
Non-negative Autoencoder with Simplified

Random Neural Network

Yonghua Yin

Intelligent Systems and Networks Group

Electrical & Electronic Engineering Department

Imperial College, London SW7 2AZ, UK

Erol Gelenbe, Fellow, IEEE

Institute of Theoretical & Applied Informatics

Polish Academy of Sciences, 44100 PL

Abstract—A new shallow multi-layer auto-encoder that com-
bines the spiking Random Neural Network (RNN) with the
network architecture typically used in deep-learning, is pro-
posed with a learning algorithm inspired by non-negative
matrix factorization which satisfies the non-negative probability
constraints of the RNN. Auto-encoders equipped with this
learning algorithm are tested on typical images including the
MNIST, Yale face and CIFAR-10 datasets, and also using
16 real-world datasets from different areas, exhibiting the
desired high learning and recognition accuracy. Montecarlo
simulations of the stochastic spiking behaviour of this RNN
auto-encoder have also been carried out, showing that it can be
implemented in a highly parallel manner to achieve substantial
speed improvements.

I. INTRODUCTION

A mathematical tool that has existed since 1989 [1], [2],

but is less well known in the machine-learning community, is

the Random Neural Network (RNN), which is a stochastic,

recurrent, integer-state “integrate and fire” system which

was developed to mimic the behaviour of certain biological

neurons. The power of the RNN lies in the fact that, in steady

state, the stochastic spiking behavior of the network has been

proved [3] to have a remarkable property called “product

form”, whereby the joint state probability distribution of the

network is the product of the marginal probability distribu-

tions of the individual neurons. Moreover, the local state of

each neuron can be computed from the flows of inhibitory or

excitatory spikes reaching each neuron. As a consequence,

the recurrent RNN model is easily solvable by iterations on

a system of non-linear equations.

The RNN is used in many applications [4]–[6] that exploit

its product form solution and recurrent structure, and for deep

learning [7]–[10]. The usage of the resultant deep learning

tools includes predicting the toxicity of compounds [11], [12]

and detecting network attacks [13].

Deep learning has achieved great success in machine learn-

ing [14]–[16]. It utilizes multi-processing layers to extract

high-level representations from raw data. Pre-training a multi-

layer network, layer by layer [17] has been widely used. Fur-

thermore, the stochastic gradient descent (SGD) procedure

provides a practical choice for handling large datasets [18].

Another popular topic in machine learning is the non-negative

matrix factorization (NMF) [19]–[22], which learns partial

representations of raw data, and in [19] it was suggested that

the perception of the whole in the brain may be based on

these part-based representations, based on the physiological

evidence [23], leading to simple yet effective network update

rules. A comprehensive review on the NMF can be found in

[20].

This paper first exploits the structure of the RNN equations

as a quasi-linear structure. Using it in the feed-forward

case, an RNN-based shallow non-negative auto-encoder is

constructed. Then, this shallow auto-encoder is stacked into

a multi-layer feed-forward auto-encoder following the net-

work architecture in the deep learning area [14]–[17]. Since

connecting weights in the RNN are products of firing rates

and transition probabilities, they are subject to the constraints

of nonnegativity and that the sum of probabilities is no larger

than 1, which are called the RNN constraints in this paper.

In view of that, the conventional gradient descent is not

applicable for training such an auto-encoder. By adapting the

update rules from non-negative graph embedding [24] that is

closely related to NMF, applicable update rules are developed

for the auto-encoder that satisfy the first RNN constraint of

nonnegativity. For the second RNN constraint, we impose a

check-and-adjust procedure into the iterative learning process

of the learning algorithms. The training procedure of SGD

is also adapted into the algorithms. The efficacy of the non-

negative auto-encoders equipped with the learning algorithms

is well verified via numerical experiments on both typical

image datasets including the MNIST [25], Yale face [26]

and CIFAR-10 [27] datasets and 16 real-world datasets in d-

ifferent areas from the UCI machine learning repository [28].

Then, we simulate the spiking behaviors of the RNN-based

auto-encoder, where simulation results conform well with

the corresponding numerical results, therefore demonstrating

that this non-negative auto-encoder can be implemented in a

highly-distributed and parallel manner.

II. A QUASI-LINEAR SIMPLIFIED RANDOM NEURAL

NETWORK

An arbitrary neuron in the RNN can receive excitatory or

inhibitory spikes from external sources, in which case they

arrive according to independent Poisson processes. Excitatory

or inhibitory spikes can also arrive from other neurons to a

given neuron, in which case they arrive when the sending

neuron fires, which happens only if that neuron’s input state

is positive (i.e. the neuron is excited) and inter-firing intervals

from the same neuron v are exponentially distributed random

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

978-1-7281-2009-6/$31.00 ©2019 IEEE

Personal use is permitted, but republication/distribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

paper N-19231.pdf

variables with rate rv ≥ 0. Since the firing times depend on

the internal state of the sensing neuron, the arrival process

of neurons from other cells is not in general Poisson. From

the preceding assumptions it was proved in [3] that for an

arbitrary N neuron RNN, which may or may not be recurrent

(i.e. containing feedback loops), the probability in steady-

state that any cell h, located anywhere in the network, is

excited is given by the expression:

qh = min(
λ+

h +
∑N

v=1
qvrvp

+

vh

rh + λ−

h +
∑N

v=1
qvrvp

−

vh

, 1), (1)

for h = 1, ... , N , where p+vh, p−vh are the probabilities

that cell v may send excitatory or inhibitory spikes to cell

h, and λ+

h , λ−

h are the external arrival rates of excitatory

and inhibitory spikes to neuron h. Note that min(a, b) is

a element-wise operation whose output is the smaller one

between a and b. In [3], it was shown that the system of N
non-linear equations (1) have a solution which is unique.

Before adapting the RNN as a non-negative auto-encoder

(Section III), we will simplify the recurrent RNN model into

the feed-forward structure shown in Figure 1. The simplified

RNN has an input layer and a hidden layer. The V input

neurons receive excitatory spikes from the outside world, and

they fire excitatory spikes to the H hidden neurons.

Let us denote by q̂v the probability that the vth input

neuron (v = 1, · · · , V) is excited and qh the probability that

the hth hidden neuron (h = 1, · · · , H) is excited. According

to [1] and (1), they are given by q̂v = min(Λ̂+
v /r̂v, 1),

and qh = min(Λ+

h /rh, 1), where the quantities Λ̂+
v and Λ+

h

represent the total average arrival rates of excitatory spikes,

r̂v and rh represent the firing rates of the neurons. Neurons in

this model interact with each other in the following manner,

where h = 1, · · · , H and v = 1, · · · , V . When the vth input

neuron fires, it sends excitatory spikes to the hth hidden

neuron with probability p+v,h ≥ 0. Clearly,
∑H

h=1
p+v,h ≤ 1.

• The vth input neuron receives excitatory spikes from the

outside world with rate xv ≥ 0.

•When the hth hidden neuron fires, it sends excitatory spikes

outside the network.

Let us denote wv,h = p+v,hr̂v . For simplicity, let us

set the firing rates of all neurons to r̂v = rh = 1 or

that
∑H

h=1
wv,h ≤ 1. Then, Λ̂+

v = xv , r̂v = 1, Λ+

h =
∑V

v=1
wv,hq̂v , and using the fact that qh, qv are probabilities,

we can write: q̂v = min(xv , 1), qh = min(
∑V

v=1
wv,hq̂v, 1),

subject to
∑H

h=1
wv,h ≤ 1, from which we can that this

simplified RNN is quasi linear. For the network shown in

Figure 1, we call it a quasi-linear RNN (LRNN).

III. SHALLOW NON-NEGATIVE LRNN AUTO-ENCODER

We add an output layer with O neurons on top of the

hidden layer of the LRNN shown in Figure 1 to construct

a shallow non-negative LRNN auto-encoder. Let qo denote

the probability that the oth output neuron is excited, and the

oth output neurons interact with the LRNN in the following

manner, where o = 1, · · · , O.

•When the hth hidden neuron fires, it sends excitatory spikes

Y Y

Y Y

Input neurons

Hidden neurons

Connecting weights
SéáÛ

MÛ

ÜMv

xv

Fig. 1. Brief model structure of the quasi-linear RNN.

Algorithm 1 Procedure for training a shallow non-negative

LRNN auto-encoder (2)

Randomly initialize W and W that satisfy RNN constraints

while terminal condition is not satisfied do

for each minibatch X̄ do

update W with (3)

for v = 1, · · · , V do

if
∑H

h=1
wv,h > 1

wv,h ← wv,h/
∑H

h=1
wv,h,

for h = 1, · · · , H
W ← W/max(X̄W)
update W with (4)

for h = 1, · · · , H do

if
∑O

o=1
wh,o > 1

wh,o ← wh,o/
∑O

o=1
wh,o,

for o = 1, · · · , O
H = min(X̄W, 1)
W ← W/max(HW)

to the oth output neuron with probability p+h,o ≥ 0. Also,
∑O

o=1
p+h,o ≤ 1.

• The firing rate of the oth output neuron ro = 1.

Let wh,o = p+h,orh = p+h,o. Then,
∑O

o=1
wh,o ≤ 1. The

shallow LRNN auto-encoder is described by

q̂v = min(xv , 1), qh = min(
∑V

v=1
wv,hq̂v, 1),

qo = min(
∑H

h=1
wh,oqh, 1),

where O = V and the input, hidden and output layers are

the visual, encoding and decoding layers.

Suppose there is a dataset represented by a non-negative

D × V matrix X = [xd,v], where D is the number of

instances, each instance has V attributes and xd,v is the vth

attribute of the dth instance. We import X into the input

layer of the LRNN auto-encoder. Let q̂d,v, qd,h and qd,o
respectively denote the values of q̂v , qd and qo for the dth

instance.

Let a D×V -matrix Q̂ = [q̂d,v], a D×H-matrix Q = [qd,h],
a D×O-matrix Q = [qd,o], a V ×U -matrix W = [wv,h] and

a H×O-matrix W = [wh,o]. Then, the shallow LRNN auto-

encoder can be rewritten as the following matrix manner:

Q̂ = min(X, 1), Q = min(Q̂W, 1), Q = min(QW, 1),
(2)

subject to the RNN constraints W ≥ 0, W ≥ 0,∑H

h=1
wv,h ≤ 1 and

∑O

o=1
wh,o ≤ 1. The problem for the

autoecoder to learn the dataset X can be described as

argminW,W ||X −Q||2,

s.t. W ≥ 0,W ≥ 0,
∑H

h=1
wv,h ≤ 1,

∑O

o=1
wh,o ≤ 1.

We use the following update rules to solve this problem,

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19231.pdf- 2 -

Algorithm 2 Proceduce for training a multi-layer LRNN-

based non-negatvie autoencder (5)

X1 = X
for m = 1, · · · ,M do

Train Wm and WM−m+1 with Algorithm 1 that takes

Xm as input dataset

if m 6= M do

Xm+1 = min(XmWm, 1)

which are simplified from Liu’s work [24]:

wv,h ← wv,h

(XTXW
T
)v,h

(XTXWWW
T
)v,h

, (3)

wh,o ← wh,o

(W TXTX)h,o

(W TXTXWW)h,o
, (4)

where the symbol (·)v,h denotes the element in the vth row

and hth column of a matrix. Note that, to avoid the division-

by-zero problem, zero elements in the denominators of (3)

and (4) are replaced with tiny positive values, (e.g., “eps”

in MATLAB). After each update, adjustments need to be

made such that W and W satisfy the RNN constraints. The

procedure to train the auto-encoder (2) is given in Algorithm

1, where the operation max(W) produces the maximal

element in W , the operations of wv,h ← wv,h/
∑H

h=1
wv,h

and wh,o ← wh,o/
∑O

o=1
wh,o guarantee that the weights

satisfy the RNN constraints, and the operations W ←
W/max(X̄W) and W ← W/max(HW) normalize the

weights to reduce the number of neurons that are saturated.

IV. MULTI-LAYER NON-NEGATIVE LRNN

AUTO-ENCODER

We stack multi LRNNs to build a multi-layer non-negative

LRNN auto-encoder. Suppose the multi-layer auto-encoder

has a visual layer, M encoding layers and M decoding layer

(M ≥ 2), and they are connected in series with excitatory

weights Wm and W with m = 1, · · · ,M . We import a

dataset X into the visual layer of the auto-encoder. Let Hm

and Om denote the numbers of neurons in the mth encoding

layer and decoding layer, respectively. For the auto-encoder,

V = OM , Hm = OM−m with m = 1, · · · ,M − 1.

Let Q̂ denote the state of the visual layer, Qm denote the

state of the mth encoding layer and Qm denote the state of

the mth decoding layer. Then, the multi-layer LRNN auto-

encoder is described by

Q̂ = min(X, 1),

Q1 = min(Q̂W1, 1), Qm = min(Qm−1Wm, 1),

Q1 = min(QMW 1, 1), Qm = min(Qm−1Wm, 1),

(5)

with m = 2, · · · ,M . The RNN constraints for (5) are Wm ≥
0, Wm ≥ 0 and the summation of each row in Wm and Wm

is not larger than 1, where m = 1, · · · ,M . The problem for

the multi-layer LRNN auto-encoder (5) to learn dataset X
can be described as

argminWm,Wm

||X −QM ||
2,

subject to the RNN constraints, where m = 1, · · · ,M . The

Algorithm 3 Proceduce for training a multi-layer LRNN-

based non-negative auto-encoder (5) (minibatch manner)

Randomly initialize Wm and Wm that satisfy RNN con-

straints (with m = 1, · · · ,M)

while terminal condition is not satisfied do

for each minibatch X̄ do

for m = 1, · · · ,M do

update Wm with (6)

adjust Wm to satisfy RNN constraints

normalize Wm subject to X̄
update Wm with (7)

adjust Wm to satisfy RNN constraints

normalize Wm subject to X̄

procedure to train the multi-layer non-negative LRNN auto-

encoder (5) is given in Algorithm 2.

To avoid loading the whole dataset into the computer

memory, we could also use Algorithm 3 to train the auto-

encoder, where the update rules could be

W1 ←W1 ⊙
Q̂TQ̂W

T

M

Q̂TQ̂W1WMW
T

M

,

Wm ← Wm ⊙
QT

m−1Qm−1W
T

M−m+1

QT
m−1

Qm−1WmWM−m+1W
T

M−m+1

,

(6)

WM ←WM ⊙
W T

1 Q̂
TQ̂

W T
1 Q̂

TQ̂W1WM

,

WM−m+1 ←WM−m+1 ⊙
W T

mQT
m−1Qm−1

W T
mQT

m−1Qm−1WmWM−m+1

,

(7)
with m = 2, · · · ,M and the operation ⊙ denoting element-

wise product of two matrices. To avoid the division-by-zero

problem, zero elements in denominators of (6) and (7) are

replaced with tiny positive values. The operations of adjusting

the weights to satisfy the RNN constraints and normalizing

the weights are the same as those in Algorithm 1.

V. NUMERICAL EXPERIMENTS

A. Datasets

MNIST: The MNIST dataset of handwritten digits [25]

contains 60,000 and 10,000 images in the training and test

dataset. The number of input attributes is 784 (28 × 28
images), which are in [0, 1].

Yale face: This database (http://vision.ucsd.edu/content/

yale-face-database) contains 165 gray scale images of 15

individuals. Here we use the pre-processed dataset from [26],

where each image is resized as 32× 32 (1024 pixels).

CIFAR-10: The dataset consists of 60,000 32× 32 colour

images [27]. Each image has 3072 attributes. It contains

50,000 and 10,000 images in the training and test dataset.

UCI real-world datasets: In addition to image datasets,

we also conduct numerical experiments on different real-

world datasets in different areas from the UCI machine

learning repository [28]. The names, attribute numbers and

instance numbers of these datasets are listed in Table I.

Non-negative Autoencoder with Simplified Random Neural Network

paper N-19231.pdf- 3 -

TABLE I
FEATURES OF DIFFERENT UCI REAL-WORLD DATASETS FROM

DIFFERENT AREAS

Dataset Inputs Size

Iris 4 150

Teaching Assistant Evaluation (TAE) 5 151

Liver Disorders (LD) 5 345

Seeds 7 210

Pima Indians Diabetes (PID) 8 768

Breast Cancer Wisconsin (BC) [29] 9 699

Glass 9 214

Wine 13 178

Zoo 16 100

Parkinsons [30] 22 195

Wall-Following Robot Navigation 24 5456

(WFRN) [31]

Ionosphere [32] 34 351

Soybean Large (SL) 35 186

First-Order Theorem Proving 51 6118

(FOTP) [33]

Sonar [34] 60 208

Cardiac Arrhythmia (CA) [35] 279 452

B. Convergence and Reconstruction Performance

Results of MNIST: Let us first test the convergence

and reconstruction performance of the shallow non-negative

LRNN auto-encoder. We use structures of 784 → 100
(for simplicity, we use the encoding part to represent an

auto-encoder) and 784 → 50 and the MNIST dataset for

experiments. The whole training dataset of 60,000 images is

used for training. Figure 2(a) shows the curves of training

error (mean square error) versus the number of iterations,

where, in each iteration, a minibatch of size 100 is handled.

Then, we use a multi-layer non-negative LRNN auto-encoder

with structure 784 → 1000 → 500 → 250 → 50, and the

corresponding curve of training error versus iterations is also

given in Figure 2(a). It can be seen from Figure 2(a) that re-

construction errors using the LRNN auto-encoders equipped

with the developed algorithms converge well for different

structures. In addition, the lowest errors using the shallow and

multi-layer auto-encoders are respectively 0.0204 and 0.0190.

The results show that, for the same encoding dimension, the

performances of the shallow and multi-layer structures are

similar for this dataset.

Results of Yale face: Attribute values are normalized into

[0, 1] (by dividing by 255). The structures for the shallow and

multi-layer LRNN auto-encoders are respectively 1024→ 50
and 1024→ 500→ 100→ 50. The size of a minibatch is 5.

Curves of reconstruction errors versus iterations are given in

Figure 2(b). For this dataset, the shallow auto-encoder seems

more stable than the multi-layer one.

Results of CIFAR-10: Attribute values of the dataset are

also divided by 255 for normalization in range [0, 1]. The

structures used are 3072 → 150 and 3072 → 1000 →

(a) MNIST (b) Yale face

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

0.04

0.05

0.06

0 2000 4000 6000 8000 10000 12000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

3072 → 150 3072 → 1000 → 500 → 150

(c) CIFAR-10

Fig. 2. Reconstruction error (Y-axis) versus iteration number (X-axis) of
shallow and multi-layer LRNN auto-encoders for the MNIST, Yale face and
CIFAR-10 datasets.

500 → 150. Both the training and testing dataset (total

60,000 images) are used for training the auto-encoders. The

size of minibatch is chosen as 100. The results are given in

Figure 2(c). We can see that reconstruction errors for both

structures converge as the number of iterations increases. In

addition, the lowest reconstruction errors in using the shallow

and multi-layer auto-encoders are the same (0.0082). These

results together with those with the MNIST and Yale face

datasets (Figures 2(a) to 2(c)) verify the good convergence

and reconstruction performance of both the shallow and

multi-layer LRNN auto-encoders for handling image datsets.

Results of UCI real-world datasets: Let N denote the at-

tribute number in a dataset. The structures of the LRNN auto-

encoders used are N → round(N/2), where the operation

round(·) produces the nearest integer number of the element.

The attribute values are linear normalized in range [0, 1]. The

size of mini-batches is set as 50. Curves of reconstruction

errors versus iterations are given in Figure 4, which use the

entire datasets. We see that the reconstruction errors generally

decrease as the number of iterations increases. These results

also demonstrate the efficacy of the non-negative LRNN auto-

encoders equipped with the training algorithms.

VI. SIMULATING THE SPIKING RNN

The advantage of a spiking model, such as the LRNN auto-

encoder, lays on its highly-distributed nature. In this section,

rather than numerical calculation, we simulate the stochastic

spiking behaviors of the LRNN auto-encoder. The simulation

in this section is based on the numerical experiment of

Subsection V-B. Specifically, in Subsection V-B, we construct

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19231.pdf- 4 -

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(a) IRIS

0 500 1000 1500 2000 2500 3000
0.02

0.04

0.06

0.08

0.1

0.12

(b) TAE

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

(c) LD

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

(d) Seeds

0 500 1000 1500 2000 2500 3000
0.005

0.01

0.015

0.02

0.025

0.03

(e) PID

0 500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

(f) BC

0 500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

(g) Glass

0 500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(h) Wine

Fig. 3. Reconstruction error (Y-axis) versus iteration number (X-axis) of
non-negative LRNN auto-encoders for UCI real-world datasets.

a LRNN auto-encoder of structure 784 → 100 (with appro-

priate weights found), which has three layers: the visual layer

(784 neurons), hidden layer (100 neurons) and output layer

(784 neurons). First, an image with 28× 28 = 784 attributes

is taken from the MNIST dataset. Each visual neuron receives

excitatory spikes from outside the network in a Poisson

stream with the rate being the corresponding attribute value in

the image. When activated, the visual neurons fire excitatory

spikes to the hidden neurons according to the Poisson process

with rate 1 (meaning wv,h = p+v,h). When the vth visual

neuron fires to the hidden layer, the spike goes to the hth

hidden neuron with probability p+v,h or it goes outside the

network with probability 1−
∑H

h=1
p+v,h. The hidden neurons

fire excitatory spikes to the output layer in a similar manner

subjecting to wh,o. The firing rate of output neurons is 1 and

their spikes leave the network with probability 1.

In the simulation, an event occurs whenever a spike arrives

from outside the network or a neuron fires. During the

simulation, we observe the potential or level of activation

of each neuron every 1,000 events. If ki,b represents the bth
observation of the ith neuron, the average potential of the

0 500 1000 1500 2000 2500 3000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) Zoo

0 500 1000 1500 2000 2500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(b) Parkinsons

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

(c) WFRN

0 500 1000 1500 2000 2500 3000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(d) Ionosphere

0 500 1000 1500 2000 2500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

(e) SL

0 1000 2000 3000 4000
0

0.01

0.02

0.03

0.04

0.05

(f) FOTP

0 500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

(g) Sonar

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

(h) CA

Fig. 4. Reconstruction error (Y-axis) versus iteration number (X-axis) of
non-negative LRNN auto-encoders for UCI real-world datasets.

ith neuron is estimated by its average k̄i = (
∑B

b=1
ki,b)/B

over B observations. The relation between qi and k̄i is

k̄i ≈ qi/(1− qi), and qi is estimated as: qi = k̄i/(1 + k̄i) ≈∑B

b=1
ki,b/(B +

∑B

b=1
ki,b). In Figure 5, we visualise the

estimated values of qi for all neurons in different layers

after 10,000, 100,000 and 1,000,000 events. For comparison,

numerical results from Subsection V-B are also given. At

the beginning of the simulation the numerical and simulated

results only agree for the input or visual layer. As time

evolves, the simulation results of the hidden and output layers

and their corresponding numerical results tend to the same

values.

VII. CONCLUSIONS

In this paper, new Shallow and Multi-layer LRNN auto-

encoders are proposed based on the spiking RNN model, by

using a feed-forward multi-layer network architecture with

deep-learning. Weight updates based on non-negative matrix

factorisation are used to comply with the RNN’s constraint

of non-negative excitatory and inhibitory weights. Experi-

ments with typical images from the MNIST, “Yale face”

and CIFAR-10 datasets, as well as 16 real-world datasets

Non-negative Autoencoder with Simplified Random Neural Network

paper N-19231.pdf- 5 -

Fig. 5. Comparisons between numerical and spiking-behavior simulation
results of difference layers in a LRNN auto-encoder.

from different areas, demonstrate the robust convergence

and reconstruction performance of LRNN auto-encoders.

We have also conducted simulations of the auto-encoder’s

stochastic spiking behaviour, showing good agreement with

the corresponding numerical results. This also indicates that

the LRNN auto-encoder may be implemented in a highly

parallel manner for greater computational speed.

Acknowledgements: This research was supported by the

GHOST project funded by the European Unions Horizon

2020 Framework Programme for Research and Innovation

under Grant Agreement No. 740923.

REFERENCES

[1] E. Gelenbe, “Random neural networks with negative and positive
signals and product form solution,” Neural computation, vol. 1, no. 4,
pp. 502–510, 1989.

[2] ——, “Stability of the random neural network model,” Neural compu-

tation, vol. 2, no. 2, pp. 239–247, 1990.

[3] ——, “Learning in the recurrent random neural network,” Neural

Computation, vol. 5, pp. 154–164, 1993.

[4] C. E. Cramer and E. Gelenbe, “Video quality and traffic qos in
learning-based subsampled and receiver-interpolated video sequences,”
Selected Areas in Communications, IEEE Journal on, vol. 18, no. 2,
pp. 150–167, 2000.

[5] E. Gelenbe, “Dealing with software viruses: a biological paradigm,”
Information Security Technical Report, vol. 12, no. 4, pp. 242–250,
2007.

[6] E. Gelenbe and F.-J. Wu, “Large scale simulation for human evacuation
and rescue,” Computers & Mathematics with Applications, vol. 64,
no. 12, pp. 3869–3880, 2012.

[7] E. Gelenbe and Y. Yin, “Deep learning with random neural networks,”
2016 International Joint Conference on Neural Networks (IJCNN), pp.
1633–1638, 2016.

[8] Y. Yin and E. Gelenbe, “Single-cell based random neural network
for deep learning,” in 2017 International Joint Conference on Neural

Networks (IJCNN), May 2017, pp. 86–93.

[9] Y. Yin, “Random neural networks for deep learning,” Imperial College

London, PhD Thesis, available in http://hdl.handle.net/10044/1/64917

and https://san.ee.ic.ac.uk/publications.shtml, 2018.

[10] ——, “Random neural network methods and deep learning,” Proba-

bility in the Engineering and Informational Sciences, accepted.

[11] I. Grenet, Y. Yin, J.-P. Comet, and E. Gelenbe, “Machine learning
to predict toxicity of compounds,” in International Conference on

Artificial Neural Networks. Springer, Cham, 2018, pp. 335–345.

[12] I. Grenet, Y. Yin, and J.-P. Comet, “G-networks to predict the
outcome of sensing of toxicity,” Sensors, vol. 18, no. 10, 2018.
[Online]. Available: http://www.mdpi.com/1424-8220/18/10/3483

[13] O. Brun, Y. Yin, and E. Gelenbe, “Deep learning with dense random
neural network for detecting attacks against iot-connected home envi-
ronments,” Procedia Computer Science, vol. 134, pp. 458–463, 2018.

[14] E. Hosseini-Asl, J. M. Zurada, and O. Nasraoui, “Deep learning
of part-based representation of data using sparse autoencoders with
nonnegativity constraints,” IEEE transactions on neural networks and

learning systems, vol. 27, no. 12, pp. 2486–2498, 2016.
[15] J. Zhao, M. Mathieu, R. Goroshin, and Y. Lecun, “Stacked what-where

auto-encoders,” arXiv preprint arXiv:1506.02351, 2015.
[16] V. Turchenko, E. Chalmers, and A. Luczak, “A deep convolutional

auto-encoder with pooling-unpooling layers in caffe,” arXiv preprint

arXiv:1701.04949, 2017.
[17] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of

data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[18] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677, 2017.

[19] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791,
1999.

[20] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A
comprehensive review,” IEEE Transactions on Knowledge and Data

Engineering, vol. 25, no. 6, pp. 1336–1353, 2013.
[21] A. El Khatib, S. Huang, A. Ghodsi, and F. Karray, “Nonnegative matrix

factorization using autoencoders and exponentiated gradient descent,”
in 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2018, pp. 1–8.

[22] K. Zen, M. Suzuki, H. Sato, S. Oyama, and M. Kurihara, “Monophonic
sound source separation by non-negative sparse autoencoders,” in 2014

IEEE International Conference on Systems, Man, and Cybernetics

(SMC). IEEE, 2014, pp. 3623–3626.
[23] E. Wachsmuth, M. Oram, and D. Perrett, “Recognition of objects and

their component parts: responses of single units in the temporal cortex
of the macaque,” Cerebral Cortex, vol. 4, no. 5, pp. 509–522, 1994.

[24] X. Liu, S. Yan, and H. Jin, “Projective nonnegative graph embedding,”
Image Processing, IEEE Transactions on, vol. 19, no. 5, pp. 1126–
1137, 2010.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[26] D. Cai, X. He, Y. Hu, J. Han, and T. Huang, “Learning a spatially
smooth subspace for face recognition,” in 2007 IEEE Conference on

Computer Vision and Pattern Recognition. IEEE, 2007, pp. 1–7.
[27] A. Krizhevsky and G. Hinton, “Learning multiple layers of features

from tiny images,” 2009.
[28] M. Lichman, “UCI machine learning repository,” 2013. [Online].

Available: http://archive.ics.uci.edu/ml
[29] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of

pattern separation for medical diagnosis applied to breast cytology.”
PNAS, vol. 87, no. 23, pp. 9193–9196, 1990.

[30] M. A. Little, P. E. McSharry, S. J. Roberts, D. A. Costello, and I. M.
Moroz, “Exploiting nonlinear recurrence and fractal scaling properties
for voice disorder detection,” BioMedical Engineering OnLine, vol. 6,
no. 1, p. 1, 2007.

[31] A. L. Freire, G. A. Barreto, M. Veloso, and A. T. Varela, “Short-term
memory mechanisms in neural network learning of robot navigation
tasks: A case study,” in Robotics Symposium (LARS), 2009 6th Latin

American. IEEE, 2009, pp. 1–6.
[32] V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker, “Classifica-

tion of radar returns from the ionosphere using neural networks,” Johns

Hopkins APL Technical Digest, vol. 10, no. 3, pp. 262–266, 1989.
[33] J. P. Bridge, S. B. Holden, and L. C. Paulson, “Machine learning for

first-order theorem proving,” Journal of automated reasoning, vol. 53,
no. 2, pp. 141–172, 2014.

[34] R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a
layered network trained to classify sonar targets,” Neural networks,
vol. 1, no. 1, pp. 75–89, 1988.

[35] H. A. Guvenir, B. Acar, G. Demiroz, and A. Cekin, “A supervised
machine learning algorithm for arrhythmia analysis,” in Computers in

Cardiology 1997. IEEE, 1997, pp. 433–436.

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19231.pdf- 6 -

