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Abstract—Autonomous terrestrial vehicles must be capable
of perceiving traffic lights and recognizing their current states
to share the streets with human drivers. Most of the time,
human drivers can easily identify the relevant traffic lights. To
deal with this issue, a common solution for autonomous cars
is to integrate recognition with prior maps. However, additional
solution is required for the detection and recognition of the traffic
light. Deep learning techniques have showed great performance
and power of generalization including traffic related problems.
Motivated by the advances in deep learning, some recent works
leveraged some state-of-the-art deep detectors to locate (and
further recognize) traffic lights from 2D camera images. However,
none of them combine the power of the deep learning-based
detectors with prior maps to recognize the state of the relevant
traffic lights. Based on that, this work proposes to integrate the
power of deep learning-based detection with the prior maps used
by our car platform IARA (acronym for Intelligent Autonomous
Robotic Automobile) to recognize the relevant traffic lights of
predefined routes. The process is divided in two phases: an offline
phase for map construction and traffic lights annotation; and an
online phase for traffic light recognition and identification of the
relevant ones. The proposed system was evaluated on five test
cases (routes) in the city of Vitória, each case being composed
of a video sequence and a prior map with the relevant traffic
lights for the route. Results showed that the proposed technique
is able to correctly identify the relevant traffic light along the
trajectory.

I. INTRODUCTION

Autonomous driving is an essential topic of research in the
development of intelligent transportation systems. Briefly, the
great ambition with autonomous vehicles is fully replacing the
human driver by a computer system without compromising
and eventually improving safety and efficiency. To this end,
the human ability of “seeing” the environment (e.g., the
road, pedestrians, signs, and other vehicles) and behaving
accordingly should be carefully reproduced by the computer
system. In particular, autonomous terrestrial vehicles must
be capable of perceiving traffic lights and recognizing their
current states (red, yellow, green).

In the autonomous driving literature, the general problem
of identifying traffic lights and their states is known as Traffic
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Light Recognition (TLR). Although TLR is widely addressed
in the literature, there are still some challenges to be faced.
Most methods [1]–[4] focus on locating and/or recognizing
all traffic lights in a scene and do not attribute any special
meaning to the traffic lights that are relevant for the given
context, i.e., the traffic lights in the vehicle’s route and that
the driver should obey. Other challenges include recognition
in adverse conditions (e.g., rain, snow), early recognition
(detecting traffic lights at greater distances), and recognition
in different illumination settings (including night images).
Despite their importance, these other challenges are out of
the scope of this work.

Most of the time, human drivers can easily identify the rel-
evant traffic lights. Nevertheless, there are not always precise
rules (e.g., an algorithm) that allow the differentiation of these
traffic lights from the others in a scene. To deal with this issue,
a common solution is to integrate recognition with prior maps
which record position, direction, and other properties of the
traffic lights [5]–[7]. With prior maps, an autonomous vehicle
can be early aware of the presence of traffic lights on its
vicinity, and can also fuse the map and real-time sensors’ data
(e.g., camera image) for robust location and recognition of the
relevant traffic lights in a scene.

Deep learning techniques have showed great performance
and power of generalization in many areas and types of
problems such as classification [8], [9] and detection [10].
General purpose object detectors have been well explored
for traffic related problems (such as detection of pedestrians,
traffic signs, etc), and YOLO [11] and Faster R-CNN [12]
are two of these state of the art detectors. Motivated by
the advances in deep learning, some recent works [13]–[16]
leveraged some state-of-the-art neural detectors to locate (and
further recognize) traffic lights from 2D camera images. Other
works, such as [17], combined prior maps with deep learning
classification. However, to the best of our knowledge, none of
them combine the power of the deep learning-based detectors
with prior maps to recognize the state of the relevant traffic
lights. Although they are very powerful object detectors, they
cannot identify the relevant traffic light for the vehicle, which
is a fundamental task for autonomous driving.

Based on this need, this work proposes to integrate the
power of deep learning-based detection with the prior maps
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Fig. 1. Example of the proposed system running. The traffic lights delimited
by bounding boxes (BBs) are located and recognized by a deep detector in a
online phase. The text above BBs indicates the traffic lights’ state followed by
the confidence score of the detection. The pink crosses represent the projection
of the mapped (during an offline phase) relevant traffic lights onto the 2D
camera space, whereas the yellow circles define a threshold limit for these
traffic lights. BBs whose center lies outside the yellow circles are filtered out.
The BB closest to any of the red dots will dictate the traffic light (group)
state.

used by our car platform IARA (acronym for Intelligent Au-
tonomous Robotic Automobile [18]) to recognize the relevant
traffic lights of predefined routes. The process is divided in two
phases: an offline phase for map construction and traffic lights
annotation; and an online phase for traffic light recognition
and identification of the relevant ones. In the offline phase,
the prior map is constructed by driving IARA on routes of
interest to collect camera and LiDAR data. Subsequently,
a semi-automatic process is applied to these data in order
to find 3D coordinates of traffic light candidates, which are
further inspected on camera images to filter false positives
and identify those that are relevant for the particular route.
The relevant traffic lights’ positions (in 3D world coordinates)
are then stored in the prior map. In the online phase, as the car
approaches traffic lights, their stored positions are projected to
the image in order to filter the predictions (location and state)
produced by a deep detector. Finally, only the relevant traffic
lights are taken into account in the decision-making process.
The relevant state is dictated by the closest traffic light to the
projected annotations. It is worth noting that this work treats
the traffic light state as a two classes problem (red-yellow and
green) in order to cope with the lack of yellow samples for a
proper training of a three classes detector. See Fig. 1 for an
illustration of the system behavior.

For performance assessment, the proposed system was eval-
uated on five test cases (routes) in the city of Vitória, each case
being composed of a video sequence and a prior map with
the relevant traffic lights for the route. The performance of
the system was measured in two ways: (i) how good were the
predicted bounding-boxes, i.e., the performance of the detector
itself in terms of the mean Average Precision, and (ii) how
accurate were the states predicted by the full system, i.e., the
ability of the system to correctly assign the state of the relevant
traffic lights during the car progress.

The rest of this paper is organized as follows: related works

are discussed in Section II; the proposed method is described
in Section III; the experimental methodology is presented in
Section IV; results are shown and discussed in Section V; and,
finally, Section VI concludes and discusses future work.

II. RELATED WORK

This section covers the main works addressing TLR based
on prior maps or deep learning applied to TLR. For a more
comprehensive review that includes other approaches, the
reader should refer to the surveys in [7], [19].

Prior maps containing annotations of traffic lights (e.g.,
position, direction) can be exploited to increase the robustness
of TLR. In this context, the work of Lindner et al. [20] uses
maps to recognize traffic lights and they propose a three-stage
system: detection (based on handcrafted features), tracking,
and state classification. Map information and GPS data can
be incorporated into the system to allow triggering the system
only near intersections, therefore possibly reducing the amount
of false alarm detections. Despite of the use of prior maps,
their work does not address explicitly the choice of the relevant
traffic lights for the lane.

Fairfield and Urmson [5] present an automatic strategy to
map traffic lights by fusing the precise location of the car
with image information, and then estimating traffic lights’
3D positions using least squares triangulation. Levinson et
al. [21] propose a mapping procedure of traffic lights using
tracking, back-projection, and triangulation. Traffic lights’
states are computed in a probabilistic approach taking into
consideration the previously constructed map. In addition to
prior maps, Frank et al. [22] locate relevant traffic lights by
matching image-based features of intersections. Such features
are extracted offline from manually labeled regions around the
relevant traffic lights while a neural network is responsible for
the final state classification.

John et al. [17] combine prior maps and GPS to limit the
region of interest (search area) in which traffic lights are
expected to appear. A convolutional neural network (CNN)
is used to detect and classify the traffic light candidates
within the search area. Jang et al. [23] propose a recognition
system that explores the prior maps at every stage. Besides
reducing the search area (as in [17]), prior maps include the
type of traffic light face that helps state classification. They
additionally propose a slope compensation method to treat
recognition in inclined roads.

The interest in deep learning methods for TLR has been
observed in the recent years. Weber et al. [13] propose a
network called DeepTLR for detection and classification of
traffic lights. Behrendt et al. [14] modified YOLO [11] to
detect traffic light candidates. A custom CNN is leveraged
for state classification. A more detailed study on traffic light
detection using YOLO can be found in [24]. Pon et al. [16]
detect simultaneously traffic lights and traffic signs with a
modified version of the Faster R-CNN [12].

Despite the fact that TLR can benefit from modern deep
learning techniques, additional information should be used
to allow detection/classification of the relevant traffic lights.
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Fig. 2. Overall flow of the system. First, a camera frame is fed to the deep learning detection model, which proposes bounding boxes with TLs’ state.
Subsequently, TL’s world positions from the prior maps are projected into the image (orange cross) using the current localization pose of the vehicle. The
orange circumference represents a threshold that accounts for imprecisions in localization. Finally, from BBs that have center within the threshold, the closest
to any of the projected TL’s positions is selected and used as final state prediction for that frame.

Therefore, this work proposes to combine a state-of-the-art
deep detector with precise localization (e.g., by exploiting
LiDAR data) provided in prior maps for a real-world TLR
application in autonomous vehicles.

III. TRAFFIC LIGHT RECOGNITION FOR AUTONOMOUS
VEHICLES

This work proposes a method for recognition of relevant
traffic lights (TLs) and their state using a deep learning
detection model and prior maps of an autonomous vehicle. The
process is performed in two steps: offline map construction
and traffic light annotation for the relevant lane, and an online
detection and recognition of the relevant traffic light state.
Fig. 2 displays an overall picture of the online phase of the
method. The detection model takes camera frames as input
and proposes bounding boxes (BBs) with the respective TL
state. Subsequently, information from prior maps and the
localization of the vehicle is used to project the TL world
position to the current frame and then select only one BB to
make the final state prediction for that frame. Additionally,
a new method for creating prior maps that uses both the
detection model and the LiDAR sensor is proposed. The
proposed approach is implemented in the autonomous car of
our laboratory, IARA.

The next subsections describe: the IARA platform, the
autonomous car on which the proposed approach was imple-
mented; the traffic lights detection and recognition procedures,
which includes the deep learning detector used to find the traf-
fic lights in the frame and recognize their state; the generation
of prior maps used to annotate and store the relevant traffic
light world position for a given route; and, finally, the general
system operation, that describes how these steps are connected.

A. Intelligent Autonomous Robotic Automobile (IARA)

IARA is the autonomous car built in our laboratory. It
is an adapted Ford Escape Hybrid that features a variety
of sensors such as: odometer, LiDAR, IMU, RTK-GPS, and
stereo cameras. The LiDAR is a Velodyne’s HDL-32E and
the stereo camera is a Point Grey’s Bumblebee XB3 stereo
camera. Both are mounted on top of the car, and the camera
is mounted front-facing. The HDL-32E LiDAR uses 32 lasers

spread at a 40° VFOV (+10° to -30°) to scan 360° horizontally.
The Bumblebee XB3 camera has three 1.3MP CCD sensors
with 66° of HFOV, and captures colored images of 1280×960
pixels at 16 FPS.

IARA’s software is based on the Carnegie Mellon Robot
Navigation Toolkit (CARMEN), which is an open source
collection of software for robot control [25]. Our laboratory,
LCAD, maintains its own fork of CARMEN at https://github.
com/LCAD-UFES/carmen_lcad.

To localize the car accurately in the world, GPS coordinates
are often not enough. For this reason IARA uses a localization
system [26] based on Particle Filter localization. The system is
initialized with a pose from GPS and orientation from IMU, it
then enters a cycle of two phases: prediction and correction. In
the first phase, the system predicts car poses using odometry
data. In the second phase, the method corrects these poses
by matching 2D local occupancy grid maps with a global
one that is generated offline using the technique presented in
[27]. In order to create the 2D grid maps, the localization
system transforms 3D point clouds from LiDAR into 2D grid
maps. And, to create the global map, IARA applies a SLAM-
based system, which uses data from odometer, GPS, IMU, and
LiDAR. Experiments showed that IARA’s localization system
operates within 0.28 meters of longitudinal error and 0.14
meters of lateral error [26].

B. Traffic Lights Detection and Recognition

A deep learning neural network model (YOLO [11]) is
used for detecting traffic lights and classifying their state. The
YOLOv3 (the third version of the YOLO) was chosen because
it is one of the state-of-the-art detectors and it can achieve
good performances with high frame rate. In this work, only
two classes of objects are considered: red-yellow and green
traffic light. The choice of mixing red and yellow in one class
was to overcome the lack of yellow samples to proper train
a three classes detector. Most of the traffic light databases
provide very few samples of yellow traffic lights. For the
purposes of our application, joining these classes is acceptable
since it is better to have IARA stopping before a yellow traffic
light than proceeding.

https://github.com/LCAD-UFES/carmen_lcad
https://github.com/LCAD-UFES/carmen_lcad


Deep learning detection models usually take a colored
image as input for inference. The network forwards the image
through the convolutional layers of a standard convolutional
neural network (e.g., ResNet, or Darknet) for feature extrac-
tion. Further layers process the output of this feature extraction
and generate a list of bounding boxes (BBs) with the object’s
class probabilities. These are the final outputs of the network.

C. Prior Maps Generation

The standard mode of operation of IARA is to follow a
predetermined path from a Road Definition Data File (RDDF)
when driving autonomously. The RDDF is a trajectory that was
performed by a human operator driving the car and it stores
information like speed, position in the lane, etc. As described
in Section III-A, IARA also needs a global occupancy grid
map to properly localize itself in the world. To generate this
information, IARA has to be driven manually along the route
of interest recording all sensor data (referred here as “log”).
The sensor data is later used, in a offline process, to build the
RDDF and global occupancy grid map.

Given that the recorded log is already necessary for the
standard IARA’s operation, it can also be used to create
the prior map of relevant traffic lights for the respective
RDDF. Making use of prior maps is necessary because until
the present moment there is no clear algorithm or machine
learning method that can robustly identify which traffic lights
are relevant using only image data. The first step is to identify
the traffic lights’ positions in the world. For that, the log is
played offline, while the traffic light detector locates the traffic
lights in the image frames. Additionally, the LiDAR points are
projected to camera coordinates, and those that “hit” inside
any traffic light bounding box are accumulated in a buffer.
The points are projected using the same process as presented
in [10]. When eight frames have passed without a single
detection, the accumulated point cloud is clustered using the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [28]. The world position of the cluster
centroids are used as traffic lights’ positions. The accumulated
point cloud is then reset, and the process repeats throughout
the duration of the log. Finally, the centroids are manually
filtered to discard false positives and traffic lights that are not
relevant for the RDDF of interest. Moreover, traffic lights that
share the same control semantics can be grouped together,
thus their redundancy can come to use, i.e., when the state
of one of them can not be determined, the state of the other
is used instead. Traffic lights that are relevant for a particular
route are grouped considering a maximum distance threshold
(of 20 meters) from each other. One important feature is that
the annotated traffic lights can be transferred from one RDDF
to the other, for example, when two RDDFs follow the same
path (maybe in different lanes). Additionally, the traffic lights
that were discarded for not being relevant for one RDDF could
be reused for the prior map of another RDDF where they are
relevant.

This clustering strategy has to cope with some difficulties:
(i) TLs are small objects and LiDAR rays are sparse, thus, in

some cases, only few rays will hit a specific TL or perhaps
none at all; (ii) small imprecisions in the localization system
may cause disturbances in the accumulated point cloud; (iii) if
the BB is a little larger than the TL object, then some LiDAR
rays may hit inside the BB, but they actually miss the real TL
object, hitting something on the background instead. Thus, it
is better to train the detector for the offline phase with tight
BB annotations, so that BB proposals will also be tight. All
of these difficulties, may cause the clustering algorithm to
yield false positives and also some inaccurate TL positions.
Therefore, they need to be manually filtered as mentioned. In
case of any problem in the final accumulated points, there is
always the possibility of choosing a single frame for extracting
the traffic light world position.

D. General System Operation

When driving autonomously, IARA continuously checks
for the relevant traffic lights associated with the RDDF.
Whenever a group of relevant TLs comes within 100 meters,
their 3D world position is projected onto camera coordinates.
Additionally, the detector is triggered for the current frame.
Each annotated TL position is surrounded by a sphere of
1.5 meter of radius that is also projected to serve as a
threshold for the localization error. The euclidean distance,
in camera’s coordinates, between each BB’s center and each
projected TL is calculated. Any BB that has its center outside
of all projected spheres are discarded right away. From the
remaining ones, that with the closest center to any of the
projected TLs is selected, and its status serves as the final
prediction for that frame. The final state output of the system
is either one of the four: none, when there is no traffic light;
off, when there is a traffic light, but the state is not recognized,
red, when it is red or yellow; and, green, when it is green. In
cases in which all BBs are discarded, the final state is set
to “off”. Before a red, yellow or off traffic light, IARA will
reduce its speed until a complete stop if necessary, otherwise,
before a green traffic light, it will continue its trajectory.

IV. EXPERIMENTAL METHODOLOGY

The experiments for this work aim mainly to evaluate full
TLR system on five driving logs. In addition to the traditional
metrics, we also analyzed how early the traffic lights are
correctly detected. As preliminary study, we also included the
performance evaluation of the deployed detector (an YOLOv3
model). The rest of this section describes the datasets used
in the experiments, the driving logs (used to reproduce the
IARA’s sensors offline), the performance metrics, and the
experiments themselves.

A. Datasets for Traffic Light Detection

The training and evaluation of the YOLOv3 detector lever-
aged two public available datasets: DriveU Traffic Light
Dataset (DTLD) [29] and LISA Traffic Light Dataset (LISA-
TLD) [7].

The DriveU Traffic Light Dataset (DTLD) comprises traf-
fic image sequences from 11 German cities. Each image



TABLE I
DISTRIBUTION OF THE ANNOTATED TRAFFIC LIGHTS ACROSS THE

DATASETS’ SPLITS.

Class
DTLD
(train)

DTLD
(test)

LISA-TLD
(train)

LISA-TLD
(test)

IARA-TLD

Red 20936 9147 23129 10303 2079
Green 33540 14403 14681 7717 2923

(2048×1024 pixels) includes the following annotations about
traffic lights: bounding box coordinates, state, relevance status
(visually defined by annotators), horizontal or vertical orien-
tation, occlusion, number of lights, type of traffic light (for
pedestrians, cyclists, or cars), and other attributes. For our
purposes, pedestrians and cyclists traffic lights were removed.
From the remaining, only active (i.e., not “off”) traffic lights
which are facing the car and have at least three bulbs were
selected. The images are cropped to a 1280 × 960 rectangle
aligned to the top and centered on the horizontal axis, and then
scaled down to 640×480 pixels. The bounding box annotations
were changed accordingly to reflect the cropping and scaling.
The dataset comes with a training-test split.

The LISA Traffic Light Dataset was developed by the
Laboratory for Intelligent and Safe Automobiles (LISA) at
University of California. The dataset was created using a Point
Grey’s Bumblebee XB3 (the same model in IARA) to record
more than 44 minutes of traffic video sequences in San Diego,
California, USA. Some video sequences were recorded during
the day, and others during the night. The dataset is split into
training and testing sets, and has seven TL classes: “go”, “go
forward”, “go left”, “warning”, “warning left”, “stop”, and
“stop left”. The classes “go”, “go forward”, and “go left” were
merged as “green”, and the other classes as “red” since we do
not address the recognition of yellow traffic lights in separate.

For the full system evaluation, we used a local dataset
named (in this work) IARA Traffic Light Dataset (IARA-
TLD). It comprises images of traffic scenes recorded in
Vitória, Espírito Santo, Brazil with help of the IARA’s camera.
The dataset has a total of 5002 bounding box annotations
distributed on three different classes: “green”, “yellow”, and
“red”. The “red” and “yellow” classes were also grouped
into a single class “red”. The images were scaled down to
640× 480 pixels. Table I shows the distribution of the classes
(i.e., number of annotations per class – “red” and “green”) of
the annotated traffic lights across the datasets’ splits.

B. Driving Logs

Driving logs are files containing detailed sensory informa-
tion recorded during the car’s trips, and serve to reproduce the
IARA’s sensors offline. These logs can be revisited (playback
operation) as many times as needed, which allows to test
offline modifications on the IARA’s software, and evaluate
the new car’s behavior. A total of 10 logs were recorded on
Dante Michelini avenue (Vitória, Espírito Santo, Brazil), from
which five were used to construct the prior maps, and the

Fig. 3. Satellite photo of the first stretch. Each path drawn represents a log.
The orange ones are local to that stretch, but the blue ones go through the
entire avenue.

other five for full system evaluation. This avenue was chosen
because it contains challenging situations, i.e., several traffic
lights where some of them are potentially discordant. There
are four bifurcations, each one with three lanes that go straight,
and two other lanes (the two leftmost) turning left. In case of
turning left, the driver should take one of the two leftmost
lanes and obey the corresponding traffic lights. Otherwise, the
driver can keep on the three rightmost lanes ruled by the other
set of traffic lights. Despite of the current lane, all traffic lights
are visible to the camera most of the time. Fig. 1 depicts this
ambiguous situation.

The logs (a total of 10) are associated with stretches and
lanes in the avenue. The first stretch is showed in Fig. 3. The
lanes represented by the blue arrows follow all the avenue.
The leftmost (from the car view) is identified by RL, and
the other (the middle lane) by RM. The orange arrows are
restricted to this stretch, being the leftmost identified by LL-
1, and the rightmost by LR-1, where 1 is related to the first
stretch. The rest of the LL/LR lanes are numbered according
to their corresponding stretch.

C. Metrics

The detection performance was measured in terms of pre-
cision, recall, and mean average precision (mAP). These
metrics were calculated using an IoU (Intersection over Union)
threshold of 0.5, and for a confidence threshold (τ ) of 0.2 and
0.5.

The mAP calculation follows the definition for the Pascal
VOC 2007 competition [30]. Basically, mAP is defined as the
mean of the Average Precision (AP) for each class, which, in
turn, is the value corresponding to the area under a precision-
recall curve. Pascal VOC uses an IoU threshold of 0.5 in the
APs’ calculation.

For the full system evaluation, the state of the relevant
traffic lights was predicted for all the frames of each test log.
We reported the confusion matrix resulting from comparing
the predictions with the ground truth annotations. Additional
information was recorded (for each stretch/lane) in order to
verify how early the system correctly perceived the traffic
lights: the time the system took to produce the first correct
prediction since the car entered the 100-meters range from
the next set of traffic lights; the distance the car is when this
occurred.



D. Experiments

Two different experiments are performed in this paper. First,
a deep learning model (YOLOv3) for detecting traffic lights
and their state was trained and evaluated. Second, the proposed
system was tested using the driving logs on avenue Dante
Michelini.

1) Training the Detection Model: Currently there are easily
available pre-trained models that can detect traffic lights, such
as those trained on the COCO dataset [31]. But, usually, these
do not identify the traffic light’s state, so we trained our own
model. The YOLOv3 [32] was trained for detecting only traffic
lights and their state. The model was trained using the training
sets of the DTLD and LISA-TLD. The model was validated
on the LISA-TLD’s test set using the Pascal mAP metric.

YOLO is a deep learning architecture for object detection,
first implemented on the Darknet framework. The third version
of this architecture, YOLOv3, uses Darknet-53 (a CNN model
with 53 convolutional layers) as its backbone, and reaches 57.9
mAP (AP50) on Microsoft’s COCO dataset, using an input
resolution of 608×608 pixels. According to YOLOv3’s report,
it performs around 3.8 times faster than RetinaNet, which is
also a good alternative once its best model achieves 61.1 mAP
on COCO. RetinaNet’s slower inference times make us opt for
using YOLOv3, for a more real time solution.

The YOLOv3 was trained for 15000 batches, with 64
images per batch, and a constant learning rate of 10−4. The
input resolution was 608×608 pixels as a compromise between
inference time and accuracy. Many of the default parameters
were also kept, such as: image augmentation with changes in
hue, saturation, and exposure; batch normalization; and default
anchors. Additionally, YOLO was allowed to change the input
resolution from 608 × 608 to different resolutions following
multiples of 32 starting from 320 (e.g., 320, 352, . . . , 608)
every 10 batches, as it is done in its original work. This,
supposedly, makes the model more robust to different scales.

2) Experiments on Logs: The testing logs on avenue Dante
Michelini were used to evaluate the overall system perfor-
mance. RM was used to build the global occupancy grid-map
of the region (Section III-A). RM and LL-{1-4} were utilized
for creating prior traffic light maps for the testing logs, which
were RL and LR-{1-4}. The detection model outputs many
bounding boxes at different confidence values which range
from 0 to 1. A confidence threshold τ is used to eliminate
all bounding boxes that have confidence bellow the threshold.
By reducing τ , the detector will output more bounding boxes,
causing an increase in recall but lowering precision. Since our
method uses prior maps to filter false positives, a lower value
for τ could be profitable. Therefore, two values for τ are
investigated, τ ∈ {0.5, 0.2}. For each testing log, the final
predictions of our system is compared with the ground truth
at every frame.

V. RESULTS

In this section, the evaluation of our experiments are dis-
played and discussed. First, the deep detector’s evaluation,
then, measurements of the system’s overall performance.

TABLE II
DETECTIONS RESULTS ON DTLD, LISA-TLD AND IARA-TLD (%)

Dataset Precision Recall AP50

τ = 0.2
DTLD (test set) 80.86 91.05 85.62
LISA-TLD (test set) 62.81 62.49 50.59
IARA-TLD 60.86 62.28 55.21

τ = 0.5
DTLD (test set) 88.59 86.50 85.62
LISA-TLD (test set) 66.45 54.82 50.59
IARA-TLD 69.53 57.16 55.21

TABLE III
FIRST CORRECT DETECTIONS ON LOGS

Log Delay
(seconds)

Distance
(meters)

τ = 0.2

LR-1 0.56 94.47
LR-2 0.00 99.70
LR-3 0.06 99.63

LR-4 (I) 0.07 98.42
LR-4 (II) 1.57 84.12

τ = 0.5

LR-1 4.50 60.81
LR-2 0.00 99.78
LR-3 0.38 96.35

LR-4 (I) 1.92 78.25
LR-4 (II) 4.63 58.75

A. Detection Model

The detection model was evaluated on DTLD, LISA-TLD
and IARA-TLD using precision, recall and mAP. A IoU
threshold of 0.5 was used, and τ ∈ {0.2, 0.5} for measuring
precision and recall, anticipating the values that will be used
when evaluating the system. The detector achieves 55.21%
of mAP on IARA-TLD and 62.28% of recall at τ = 0.2.
Results for all the datasets can be seen on Table II. Reducing
τ increases recall, but reduces precision. A higher recall is
usually desired when bounding boxes can be further filtered,
e.g., using prior maps as in this work.

Taking an image of 608×608 pixels as input, YOLOv3 takes
about 47 milliseconds to make proposals on IARA’s video card
(Nvidia’s Titan Xp). This is roughly 21 Hz, but this is capped
by the low frequency of our camera: 16 Hz.

B. Entire System

To evaluate the system’s performance, its predictions are
compared with ground truth throughout the frames of each test
log. Fig. 4 shows this comparison in the format of a timeline.
As time progresses, the car approaches different traffic lights.
For all test logs, there are some frames without traffic lights
(“none”) within a hundred meters. As it can be seen, most of
the predictions are consistent with the ground truth, and the
inconsistencies usually occur when the car is approaching a
traffic light. The first correct predictions are represented on
Fig. 4 as yellow downward triangle markers. Table III also
reports the first correct predictions on the shorter logs. On
this table, it is possible to see the time the system took to
first predict the traffic light state correctly, and the distance
remaining until the traffic light is reached. For τ = 0.2, the
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Fig. 4. Summary of results on each test log. Each subfigure corresponds to one log, and it shows ground truth and predictions at different confidence thresholds
(τ ) over time. The earliest detections for each prediction timeline are highlighted.

first detections occur in average with 0.65 seconds of delay
and with a distance of around 93 meters of distance, whereas
for τ = 0.5 it occur in average with 1.53 seconds of delay
and with around 84 meters of distance.

At τ = 0.5, the system predicted the traffic light state
correctly most of the time, but its predictions were fickle,
due to unstable proposals from the detector. The detector is
not confident enough at long distances, which indicates that it
cannot handle small traffic lights well. One possible solution to
increase stability would be to use higher resolution images. If
the detector cannot detect the traffic light from the prior map,
an “off” state is emitted. These misses at long distances can
be seen in Fig. 4, for example, at around 10 seconds on LR-2,
and at 6 seconds on LR-4. Reducing τ to 0.2, increases recall,
which in turn, leads to improved predictions at long distances
as well as reduces the fickle aspect (e.g., LR-4, from 38 to 46
seconds). As a side effect, reducing the threshold also resulted
in more false proposals from the detector along the frames, as
expected, but these were not a problem since they are normally
filtered out by the use of prior maps most of the time. It is
worth noting that a truck passed in front of the traffic light
in LR-1 resulting in a occluded traffic light (or off state) that
was not annotated, but can be seen in the sequence. Table IV
reports the confusion matrices for the system at τ = 0.2 so
that the reader can have a better idea of the overall prediction
performance of the system.

When the car approaches a group of relevant traffic lights,
there are two types of error that could occur. The first is
predicting the traffic lights are red or off when they are actually
green, which represents an inconvenience since it will cause
the car to slow down to a stop when it could have proceeded.
The second type of error is predicting green traffic lights while
facing red ones (or off). This is by far the worst since it could
lead the car into the middle of a busy intersection and cause
accidents. In our experiments, the second type of error was
observed, for brief moments and at a long distance, on the
second red traffic light of the RL log (see Fig. 4, between 78

and 118 seconds).
For qualitative analysis, a video for the system

running can be seen at https://youtu.be/VhdLpuErJ8E;
and, the code and trained model can be found at
https://github.com/LCAD-UFES/carmen_lcad/blob/master/
src/traffic_light_yolo/README.md.

VI. CONCLUSION

In this paper, we proposed a system for autonomous vehi-
cles that uses deep learning and prior maps for traffic light
recognition. First, a deep learning model performs traffic
light detection and classification of state in a single step.
Subsequently, prior maps are used to select only relevant traffic
lights from the proposed detections, filtering out false positives
as well. Additionally, a new method for creating prior maps
is proposed. LiDAR points are projected to camera; points
that hit inside detected bounding boxes are accumulated; and
finally this point cloud is clustered to propose traffic lights’
position in world coordinates.

Even though results are promising, much work should be
done until such a system can be put on the roads. Particularly,
it is important to improve the detector’s performance in order
to obtain more reliable results.

As future work, we will investigate the reduction of the
search space for traffic lights by proposing ROIs in the input
image based on prior maps annotations (which is common in
literature). This approach has two main potential advantages:
saving processing time by keeping the input image resolution
as is, or, alternatively, enabling the use of higher resolution
images in order to improve the system’s performance.
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