978 1.000 1.000 0.989 1.000 1.000 0.974
12 0.926  0.883  0.946 0.938 0.947 0932 0950 0.921 0936 0.957  0.920 0.833
13 0.968  1.000  0.942 1.000 0.989 0967  1.000 1.000 0.968  0.981 0971 1.000
14 1.000 0989 0979 1.000 0.989  1.000  1.000 1.000 0.989  0.982 1.000 0.980
Mean 0975 0977  0.966 0.992 0983 0969 0977 0.981 0973 0975 0980 0.977
Var 0.001 _ 0.001  0.002 0.000 0.000  0.001 0.001 0.002 0.002  0.000  0.001 0.002
TABLE V
CATEGORICAL JUDGMENT PERFORMANCE IN RESPONSE LATENCY (IN
SECONDS)
Subject Clean PGD C&W  Gaussian
1 0766 0.805  0.721 0.790

0.810  0.842 0952 0.744
3 0714 0721 0.744 0.793
4 0477 0514 0514 0.493
5 0.627  0.533  0.565 0.771
6 0.580  0.696  0.583 0.551
7 0511 0539 0.509 0.527
8 0.596  0.586 0513 0.563
9 0.616  0.569  0.597 0.609
10 0.598  0.683  0.643 0.672
1 0.670  0.648  0.655 0.677
12 0.904 0.822  0.880 0.819
13 0.683 0770 0.747 0.810
14 0.745 0782 0.631 0.6
Mean 0.664  0.679  0.661 0.674
Var 0.012 0012 0.016 0.011

C&W and PGD were most similar to those of the reference,
followed by conv4/5, fcl-3, fc3 of Gaussian noise. Fully
connected layers of PGD and C&W were more dissimilar to
the reference than any others.

Lastly, in Fig. [@{(d), the reference was the average of human
RDMs in the clean condition, showing the relatedness of each
DNN RDM to the human clean condition reference. The fc3
RDM of the clean condition shows a significant overlap with
the reference, followed by conv3 of other conditions as well as
fc3 of Gaussian noise. As noted from the correlation matrix, all
fully connected layers of the white-box adversary conditions
had negative correlations with the human clean reference.

B. Behavioral Performance

Table [[V] reports the categorical judgment performance
for different conditions in each human subject. The average
accuracies were 97.5%, 97.7%, 96.6%, and 99.2% for Clean,
PGD, C&W, and Gaussian conditions, respectively. There
was no significant difference in categorical accuracy among
four conditions [F(3, 52)=0.232, p=0.874]. Other performance
measures also showed no statistical difference, with average
specifities of 98.3%, 96.9%, 97.7%, and 98.1% [F(3, 52)=
0.331, p=0.803], and average sensitivities of 97.3%, 97.5%,
98.0%, and 97.7% [F(3, 52)= 0.424, p=0.736].

Table [V] reports the true positive response latency for each
condition. The average response latencies were 0.664 s, 0.679
s, 0.661 s, and 0.674 s for clean, PGD, C&W, and Gaussian
conditions, respectively. No statistical difference was observed
[F(3, 52)=0.0689, p=0.976].



V. DISCUSSION

Our experimental results found that the presence of ad-
versarial noise, regardless of the type, had no effect on the
categorical judgments in human observers. However, in the
visual representational space, different types of noise had
unique patterns for both human and DNN. In the DNN,
white-box adversarial attacks of PGD and C&W resulted in
strongly disrupted patterns in the final, classifying layers of
fc1-3, while Gaussian noise had qualitatively different, that
is, weaker but more global effects across all layers. The
effects of adversarial noise were not as pronounced in human
fMRI; However, between-group comparison to DNN features
revealed that fMRI data from different noise conditions had
distinctive similarity patterns. Notably, neural representations
of white-box attacked, but neither clean nor Gaussian noise,
had a significant resemblance to the DNN representations.
Adversarial-induced neural representations also differed in
layer-specific response patterns.

Overall, it was indicated that neural processing in the
early visual cortex may represent adversarial noise differently,
but humans are somehow unaware of it on the perceptual
level, and, as a result, unaffected on the behavioral level. A
potential reason for this is that the human visual pathway,
but not the machine counterpart, incorporates a correction
mechanism located higher in the visual pathway that counters
the adversarial effect.

Future work should investigate the role of higher visual
areas such as IT in the robust perceptual representation against
adversaries. Also, the possibility that gradient-based or other
structured noises may be represented differently from random
noise by the brain as suggested here should be explored further.
Finally, efforts should be made toward building a computa-
tional model of the brain that successfully accounts for its
representational and behavioral patterns as it could provide a
basis for building fundamentally more robust machine vision.
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