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Abstract

Eye movement patterns reflect human latent internal
cognitive activities. We aim to discover eye movement
patterns during face recognition under different cognitions
of information concealing. These cognitions include the
degrees of face familiarity and deception or not, namely
telling the truth when observing familiar and unfamiliar
faces, and deceiving in front of familiar faces. We apply
Hidden Markov models with Gaussian emission to gener-
alize regions and trajectories of eye fixation points under
the above three conditions. Our results show that both
eye movement patterns and eye gaze regions become sig-
nificantly different during deception compared with truth-
telling. We show the feasibility of detecting deception and
further cognitive activity classification using eye movement
patterns.

1. Introduction

During criminal or other forms of investigations for jus-
tice, suspects may deceive the investigators by claiming not
recognizing a familiar face in order to clear their own sus-
picion or to protect their fellow co-conspirators. Failure of
detecting this delinquent deception can cause a severe threat
to the society since it can imprison innocent citizens whilst
let the guilty defendant go free [21]. For example, Several
days before the terror attack in Brussels, France in 2016,
one of the accomplices was arrested and interrogated about
his relationship with the terrorist group. He denied any fa-
miliarity with the photos of that terrorist group shown to
him [13].

Lie detection, such as to interrogate suspects the famil-

iarity of other people, plays an essential role in maintain-
ing the justice and stability of the society. However, hu-
man capability of discerning deception is poor, with an ac-
curacy of slightly being better than chance [3]. Thus, people
have raised various methodologies aiming to support crim-
inal investigators for fighting malicious tricks. Physiolo-
gists have shown that lying will lead to a range of phys-
iological changes of the body [1]. These changes caused
by telling lies facilitate the emergence of physiological ap-
proaches [20]. For example, functional Magnetic Reaso-
nance Imaging (fMRI) based methods can present very ac-
curate results [5]. Nonetheless, these methods contain over-
much noises, heavy expenses, and other drawbacks, which
make them infeasible to use in practice [7].

Another perspective of discerning deception is through
leveraging behaviour cues, which may seem to be negli-
gible to normal people [17]. For example, facial micro-
expressions, like eyebrows raising, may reflect that the sub-
ject is trying to hide their real emotions [6]. Nevertheless,
it is very laborious to train experts with these behavioural
skills due to the significant variability among different sub-
jects [21]. That is, the same micro-emotion may have dif-
ferent cognitive meanings with respect to different persons.

Unlike fMRI and facial micro-expressions, eye fixation
locations and trajectories are relatively easy to capture and
collect by ordinary people with the assistance of simple eye
trackers. Previous studies illustrate that trajectories of eye
gaze movements reflect individuals’ underlying cognitive
activities [9]. For instance, previous research shows that
there will be fewer eye fixations during the process of rec-
ognizing familiar faces than unfamiliar faces [8].

Another key feature of eye movements lies on its in-
voluntary property. That is, participants are not able to
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easily alter their behaviours, irrespective to the undertaken
tasks [18]. Due to these advantages of utilizing eye move-
ments, we study the variability of eye movements for de-
ception and frankness given a familiar or unfamiliar face.
This variability includes the visiting orders of facial regions
and the distributions of eye fixation locations.

Several recent publications have attempted to investigate
the relationship between face familiarity and eye fixations.
Millen et al. collected the number of fixations in total and in
different facial regions of stating to be unfamiliar under four
conditions, namely unfamiliar faces, newly learned faces,
famous celebrity faces, and personal familiar faces [14].
However, they did not include the analysis of the eye move-
ment paths and the facial region of interests in their studies.
Lancry-Dayan et al. recently explored in 2018 the possibil-
ity of detecting a subject’s familiarity with other faces us-
ing machine learning techniques by demonstrating him or
her four face photos in parallel [12]. They discovered that
among the given four faces, subjects turn to fixated more on
their familiar faces, followed by a tendency to move eyes
away from it [12]. Furthermore, machine learning tech-
niques can successfully leverage this behaviour and showed
robust results among different individuals [12]. Neverthe-
less, they did not explicitly scrutinize the eye movement be-
haviors on a single individual’s face. That is, their study
is to investigate the eye movement patterns on four parallel
displaying photos instead of one single photo.

In this paper, we aim to investigate the eye movement
behaviors during different face recognition tasks under dis-
tinct cognitive loads, namely truth telling or lying. Specifi-
cally, we explore the eye gaze patterns under three different
situations, which are: (a) telling truth on a familiar face; (b)
telling truth on an unfamiliar face; (c) lying on a familiar
face, where we have ignored the case of “lying on an unfa-
miliar face” due its unreality in the real world. Unlike the
previously published work, we focus on the trajectories of
eye fixations and their distributions on facial region of inter-
ests when undertaking different cognitive tasks. That is, we
show that individuals stare at different facial regions when
telling the truth or a lie, and the visiting orders of these re-
gions are different.

Our work can contribute to the future design of auto-
matic deception detection systems. For example, Wu et al.
take inputs of multiple modalities, including individual mo-
tions, audios and so on, to discern the veracity of expres-
sions from real-life courtroom trial videos [21]. Our work
may serve as an additional input channel. Furthermore, our
study can also shed lights to the field of visual saliency pre-
dictions within computer vision, which focuses on predict-
ing which objects that people will fixate given an image
or video [11]. Our results indicate that additional chan-
nels of people’s cognitive activities may further increase the
saliency prediction accuracy. Moreover, our research also

Figure 1: Fixations and the transition paths (i.e. saccades)
by using the dispersion threshold algorithm. Black dots are
fixation points and blue lines represent eye saccade paths.

reveals the possibility of interpret people’s cognitive activi-
ties from eye movement patterns.

2. Methods
2.1. Fixation Identification

The raw eye gaze data is in the form of the Cartesian
coordinate system, namely its locations are expressed by
(x, y) coordinates. It is essential to separating and labelling
eye tracking points as fixations or saccades, since improper
classification can have dramastic influence on higher-level
analyses [19].

The dispersion threshold algorithm is considered to be
the most robust and accurate approach for identifying fixa-
tions and saccades in eye-tracking protocals compared with
other approaches such as velocity-based and area-based
ones [19]. One essential parameter for this algorithm is
called the pixel tolerance, which is a threshold that deter-
mines whether to classify a new eye-stare point as a fixation
or a saccade. Previous research reported that a normal fix-
ation duration is about 200-250 ms [15], and each of our
stimulus video lasts for five seconds. Thus, we can deduce
that 20 fixation points per video should be an reasonable
number, which leads to a setting of the pixel tolerance be-
ing 5. Figure 1 presents an example of the result using the
dispersion threshold algorithm.

2.2. Eye Movement Analysis

We apply probabilistic graphical models, specifically
Gaussian Hidden Markov models (HMMs with 2D Gaus-
sian emission distribution), to train the previous collected
eye movement data from participants. This technique is
broadly utilized to model data generated from Markov pro-
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cesses [2, 4]. That is, the next state of a process only de-
pends on its previous state. For every pair from a current
state S to its subsequent state S′ in the next time step, or to
the observable state in the same time step O, there is an as-
sociated probability indicating the likelihood of transform-
ing S to S′ or S to O, which can be formalized as a matrix.
Finally, a vector of prior probabilities reveals the different
probabilities of being on distinct starting states. We hy-
pothesize to obtain different representative eye movement
patterns during face recognition with distinct latent mental
activities, namely telling the truth or lying. In this context,
states represent different ROIs of a face image, observable
states are fixation points, and the transition from the current
latent state to the next state is a saccade.

This methodology requires determining the number of
facial regions of interests, i.e., Region of Interests (ROIs)
beforehand. We pick the number as two and three. Pick-
ing three is since previous studies show that there are three
information-rich inner regions of the face (eyes, nose, and
mouth), which are particularly essential for person recogni-
tion [16].

In our case, we set the concentration parameters of
Dirichlet prior distributions of initial distribution and tran-
sition probability to be 0.01. The prior covariance was set
as an isotropic covariance matrix with standard deviation of
14 to ensure that the ROI has roughly the same size as the
facial features.

We first trained a Gaussian-HMM using the fixation data
from one participant who was viewing images under a cer-
tain cognitive condition. For example, the participant has
been instructed to tell the truth, followed by observing fa-
miliar faces. Fixation sequences during every observation
is considered as viewing sequences. Followed by applying
the Gaussian-HMM algorithm on multiple observation se-
quences, we can get a representative Gaussian-HMM with
three states. Each state consists of three means and three co-
variance matrices representing the ROI centers and ranges.

For every participant, there are four Gaussian-HMMs
representing four different eye movement strategies, corre-
sponding two degrees of face familiarity and lying or not.
As a result, we have 84 Gaussian-HMMs from 21 partici-
pants, and classify them into four classes based on the face
familiarity and lying cognitions. Afterwards, we train an-
other Gaussian-HMM for each category in order to find a
class representative Gaussian-HMM and its clustering cen-
troids of its ROIs. Eventually, we will have four representa-
tive Gaussian-HMMs, each will contain its clustering cen-
troids of ROIs, shapes of ROIs, an intial distribution vector
of ROIs, a transition probability matrix, and a Viterbi path.

Figure 2: One original face image and its processed result.

3. Experiments
3.1. Face Image Preprocessing

The variety of brightness and colors of photos can cause
differences in human eye saccades and fixations, as well as
a significant latency of the reaction time for viewing the
same images [10]. We wish to minimize the noises result-
ing from this process, known as adaptation in ocular phys-
iology. Therefore, we normalize all the experimental face
images to be consistent with the same grey-scale and size
of 447 × 335. Furthermore, we apply an oval mask to all
the other parts of the images, including hairs, backgrounds
and so on, except the main face area. This is to avoid the eye
gaze being distracted by the background and objects other
than our interested regions, namely human faces. One orig-
inal face image and its processed result is as Figure 2.

3.2. Face Images and Participants

We collected a total of 20 different gray-scale frontal-
view face images, each will be displayed two times in a
random order, one corresponding to telling the truth and the
other for lying. That is, one participant will observe 40 im-
ages in total during the experiment. Among These faces, 15
out of 20 correspond to university lectures from two distinct
faculties. Correspondingly, participants were sampled from
these two faculties to ensure students from a particular fac-
ulty can recognize half of the lecture faces from their own
faculty and have no knowledge for the rest half from the
other one. The rest five were sourced from an online face
database. In total, we recruited 21 participants.

3.3. Experimental Procedure

We developed a web-browser based user interface to dis-
play our collected face images to the participants. During
the experimental procedure, a participant will firstly see a
huge instruction indicating either to “tell the truth!” or
“lie!” for the upcoming face image. For example, if the face
to display is familiar to the participant, he or she is expected
to pretend to have no knowledge about the shown image.
The same instruction will be prompted again to the partic-
ipant before he or she gives the answer in order to avoid
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Figure 3: Screenshots of our user interface.

the unexpected honesty. We record participants’ eye fixa-
tions trajectories during this process. Figure 3 gives some
screenshots of our user interface.

4. Results
The average fixation duration of the participants was

263.16 ms (SD = 49.34 ms). That is, the average number
of fixation points in one trial of the experiment is 19. We
analyzed a general eye movement pattern that summarizes
all the 84 individual HMMs and four complete experimen-
tal settings of different combinations face familiarities and
information concealing degrees, namely

1. Telling the truth given a familiar face

2. Telling the truth given an unfamiliar face

3. Lying given a familiar face

4. Lying given an unfamiliar face

Figure 4: The general representative HMM that summarizes
all the 84 individual HMMs. Blue dots are fixation points.
Different colors represent distinct ROIs.

Prior values Red Green Blue

0.0000 0.8475 0.1525

Transition
probabilities

To Red To Green To Black

From Red 0.9704 0.0086 0.0210
From Green 0.0449 0.9248 0.0303
From Blue 0.0411 0.0248 0.9340

Table 1: Transition probabilities of the general representa-
tive HMM that summarizes all the 84 individual HMMs.

We next give the detailed eye movement patterns under dif-
ferent experimental settings, and will show that eye gaze
trajectories and ROIs differ given different cognitive con-
ditions during face recognition, namely different degrees
of face familiarity and information concealing minds. To
be more intuitive, all the left and right directions below are
from the viewer’s perspective.

4.1. General Eye Movement Pattern

Following the methods given in 2.2, we obtained 84
Gaussian-HMMs, each with three means and covariance
matrices to parametrize its three ROIs. We utilized the
VHEM to group these 84 HMMs into a single representa-
tion that summarizes all the individual HMMs. Figure 4 and
Table 1 show the representative HMM that summarizes all
the 84 participants’ HMMs.

From Figure 4 and Table 1, the general scan path during
this face recognition mostly likely starts from the green ROI
(an oval region close to the inner canthus of the right eye),
then goes to the red region (an oval region covers tip of the
nose and the philtrum). Afterwards, the next fixation tends
to remain in the red region. Also, the path is possible to
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move to the black region (close to the left eye, which is an
oval region slightly above the eye and covers part of the
left eyebrow). Finally, the probability of returning to the
initial region (i.e. the green region) is quite low. In contrast,
if starting the scan path from the black region with a low
probability, it is highly possible that the path remains in the
black region.

4.2. Telling the Truth Given a Familiar Face

As before, we applied VHEM and generated the HMM
for the case of participants telling the truth given familiar
faces. Figure 5, 6 and Table 2 illustrate more details on ROI
distributions and scan moving paths. Specifically, the ROI
distributions on the face of this case are:

• Red Region: Close to the inner canthus of the left eye
from the viewer perspective, which is slightly above
the eye, covering the inner part of the left eye and the
left eyebrow, and the left upper eyelid. The semi-major
axis is on the horizontal direction, while the semi-
minor axis is on the vertical direction.

• Black Region: Close to the inner canthus of the right
eye, which is slightly above the eye, covering a small
inner part of the right eye, the right eyebrow and the
right upper eyelid. The semi-major axis is on the verti-
cal direction, while the semi-minor axis is on the hori-
zontal direction.

• Green Region: The tip of the nose, the philtrum and
most parts of the mouth. The mean axis of the oval re-
gion is slightly to the left compared to the middle axis
of the face. The semi-major axis is on the vertical di-
rection, while the semi-minor axis is the on horizontal
direction.

In this sub-group, the first fixation tends to be in the red
region (close to the left), followed by a high probability to
remain in the red region, or it can move to the black region.
Then it is highly probable to stay in the black region, if
not, it can either move back and forth between the initial
red region, or it can move to the green region, although the
probability of moving to the green region is quite low. If
the scan path starts from the black region by a low chance,
the next fixation can possibly stay in the same black region,
or it can move back and forth between the red and black
regions. In this case, the probability of moving to the green
region is still low. If the eye movement starts from the green
region by a low probability, it is very likely to stay in the
same region. The generated Viterbi path starts from the red
region, then the black region, and concludes in the black
region.

Figure 5: The ROIs for the eye movement pattern during
telling the truth given a familiar face.

Prior values Red Green Blue

0.8626 0.0479 0.0895

Transition
probabilities

To Red To Green To Black

From Red 0.8859 0.0402 0.0738
From Green 0.0285 0.9444 0.0272
From Blue 0.0903 0.0252 0.8845

Table 2: Transition probabilities of the ROIs for eye move-
ment pattern during telling the truth given a familiar face.

Figure 6: Scan paths for eye movement pattern during
telling the truth given a familiar face.

4.3. Telling the Truth on an Unfamiliar Face

We applied the same approach to generate HMMs from
participants telling the truth in front of unfamiliar faces. In
this case, the specific ROI distributions on the face are:

• Red Region: A small part of the nose tip, a small part
of the philtrum, and the a small part of the upper lip in
the middle. The mean axis of this oval region is gen-
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Figure 7: The ROIs for eye movement pattern during telling
the truth given an unfamiliar face.

erally at the middle axis of the face. The semi-major
axis is on vertical direction, while the semi-minor axis
is on horizontal direction.

• Black Region: Close to the inner canthus of the right
eye, which is being in a more inferior position to the
right inner canthus, covering a small region close to
the right inner canthus. The semi-major axis is on the
vertical direction, while the semi-minor axis is on the
horizontal direction.

• Green Region: A right part of the left eye, which is
slightly to the central axis of the face, covering the
most inner part of the left eye, the left eyebrow, and
the region close to the left eye including a part of the
nose bridge. The region is an approximate circle.

The most probable scan path starts from the black region
(close to the right eye), with a high probability of remaining
in the black region, or it can move to the red region or the
green region (very unlikely). If it moves to the red region,
next most likely action tends to stay in the same ROI, or it
has a low probability to move to the green region. Other-
wise, if it moves to the green region, it will likely to remain
in the same region, to move to the red region by low chance.
The probability of moving back to the black region is very
low. In addition, it can start from green region, followed
by a high probability of remaining in the green region. The
probability of starting from the red region is very low, com-
pared with from the other two ROIs. The Viterbi Path in
this case implies that the most likely path is similar as the
analysis above, of which starts from the the black region,
then comes to the the red region, and end up with the the
green region.

Prior values Red Green Blue

0.0820 0.3354 0.5826

Transition
probabilities

To Red To Green To Black

From Red 0.9680 0.0215 0.0105
From Green 0.0518 0.9225 0.0257
From Blue 0.0420 0.0898 0.8682

Table 3: Transition probabilities of the ROIs for eye move-
ment pattern during telling the truth given an unfamiliar
face.

Figure 8: Scan paths for eye movement pattern during
telling the truth given an unfamiliar face.

4.4. Lying Given a Familiar Face

This situation shows a significant difference compared
with the previous two cases. Figure 9 illustrates the rep-
resentative Gaussian-HMM when participants lie about the
familiarity while viewing the familiar face. As can be seen,
the ROI distributions in face recognition of this case are:

• Red Region: A small part of the nose bridge between
two eyes. The mean axis of this oval region is slightly
to the right of the middle face axis. The oval region is
an approximate circle.

• Black Region: The region between two eyebrows, cov-
ering part of the forehead close to the central of two
eyebrows, which is slightly to the left of the middle
axis of the face. The semi-major axis is on the hor-
izontal direction, while the semi-minor axis is on the
vertical direction.

• Green Region: Covering the lower part of the nose
bridge, the tip of the nose, and the philtrum. The mean
axis of this oval region is generally of the middle axis
of the face. The semi-major axis is on the vertical di-
rection, while the semi-minor axis is on the horizontal
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Figure 9: The ROIs for eye movement pattern during lying
given a familiar face.

Prior values Red Green Blue

0.6456 0.0000 0.3544

Transition
probabilities

To Red To Green To Black

From Red 0.9102 0.0500 0.0398
From Green 0.0119 0.9663 0.0218
From Blue 0.0305 0.0501 0.9194

Table 4: Transition probabilities of the ROIs for eye move-
ment pattern during lying given a familiar face.

direction.

In this sub-group, the scan path most likely starts from
the red region. Afterwards, it is more likely to remain in the
same ROI, or with a lower probability, to move to the green
or black regions, and stay the same locations subsequently.
It is also possible to start from the black region, then with
a higher likelihood of remaining the same region, or move
to the other two regions. This Viterbi Path generally starts
from the red region, then moves to the green region and
converges to it.

4.5. Lying Given an Unfamiliar Face

This case also displays a quite different eye behaviour
compared with the previous ones. As Figure 12 illustrates,
the eye fixation points mainly locate on two eye regions, un-
likely previously that there are a large proportion of points
distribute to the nose region. The detailed ROI distributions
are:

• Red Region: A small area located at the top-right left
eye, slightly touching the left eyebrow, which is an ap-
proximate circle.

Figure 10: Scan paths for eye movement pattern during ly-
ing given a familiar face.

Figure 11: The ROIs for eye movement pattern during lying
given an unfamiliar face.

• Black Region: Covering a large area in the middle of
the face including the nose, the philtrum, the lips, and
the proximity regions. However, the fixation points are
relatively sparse compared with the other two ROIs.

• Green Region: A approximate circle shape distributed
at the left part of the right eye, below the right eyebrow.

In this case, it is equally likely for eye fixation points to
locate in the red or green regions. If starting from the red
region, the scan path is highly likely to remain in the same
region, or move to the green region, move back and forth.
Moving to the black region is relatively unlikely to happen.
The Viterbi path shows that this scan path is probable to
conclude with an oscillation between the red and green re-
gions.

4.6. Model Generalization Test

In this section, we show our tested results for the general-
ization of our proposed eye movement patterns for different
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Prior values Red Green Blue

0.4848 0.4027 0.1125

Transition
probabilities

To Red To Green To Black

From Red 0.5602 0.3775 0.0623
From Green 0.3153 0.5622 0.1225
From Blue 0.2099 0.2751 0.5150

Table 5: Transition probabilities of the ROIs for eye move-
ment pattern during lying given an unfamiliar face.

Figure 12: Scan paths for eye movement pattern during ly-
ing given an unfamiliar face.

face familiarity and information concealing. We generated
a Viterbi path through the HMM methodology for each of
our 21 participants. This is followed by calculating four Eu-
clidean distances between this individual Viterbi path and
the general Viterbi paths corresponding the previous four
conditions, namely truth telling or lying in front of familiar
and unfamiliar faces.

We evaluated the accuracy results of classifying eye
movement patterns into telling the truth or a lie for both fa-
miliar and unfamiliar face recognition. The outcomes are
well-beyond the chance, as Tables 7 and 8 demonstrate.
Furthermore, we also classify it to one of the four conditions
according to the shortest Euclidean path. The 1-in-4 classi-
fying accuracies are in Table 6. Again, as this table shows,
eye movement patterns are more distinguishable when par-
ticipants are lying. These results reveal a promising possi-
bility of utilizing eye movement patterns to analyze latent
cognitive activities.

5. Conclusion
In this study, we generalize five representative eye move-

ment patterns, characterized by their trajectories and fixa-
tion point distributions. These five patterns include telling
the truth or a lie in front of a familiar or unfamiliar face, and

Familiar
& Truth

Unfamiliar
& Truth

Familiar
& Lie

Unfamiliar
& Lie

Accuracy 66.67%
(14/21)

61.90%
(13/21)

76.19%
(13/21)

71.43%
(15/21)

Table 6: Accuracy results of classifying eye movement pat-
terns to their source face familiarity and degrees of infor-
mation concealing.

Familiar & Truth Familiar & Lie

Accuracy 80.95% (17/21) 85.71% (18/21)

Table 7: Accuracy results of classifying eye movement pat-
terns of familiar face recognition when telling the truth or a
lie.

Familiar & Truth Familiar & Lie

Accuracy 71.43% (15/21) 80.95% (17/21)

Table 8: Accuracy results of classifying eye movement pat-
terns of unfamiliar face recognition when telling the truth
or a lie.

a general one using all the individual data. We found that
the general eye movement patterns of lying, during both a
familiar and unfamiliar face recognition, are significantly
different comparing with truth-telling situations. Subse-
quent tests using the four eye movement patterns generated
using HMMs with Gaussian emission, except the general
one, demonstrated a good performance for discerning de-
ception.

In the future, we will compose our eye movement pat-
terns into deception detection systems as additional channel
to see whether they can help enhancing the original perfor-
mance of these systems. Moreover, we will test the feasibil-
ity of whether eye movement patterns behave differently un-
der different cognitive modes such as happiness and anger.
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