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Abstract—The robust detection of small targets against clut-
tered background is important for future artificial visual systems
in searching and tracking applications. The insects’ visual sys-
tems have demonstrated excellent ability to avoid predators, find
prey or identify conspecifics – which always appear as small
dim speckles in the visual field. Build a computational model
of the insects’ visual pathways could provide effective solutions
to detect small moving targets. Although a few visual system
models have been proposed, they only make use of small-field
visual features for motion detection and their detection results
often contain a number of false positives. To address this issue,
we develop a new visual system model for small target motion
detection against cluttered moving backgrounds. Compared to
the existing models, the small-field and wide-field visual features
are separately extracted by two motion-sensitive neurons to detect
small target motion and background motion. These two types
of motion information are further integrated to filter out false
positives. Extensive experiments showed that the proposed model
can outperform the existing models in terms of detection rates.

Index Terms—Small target motion detection, neural modelling,
visual cue integration, cluttered background.

I. INTRODUCTION

As processing power increases exponentially, and as sensors
becomes less costly and more reliable, robots have shown
great potential in reshaping human life in the future [1]–
[5]. Intelligent robots embedded with artificial visual systems
will be able to cope with dynamic visual worlds in real-
time and perform required tasks without human intervention
[6]–[10]. Among a number of visual functionalities, detecting
objects of interest in the distance and early could help a
robot achieve dominant position in competition, defence, and
survive. However, artificial visual systems are still far from
acceptable to robustly and cheaply detect moving objects in
the distance against cluttered natural backgrounds.

In the visual world, detecting object motion which is far
away from the observer, often means dealing with small dim
speckles in the field of view. The difficulty of small target
motion detection is reflected in: first, the sizes of small targets
may vary from one pixel to a few pixels, whereas other
physical characteristics, such as color, shape and texture, are
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difficult to recognize and cannot be used for motion detection.
Second, the natural background is extremely cluttered and
contains a number of small-target-like features. In addition,
free motion of camera would bring further difficulties to small
target motion detection.

For animals, such as insects, the ability to detect small
targets against cluttered backgrounds is important, serving to
search for mates and track prey. Evolved over millions of
years, the small target detection visual systems in insects are
both efficient and reliable. As an example, dragonflies can
pursue small flying insects with successful capture rates as
high as 97% relying on their well evolved visual systems [11].
The exquisite sensitivity of insects for small moving targets is
coming from a class of specific neurons, called small target
motion detectors (STMDs) [12]. The STMD neurons give peak
responses to small targets subtending 1 − 3◦ of the visual
field, with no response to large bars (typically > 10◦) or
to background movements represented by wide-field grating
stimuli [13]. This makes the STMD an ideal template to
develop specialized artificial visual systems for small target
motion detection.

The electrophysiological knowledge about the STMD neu-
ron revealed in the past few decades, makes it possible to
propose quantitative models. Wiederman et al. [14] presented
an elementary STMD (ESTMD) to account for size selectivity
of the STMD neurons. However, the ESTMD did not consider
direction selectivity and is unable to estimate motion direction
of small targets. To address this issue, some directionally
selective STMD models have been developed, including two
hybrid models [15], [16], and directionally selective STMD
(DSTMD) [17]. These STMD-based models take advantage
of small-field visual features for small target motion detection,
while ignore other visual cues, such as wide-field features. Due
to this, the models cannot discriminate small target motion
from false positive background motion, and their detection
results often contain a large number of noises. In order
to eliminate the background false positives, the wide-field
features should not be disregarded, which can be combined
with the small-field cues in small target motion discrimination.

In the insects’ visual systems, the motion of wide-field
features can elicit strong responses of an identified interneuron
called lobula plate tangential cell (LPTC) [18]. In the further
research [19], Nicholas et al. assert that the wide-field motion
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and small target motion which are separately detected by
the LPTCs and STMDs, are integrated in target-selective
descending neurons (TSDNs). More precisely, the responses
of the STMDs are largely suppressed by the LPTCs when the
small object and background move at the similar velocities.
These biological findings provide a solution for designing
artificial visual systems to filter out false positives in small
target motion detection.

Inspired by the above biological findings, this paper pro-
poses a visual system model (TSDN) for small target motion
detection in cluttered moving backgrounds. The visual system
is composed of an STMD subsystem for small target motion
detection and an LPTC subsystem for wide-field motion
perception. The outputs of the STMD and LPTC are integrated
to discriminate small targets from background false positives.
The rest of this paper is organized as follows. In Section II,
we introduce our proposed visual system model. Section III
provides extensive performance evaluation as well as compar-
isons against the existing models. Finally, we conclude this
paper in Section IV.

II. METHODS

As illustrated in Fig. 1, our developed visual system is
composed of ommatidia, large monopolar cells (LMCs) [20],
medulla neurons (including Tm1, Tm2, Tm3, and Mi1) [21],
STMDs, LPTCs and TSNDs. Luminance signals are received
and smoothed by the ommatidia, then applied to the LMCs
where lumninace changes of each pixel over time are extracted.
These luminance change signals are further separated into
luminance increase and decrease components by the medulla
neurons, which are fed into the STMDs and LPTCs for de-
tecting small target motion and wide-field motion, respectively.
The TSDNs integrate the extracted motion information to filter
out the background false positives. The schematic illustration
of the proposed visual system model is presented in Fig. 2
which will be elaborated in the following.

A. Ommatidia

The first layer of the developed visual system is the om-
matidia arranged in a matrix; the luminance of each pixel
in the input image is captured and smoothed by each om-
matidium which is modelled as a spatial Gaussian filter. Let
I(x, y, t) ∈ R denote the input image sequence, where x, y
and t are spatial and temporal field positions. The output of
an ommatidium P (x, y, t) is given by,

P (x, y, t) =

∫∫
I(u, v, t)Gσ1(x− u, y − v)dudv (1)

where Gσ1
(x, y) is a Gaussian function, defined as

Gσ1
(x, y) =

1

2πσ2
1

exp(−x
2 + y2

2σ2
1

). (2)

B. Large Monopolar Cells

As shown in Fig. 2, the output of the ommatidia forms the
input to LMCs in the next layer. Each LMC is modelled as
a temporal band-pass filter to extract luminance changes over

LPTC

Ommatidia

STMD

LMC

Mi1Tm3 Tm1Tm2 ……

……

……

TSDN

Fig. 1: Wiring sketch of the proposed visual system where each
colored node denotes a neuron. For clear illustration, only one
STMD, LPTC and TSDN are presented here.

time caused by motion. The impulse response of the band-pass
filter H(t) is defined as the difference of two Gamma kernels,
then the output of each LMC L(x, y, t) can be given by,

L(x, y, t) =

∫
P (x, y, s)H(t− s)ds (3)

H(t) = Γn1,τ1(t)− Γn2,τ2(t) (4)

where Γn,τ (t) stands for the Gamma kernel [22], defined as

Γn,τ (t) = (nt)n
exp(−nt/τ)

(n− 1)! · τn+1
. (5)

where n and τ represents the order and time constant of
Gamma kernel.

C. Medulla Neurons

As can be seen from Fig. 2, the output of LMCs L(x, y, t) is
applied to the medulla neurons including Tm1, Tm2, Tm3, and
Mi1, which constitute four parallel signal-processing channels.
The Tm3 and Tm2 are modelled as half-wave rectifiers to
separate L(x, y, t) into luminance increase and decrease com-
ponents. Let STm3(x, y, t) and STm2(x, y, t) denote the output
of the Tm3 and Tm2, respectively, then they are given by

STm3(x, y, t) = [L(x, y, t)]+ (6)

STm2(x, y, t) = [−L(x, y, t)]+ (7)

where [x]+ denotes max(x, 0). The Mi1 and Tm1 further
temporally delay STm3(x, y, t) and STm2(x, y, t) by convolving
them with a Gamma kernel. That is,

SMi1
(n,τ)(x, y, t) =

∫
[L(x, y, s)]+ · Γn,τ (t− s)ds (8)

STm1
(n,τ)(x, y, t) =

∫
[−L(x, y, s)]+ · Γn,τ (t− s)ds (9)

where SMi1
(n,τ)(x, y, t) and STm1

(n,τ)(x, y, t) represent the outputs
of the Mi1 and Tm1, respectively; n and τ are the order
and time constant of the Gamma kernel, which separately
determine the time-delay order and length.
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Fig. 2: Schematic illustration of the proposed visual system model. For clear illustration, only one STMD and LPTC are
presented here. However, these types of neurons are all arranged in matrix form in the proposed visual system model.

D. Small Target Motion Detectors

As illustrated in Fig. 2, the outputs of the medulla neurons
are collected by the STMDs for small target motion detection
against cluttered moving backgrounds. The existing DSTMD
model [17] is adopted to describe the STMDs, where the out-
put of each STMD D(x, y, t, θ) is defined by the multiplication
of medulla neural outputs from two different pixels to produce
strong responses to moving objects. That is,

D(x,y, t, θ) = STm3(x, y, t) ·
{
STm1
(n

4
,τ

4
)(x, y, t)

+ SMi1
(n3 ,τ3 )

(x′(θ), y′(θ), t)
}
· STm1

(n5 ,τ5 )
(x′(θ), y′(θ), t)

(10)

where θ denotes the preferred direction of the STMD neuron;
(x′(θ), y′(θ)) is defined as

x′(θ) = x+ α1 cos θ

y′(θ) = y + α1 sin θ
(11)

where α1 is a constant.
In order to suppress the responses to the large moving

objects, the D(x, y, t, θ) is laterally inhibited by convolving
with an inhibition kernel Ws(x, y). That is,

E(x, y, t, θ) =

∫∫
D(u, v, t, θ)Ws(x− u, y − v)dudv (12)

where E(x, y, t, θ) represents the inhibited signal; the inhibi-
tion kernel Ws(x, y) is defined as

Ws(x, y) = A · [g(x, y)]+ +B · [g(x, y)]− (13)
g(x, y) = Gσ2

(x, y)− e ·Gσ3
(x, y)− ρ (14)

where [x]+ and [x]− respectively denote max(x, 0) and
min(x, 0); A, B, e and ρ are constant.

The output of STMDs E(x, y, t, θ) can be used to determine
the positions of small moving targets by comparing it with a
threshold β. Specifically, if E(x, y, t, θ) is higher than β, then
we believe that a small object moving along direction θ is
located at pixel (x, y) and time t.

E. Lobula Plate Tangential Cells

Although the LPTC also gather the outputs of medulla
neurons, it serves to detect wide-field motion rather than small
target motion. The LPTC is modelled by the existing two-
quadrant-detector (TQD) [23], [24], and its output F (x, y, t, ψ)
is defined as

F (x,y, t, ψ) = STm3(x, y, t) · SMi1
(n

6
,τ

6
)(x
′(ψ), y′(ψ), t)

+ STm2(x, y, t) · STm1
(n

6
,τ

6
)(x
′(ψ), y′(ψ), t)

(15)

where ψ stands for the preferred direction of the LPTC neuron.
The output of LPTCs F (x, y, t, ψ) reveals the motion of

normal-size objects embedded in the cluttered background
such as trees, rocks and bushes. More precisely, for a threshold
γ, if F (x, y, t, ψ) > γ, then we believe that a background
object moving along direction ψ is detected at pixel (x, y)
and time t.

F. Target-Selective Descending Neurons

The TSDN receives two types of neural outputs, including
the output of STMDs E(x, y, t, θ) and the output of LPTCs
F (x, y, t, ψ). These neural outputs are integrated to filter out
background false positives via the following two steps.

1) Background Motion Direction Estimation: The output of
LPTCs F (x, y, t, ψ) is used to estimate the motion direction of
the background. The basic idea is using the motion direction of



TABLE I: Parameters of the proposed visual system model.

Eq. Parameters

(1) σ1 = 1

(4) n1 = 2, τ1 = 3, n2 = 6, τ2 = 9

(10) n3 = 3, τ3 = 15, n4 = 5, τ4 = 25, n5 = 8, τ5 = 40

(11) α1 = 3

(13) A = 1, B = 3

(14) σ2 = 1.5, σ3 = 3.0, e = 1, ρ = 0

(15) n3 = 5, τ3 = 15

(17) α2 = 3.5

most background objects to represent that of the background.
That is,

Ψ(t) = arg max
ψ

∫∫
F (x, y, t, ψ)dxdy (16)

where Ψ(t) denotes the motion direction of the background at
time t.

2) False Positive Elimination: As revealed in the biological
research [19], the output of STMDs is largely inhibited by the
output of LPTCs when the target and background move in the
same direction. That is, the excitatory flow from the STMDs
E(x, y, t, θ) and inhibition from the LPTCs F (x, y, t, ψ) are
summed by the TSDNs using the following:

T (x, y, t, θ) = E(x, y, t, θ)− α2F (x, y, t,Ψ(t)) (17)

where T (x, y, t, θ) refers to the output of TSDNs and α2 > 0,
if θ = Ψ(t); otherwise, α2 = 0.

It is worthy to note that the false positives are often caused
by the motion of objects embedded in the background, which
means their motion directions are consistent with that of the
background. In the (17), the responses of STMDs will deduct
the outputs of LPTCs, if the motion direction of the detected
object θ equals to that of the background Ψ(t). That is, the
responses to the false positives will decrease, resulting in the
improvement of detection performances.

G. Parameter Setting

Parameters of the proposed visual system model are listed in
Table I. Based on the previous parameter analysis and test [5],
[17], [24], [25], the parameters are tuned manually to make
the developed model satisfy the basic neural properties, which
are mainly determined by target velocity and size. They will
not be changed in the following experiments unless stated.

The proposed visual system model is written in Matlab
(The MathWorks, Inc., Natick, MA). The computer used in
the experiments is a standard laptop with a 2.50GHz Intel
Core i7 CPU and 16GB DDR3 memory.

III. RESULTS

The developed visual system model is evaluated on a dataset
which is produced by Vision Egg [26]. The image sequences in
the dataset are all synthesized by using real natural background
images and a computer-generated small target with different
sizes, velocities and luminance. The video images are 500 (in

Background

Object
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w
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d

Fig. 3: The external rectangle and neighboring background
rectangle of an object. Arrow VT denotes the motion direction
of the object. w represents object width while h stands for
object height.

(a) (b)

(c) (d)

Fig. 4: STMD and LPTC outputs to moving objects with
different Weber contrast, velocities, widths and heights. (a)
Different Weber contrast. (b) Different velocities. (c) Different
widths. (d) Different heights.

horizontal) by 250 (in vertical) pixels and temporal sampling
frequency is set as 1000 Hz.

In order to quantitatively evaluate the detection perfor-
mance, two metrics are defined as following [27],

DR =
number of true detections
number of actual targets

(18)

FA =
number of false detections

number of images
(19)

where DR and FA denote detection rate and false alarm rate,
respectively. The detected result is considered correct if the
pixel distance between the ground truth and the result is within
a threshold (5 pixels).

A. Differences of the STMD and LPTC

In the proposed visual system model, the STMD and LPTC
are applied to detect small target motion and background
motion, respectively. To further demonstrate the differences
between the STMD and LPTC, we compare their outputs to



objects with different velocities, widths, heights and Weber
contrast. As shown in Fig. 3, width (or height) represents
object length extended parallel (or orthogonal) to the motion
direction. Weber contrast is defined by the following equation,

Weber contrast =
|µt − µb|

255
(20)

where µt is the average pixel value of the object, while µb is
the average pixel value in neighboring area around the object.
If the size of a object is w × h, the size of its background
rectangle is (w+ 2d)× (h+ 2d), where d is a constant which
equals to 10 pixels. The initial Weber contrast, velocity, width
and height of the object are set as 1, 250 pixel/second, 5 pixels
and 5 pixels, respectively.

Fig. 4(a) shows the STMD and LPTC outputs with respect
to the Weber contrast. As can be seen, both the STMD and
LPTC outputs increase as the increase of Weber contrast, until
reach maximum at Weber contrast = 1. This indicates that the
higher Weber contrast of an object is, the easier it can be
detected. Fig. 4(b) presents the two neural outputs with regard
to the velocity of the moving object. Obviously, the STMD
and LPTC outputs peak at an optimal velocity (300 pixel/s).
These two neurons also exhibit high responses to the objects
whose velocities range from 100 to 600 pixel/s. Fig. 4(c) and
(d) display the outputs of the STMD and LPTC when changing
the width and height of the object. As it is shown, both the
STMD and LPTC outputs have a local maximum at width
= 5 (or height = 5). After reaching the local maximum, the
STMD output decreases significantly as the increase of target
width (or height), and tends to be stable around 0.1 (or 0.2
for height). In contrast, the LPTC output has a slight drop and
stabilizes at 0.8 (or 0.9 for height). The above results indicate
that the STMD prefers small moving objects whose widths
and heights are smaller than 10 pixels, while the LPTC shows
little preference for the target’s width and height and can detect
moving objects with normal sizes in the backgrounds.

B. Effectiveness of the TSDN

In the proposed visual system model, the TSDNs integrate
small target motion from STMDs with background motion
from LPTCs to filter out background false positives. To
validate its effectiveness, we compare the performances of
the TSDNs and STMDs. The testing setups are detailed as
follows: the input image sequence is presented in Fig. 5(a),
which displays a small target moving against the cluttered
background; the background is moving from left to right and
its velocity is 250 pixel/s; the luminance, size and velocity
of small target are equal to 0, 5 × 5 pixels and 250 pixel/s,
respectively; the position and motion direction of the small
target at time t = 1000 ms is illustrated in Fig. 5(b)

Fig. 6(a)-(b) displays the positions and motion directions of
the small objects detected by the STMDs and TSDNs where
the detection threshold β is set as 150. As shown in Fig. 6(a),
the detection result of the STMDs contains a number of false
positives whose motion directions are consistent with that of
the background, i.e., the blue points. After being suppressed

Target
VB 

(a)

Target

(b)

Fig. 5: (a) Representative frame of the input image sequence.
A small target (the small black block) highlighted by the circle,
is moving against the cluttered background. The cluttered
background is also moving from left to right where arrow
VB denotes the background motion direction. (b) The position
of the small target at time t = 1000 ms, i.e., ground truth. In
this subplot, color represents motion direction θ of the small
target.

by the output of the LPTCs, these false positives moving with
the background are all filtered out [see Fig. 6(b)].

We further conduct a performance comparison between the
developed TSDN and two existing models including ESTMD
[14] and DSTMD [17]. Three image sequences with different
backgrounds are used for experiments, as displayed in Fig.
7(a)-(c). In these videos, the backgrounds are all moving from
left to right and its velocity is 250 pixel/s. A small target
whose luminance, size are set as 0 and 5×5 pixels, is moving
against cluttered backgrounds. The coordinate of the small
target at time t is (500−250 t+300

1000 , 125+15 sin(4π t+300
1000 )), t ∈

[0, 1000] ms.
Fig. 7(a)-(c) show the receiver operating characteristics

(ROC) curves of the three models for the three image se-
quences. It can be seen that the TSDN has better performance
than the DSTMD and ESTMD. More precisely, the TSDN
has higher detection rates (DR) compared to the DSTMD and
ESTMD while the false alarm rates FA are low.

IV. CONCLUSION

In this paper, we have proposed a visual system model
(TSDN) for small target motion detection in cluttered back-
grounds. The visual system contains two motion-sensitive
neurons and is capable of filtering out the background false
positives. The first neuron callled the STMD, is intended to
detect small moving targets and their motion directions. The
second neuron called the LPTC, is designed to perceive back-
ground motion and estimate background motion direction. The
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Fig. 6: (a)-(b) Detection results of the STMDs E(x, y, t, θ) and TSDNs T (x, y, t, θ), respectively, where the detection threshold
β is set as 150.
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Fig. 7: (a)-(b) Background images and receiver operating characteristic (ROC) curves of the three models under three different
backgrounds.

TSDN is introduced to integrate the small target motion and
background motion to suppress false positives. Comprehensive
evaluation on the dataset, and comparisons with the existing
STMD models demonstrate the effectiveness of the proposed
visual system with lower false positives.
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