1908.05389v1 [cs.CV] 15 Aug 2019

arxXiv

SFSegNet: Parse Freehand Sketches using Deep
Fully Convolutional Networks

Junkun Jiang'®, Ruomei Wang!?, Shujin Lin?3*T, Fei Wang!3
1School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
2School of Communication and Design, Sun Yat-Sen University, Guangzhou, China
3National Engineering Research Center of Digital Life, Sun Yat-Sen University, Guangzhou, China

Abstract—Parsing sketches via semantic segmentation is at-
tractive but challenging, because (i) free-hand drawings are
abstract with large variances in depicting objects due to different
drawing styles and skills; (ii) distorting lines drawn on the
touchpad make sketches more difficult to be recognized; (iii)
the high-performance image segmentation via deep learning
technologies needs enormous annotated sketch datasets during
the training stage.

In this paper, we propose a Sketch-target deep FCN Seg-
mentation Network(SFSegNer) for automatic free-hand sketch
segmentation, labeling each sketch in a single object with multiple
parts. SFSegNet has an end-to-end network process between the
input sketches and the segmentation results, composed of 2 parts:
(i) a modified deep Fully Convolutional Network(FCN) using a
reweighting strategy to ignore background pixels and classify
which part each pixel belongs to; (ii) affine transform encoders
that attempt to canonicalize the shaking strokes. We train our
network with the dataset that consists of 10,000 annotated
sketches, to find an extensively applicable model to segment
stokes semantically in one ground truth. Extensive experiments
are carried out and segmentation results show that our method
outperforms other state-of-the-art networks.

Index Terms—sketch segmentation, object segmentation, FCN,
deep learning

I. INTRODUCTION

Sketching is a ubiquitous communication way. It consists
of fingertip-drawing strokes and gestures in visual images,
expressing ideas across cultures and language barriers. With
the wide application of touch screen technology, there’s a
valuable place for sketching, including image retrieval(Sketch-
based Image Retrieval [5] [15], fine-grained retrieval [22]), 3D
modeling [4] and shape retrieval [26] [[12]. Above-mentioned
technologies focus on categories labeling, computing simi-
larity between the input sketch and existing classifications .
In this paper, we want to parse the sketch based on corre-
spondence between strokes and different parts of the object,
and furthermore understand meanings of parts and poses in
sketches.

High-level ambiguity in sketches makes segmentation be-
come a hard task. Unlike photos which have rich color,
detailed objects and high contrast between foreground and
background, sketches consist of sparse lines and massive blank
space usually in black and white. Besides, different people
have different drawing styles and depict lines from objects in
their own ways, causing certain sketches to present various
appearances. Some use subtle shading by multiple lines to

make objects seem stereo. Some apply fewer strokes, which
leads sketches to obtain “open” boundary parts. Shakes of
the nib and distorts of the stroke during drawing also make
obvious differences in drawing detail. The resulting distortions
during drawing pose a challenge to implement segmentation
methods.

To handle the above issues, we propose a Sketch-target deep
FCN Segmentation Network(SFSegNet) for free-hand human
sketch segmentation in semantically components labeling. In
this architecture, we adopt two major constructions shown in

Fig[T}

1) A sketch-targeted deep Fully Convolutional Network by
fine-tuning(Section [[I[-A). Although it is still essentially
a FCN [13]], there are a number of crucial differences
with the proposed model. First, we adopt the state-
of-the-art classification network ResNet34 [7] for the
segmentation task. According to the sparsity of lines
in sketches, we use the reweighting way to avoid the
part-blank(foreground-background) class imbalance.

2) Affine transform encoders during max-pooling proce-
dures(Section [II-B), similar with Spatial Transformer
Networks(STN) [9]. We directly apply this encoder to
the deep hierarchy output from convolutional layers to
disentangle minor distortions of lines drawn by users.

As for the dataset, we introduce the instance-level sketch
segmentation dataset [25] extended from Huang’s benchmark
[8]l, consisting 10,000 annotated sketches, collected by both
experts and non-experts depicting objects in ten categories
after observing photos or simply imagining. To evaluate the
performance of the proposed network architecture, we com-
pare it with state-of-the-art image segmentation method FCN
[13], LinkNet-34 [20], U-Net [16] and sketch segmentation
method Huang’s [8]], CRFs [18]] on both the introduced dataset
and Huang’s benchmark.

In Section 2, related works on image segmentation and re-
cent approaches to sketch segmentation are reviewed. Section
3 introduces the proposed network SFSegNet’s architecture
design and explains the effect of in-network module combina-
tions. In Section 4, we describe the experimental framework
including our dataset and also demonstrate the results that we
achieved. Finally, Section 5 concludes the paper.

II. RELATED WORK

In this section we discuss the prior work related to segmen-
tation approaches for photos, scenes, and sketches. Both of
them assign per-pixel predictions of object categories for the
given image.

A. Image Segmentation

Recent state-of-the-art methods for semantic segmentation
are based on the rapid development of Convolutional Neural
Network(CNN), typically based on the Fully Convolutional
Network(FCN) framework [13]]. FCN can transform a classi-
fication CNN, e.g. AlexNet [11], VGG [21] or GoogLeNet
[24] into a pixel-wise predictor with multiscale upsampling to
tackle the semantic segmentation task.

For solving the problem of resolution loss associated with
downsampling, Dilated convolution strategy is proposed [2]]
[28]. This strategy handles multiscale convolution result to
produce dense predictions from pretrained networks but it is
lack of using global scene category clues. Inspired by Dilated
convolution strategy, PSPNet [29] adopts Spatial Pyramid
Pooling that pools features in multiscale and concatenates
them after convolution layers. Deeplab [3]] presents an Atrous
Spatial Pyramid Pooling that adopts large rate dilated con-
volutions. These approaches embed difficult scenery context
features and reduce the model complexity by the hole algo-
rithm.

Furthermore, in the network architecture, U-Net [16] is
proposed to propagate context information with a large number
of feature channels in upsampling part. U-Net uses skip con-
nections to combine low-level feature maps with higher-level
feature maps, which enables precise pixel-level localization.

Attempting to use in the real-time application, LinkNet
[1]] uses light encoders to gain fast segmentation capability.
This method novelly links each encoder with decoder and
bypasses the input of each encoder layer to the output of
its corresponding decoder, aiming at recovering lost spatial
information that is caused by downsampling processes. Shvets
et al. [20] demonstrate the improvement of LinkNet, named
as LinkNet-34, by using encoders based on a ResNet-type
architecture in pre-trained weight to gain high-efficiency per-
formance. In order to get precise segmentation boundaries,
researchers have also tried to cascade their neural network with
post-processing steps, like the application of the Conditional
Random Field(CRF) [2] [18] [3]l.

B. Sketch Segmentation and Labeling

Several approaches for sketch segmentation have been sug-
gested in the last decade, which can roughly be classified into
stroke-based methods and object-based ones.

Stroke-based methods [19] [10]] [14]] focus on each stroke
and each partition sketch by classifying which basic geometric
components the strokes belong to, such as straight lines, cir-
cles, and arcs. Sezgin et al. [19]] extract stroke basic informa-
tion about drawing direction and speed, assuming that extreme
speed combined with high curvature typically corresponding
to segmentation points. Kim et al. [10] use curvature as an

important criterion during the segmentation procedure. Their
proposed approach was intended primarily for closed curves.
Pu et al. [[14] use Radial Basis Functions(RBFs) to leverage
the direction and curvature of strokes.

Instead of targeting at the stroke level, Sun et al. [23]] first
consider the sketch segmentation problem at the object level.
Their solution is based on both the low-level perception and
high-level knowledge, calculating the distance between each
stroke to measure the proximity and recognizing from a large-
scale clip-art database. There are several limitations of their
method including heavily depend on the drawing sequence
and normative lines. Huang et al. [8] propose a data-driven
approach, using parts of 3D models to match parts of sketches
in a given category and performing a global optimization.
In order to fit the input sketch into a certain 3D model,
their technic needs a part-labeled 3D model repository and
a sketch-based shape retrieval to estimate the viewpoint and
the category of the input sketch. Similarly, classification before
segmentation, Schneider et al. [18]] adopt Fisher Vectors(FVs)
[17] for sketch classification and segment them at points with
a high curvature. In consideration of the relations between
segments, they fit the segmentation results into a CRF model
to encode these relations. Different from their method, our
model processes images of sketches without the need of any
classification and drawing sequence, which makes data gath-
ering convenient. Recently, Wu et al. [27] present a Recurrent
Neural Networks(RNN)-based model named SketchSegNet to
translate sequence of strokes into their semantic part labels.
By adopting Sketch-RNN [6], they generate a 57K annotated
sketch dataset from a subset of QuickDraw built by Google.
The subset consists of 7 classes and about 60 sketches in each.
However, from 420 sources drawn by the human to 57,000
sketches generated by machines, it’s hard to keep the variance
with the data augmentation method. Still, in their dataset, each
class has its own ground truth, similar to Huang’s [8]. Our goal
is to find an extensively applicable model to segment stokes
semantically in one ground truth with low training costs.

III. METHODOLOGY

In this section, we will first introduce the proposed network
architecture of SFSegNet. The network’s pipeline is shown as
Fig. [T} which consists of the multiscale convolutional, pooling,
upsampling architecture(Section [[II-A)), and affine transform
encoder(Section |[II-B)) with the reweighting strategy(Section
[M-C). Because of the characteristics of the input freehand
sketch, such as sparsity, non-ordering and duplication in
strokes, we cannot directly apply raw sketches to SFSegNet.
Considering this, an algorithm for sketch preprocessing is
described in Section

A. Architecture of SFSegNet

Inspired by FCN’s [13] multiscale learning strategy, we
separate a deep CNN named as ResNet34 into 3 stages and link
them for weight sharing. ResNet34 comes from the Residual
Net(ResNet) family [7] that consists of 34 sequential layers
and has the state-of-the-art image classification performance.

ResNet34 Stagel

<)
S &
g Upsampling x2 Color mapping § ‘
£ — — o (=564
>
= = v
2 x3 x3 s
c
= O
* X
= = .
128x100x100 25x100x100 £ [o5x100x100 £ .W'_"9 M body
3x800x800 g 25%200x200 £ | 25x800x800 M tail W windows
s s
z Z
=)
RENEER Feature Transform
Affine
Transform
— - I Encoder . o _(}"}.
matrix G
x6 multiply
X
256x50x50 256x50x50 25%50x50 [25%50x50
=
£
g
S| v ——
(RN e Feature Transform
Affine
—_ — —_ — —

I x3

512x25x25

Transform
Encoder
- matr

rix
multiply

512x25x25 25X25x25

Fig. 1. Illustration of the input, output and network architecture for SFSegNet. The input sketch has been amended after preprocessing.

Each stage combines layers of features hierarchy from coarse,
high level to fine, low level and gathers the necessary infor-
mation. After several upsampling steps, the final output of the
network is a probability map in 3-dimensional size C'xW x H,
indicating each probability of which part the pixel belongs to.
C is the number of predefined parts in segmentation or the
classification number for pixels in other words. W and H are
the shape of the input sketch, namely width and height.

In our network, we first decapitate ResNet34 by discarding
the final average pooling layer and divide it into 3 stages.
We append a 2-dimension convolution layer with C' channels
to each stage, to predict scores for each of the sketch part
classes(including white background). The previous output is
followed by a deconvolution layer to bilinearly upsample
the coarse result to pixel-dense prediction. During training,
we set the input sketch shape to 800 x 800 in RGB color
format. So, a sketch in 3 x W x H will lead to features
under 3 different resolutions, that is, in stagel the shape
of features is 128 x (W/8) x (H/8), in stage2 the shape
is 256 x (W/16) x (H/16) and in stage3 the shape is
128 x (W/32) x (H/32). For more information, please see
Table [l Next, we fuse these stage results to gain more precise
dense prediction. We append a 2x upsampling layer to the
stage3 output and sum both the predictions computed by
stage2 and stage3, notated as s23. Also, we append the same
upsampling strategy to stage2 and combine the result and the
stagel output, notated as s12. We continue in this fashion by
applying a 4x upsampling to the sum of predictions fused from
512 and s23. Finally, we transform the dense prediction to the
sketch segmentation result.

B. Affine Transform Encoder

It’s known that reproducing the same sketch during drawing
is difficult. There is often a slight difference in the description
of the same object due to the jitter of the strokes. This

difference will have a negative effect on sketch segmentation.
At the stroke level, diverse trends of strokes bring various
local feature representations, and at the part level, rotation of
components increases global feature differences. As shown in
Fig.] the topic of these sketches is “bicycle” with 6 parts.
Focus on the part label “body”, strokes in the small receptive
field during convolution can be implemented with affine trans-
form and gain spatial invariance to get better segmentation
results. Moreover, with high resolutions sketches, receptive
fields mostly contain only one part of the same category stroke.
That means one receptive field corresponds to one stroke,
which remains more structural information.

According to this thought, we employ an affine transform
encoder to generate a transformation matrix to align the
output of the feature maps extracted in resolutions from the
lower level to the global level. The applied encoder is a
mini STN [9] and enables the network to have the ability
to correct hand drawn deviation. Our affine transform encoder
only has one convolution layer in the localization network,

TABLE I
ARCHITECTURE FOR SFSEGNET. RESIDUAL BLOCKS ARE BUILDING IN
BRACKETS, WITH THE NUMBERS OF BLOCKS STACKED. UPSAMPLING IS
PERFORMED AFTER EACH STAGE.

stage name | output size layers
7x7,64,stride 2 conv
3x3 max pool, stride 2
3% 3,64
3 x 3,64
3 x 3,128
3 x 3,128
3 % 3,256
3 x 3,256
3 x 3,512
3 x 3,512

Stagel 100 x 100

X 3 conv

X 4 conv

Stage2 50 x 50 X 6 conv

Stage3 25 X 25 X 3 conv

different from STN which has two convolution layers but
affine transformation still works towards the sampled output
feature map.

Zoom i Affine|transform in strokes

Fig. 2. Sketches in one topic are drawn twice by the same volunteer. Strokes
and components from two layers are hard to overlap. Blocks in the figure
simulate the receptive field during convolution. Transforming positions of
strokes in blocks can make a sketch’s structure consistent.

C. Fine-tune

Three stages extracted from ResNet34 are pre-trained on
ImageNet, before fine-tuning on the sketch dataset. We use
the cross-entropy function as a loss for deep model training.
Given z as a discrete probability distribution and class as the
correct class of the input, the cross-entropy function is defined
as:

c
loss(z, class) = —x[class] + log Zexp(m[j]) (1)
J

where C' is the number of classes. In terms of the character-
istics of sketches, there are several simple curves and almost
blank space in a sketch. The area of strokes occupied less than
1% according to the statistics on the dataset. In the paper, we
treat the blank area, namely the background of the sketch, as
one of the components to be segmented. About 99% pixels
in the same color(R:255, G:255, B:255) will be classified as
“background” and the rest of them will be classified as about 3
to 4 categories. The unbalanced data makes the segmentation
model more likely to classify all pixels as “background”, so
the segmentation result is almost in white. We have a strong
reason to reweight the “background” class before training. The
reweighting loss can be described as:

loss(zx, class) = weight[class|(—x[class]
c
2
viog [Yl])
J

During training, we set the weight of “background” to 0
and other classes to 1, ignoring blank pixels in the loss
computation. Next section will show how good results we
achieve using the reweighting strategy.

D. Preprocessing

To arrange the sketch as a normalized input form for
training, we centralize and recolor the raw data. We first
use a bounding box to enclose the sketch and resize it ran-
domly(from 600 x 600 to 700 x 700 pixels). Resized sketches
are padding to 800 x 800 pixels in the center. To avoid the
impact of the interpolation algorithm during scaling, we erode
the strokes into 1 pixel and recolor each pixel to correct labels.

IV. EXPERIMENTS

We evaluate our network in two datasets. Results in different
datasets show the proposed technology is perfectly competent
in sketch-target segmentation and detailed implementations are
described as follow.

A. Datasets

We first introduce the component-labeled sketch dataset
built by Huang et al. [§]], which contains 10 classes and 300
sketches drawn by 3 users(i.e., for each class, 10 from each
user). Their examples are created by a quick glance at a natural
image, thus are much more realistic than the usual sketches
which are more likely to be imaginary(see Fig. [3). Huang’s
dataset focuses on whether each sketch has as many labeled
parts as possible, but each category has an independent set
of ground truths. Scarce annotated datasets for training and
single ground truth for each sketch, the above factors make
Huang’s dataset unsuitable for deep learning.

Fig. 3. The first row includes several sketches from Huang’s dataset, which are
closely similar with 3D meshes, while sketches are freehand. The second row
includes examples from our dataset, which consists of more natural strokes,
such that provides more noise.

Followed by Huang et al., we build a large-scale dataset
[25] that consists 10,000 sketches and 25 components(include
background) in one ground truth for each sketch. We taste
10 familiar classes for their easy imaginativeness: Airplane(6
components), Bicycle(5 components), Candelabra(4 compo-
nents), Chair(3 components) Fourleg(4 components), Human(4
components), Lamp(3 components), Rifle(4 components), Ta-
ble(3 components) and Vase(4 components). Labeled examples
and components’ tags on RGB space are shown in Fig. [5] For
each class, there are 1,000 sketches drawn by 10 volunteers;
half of them are experienced artists and the rest are not. We ask
both of them to draw sketches on the digital tablet in 1 minute.
The content of sketches is immediately thought up when
volunteers receive a topic, for closing to much more natural

@ body @ body © base
@ il @ chain @ candle
@ wing 2=k Y :‘" @ foot tread _ ® fire
@ windows i : handle) = @ handle
seat
@ tirc —

@ body © base @ hody
@ head @ shade hand grip

low .limb @ twbe magazine
@ up limb ©® trigger

[] back @ body @ 64,0,0 128,192,0
@ limb @ head ® 02550 0,255,255
@ seat ® iimb @ 064,128 @ 192,00
@ il @0.128,128 @ 0,0255
@ 128,640 @ 0.1280
@ 128,128,128 @ 255,128,0
@ 0,640 ® 192,128,0
® base ® base @ 1280128 @ 192,0,128
@ body 128,2550 @ 255,0,0
@ handle
® o @ handle @641280 @ 0,1920
® iip @ 64,128,128 @ 128,00

® 192,128,128 @ 128,128,0

Fig. 4. Examples of labeled sketches in one ground truth with the maximum number of components. The first row shows sketches drawn by experts from
the Airplane, Bicycle, Candelabra, Chair, and Fourleg categories. The second row shows sketches drawn by non-experts from the Human, Lamp, Rifle, Table,
and Vase categories. We tag every component with three parameters on the RGB color model, such as the airplane can be constructed by body(R:0, G:64,
B:128), wing(R:128, G:0, B:0), tail(R:0, G:128, B:0), and windows(R:128, G:128, B:0).

Airplane Candelabra Chair

(F\;{?%\

Bicycle Fourleg

Ground Truth

Ours(ATE)
N
e‘
D
o
)

&

4
]

U-Net LinkNet-34
“\A\ X\%

Human Lamp Rifle Table Vase

@

\

|

”@
ARYUR!

“m
)| -
3| 3

|

<=

@

e
“'@

Fig. 5. SFSegNet produces a state-of-the-art performance on our dataset, compared with FCN-8s, LinkNet-34, and U-Net. According to its outperformance
compared with FCN-16s and FCN-32s, FCN-8s is selected for presentation. The first column shows the ground truth for our dataset. The second column shows
the output of our highest performing net with affine transform encoders. The third column shows the output of our net without affine transform encoders.

representations. Though a ceiling number of components has
been set, volunteers can decide how many components in
sketches.

B. Implementation Details

Our model is implemented with Pytorch on a PC with a
single NVIDIA 1080TI, an i5-7400 3GHz CPU and 16GB
RAM. We divide our dataset into 2 subsets, 75% for training
and 25% for testing. We utilize randomly initialized decoder
weights and encoder weights initialized with ResNet34, pre-
trained on ImageNet. The initial learning rate is set to 0.001,

and the mini-batch size is set to 5. During training, we use
stochastic gradient descent with the momentum of 0.9 and a
polynomial weight decay policy. For baseline models in deep
learning including FCN [13]], LinkNet-34 [20] and U-Net [16],
we adopt their default training parameters. Also, we optimize
baselines with reweighting strategy described in Section [[II-C
All models are trained within 50 iterations.

C. Evaluation

Different from image segmentation, pixels in the sketch
have been pre-classified into two categories: strokes and

background. It’s inappropriate to use image segmentation’s
evaluation method such as IoU(Intersection over Union) or
AP(Average Precision). To evaluate the segmentation perfor-
mance for sketches, we adopt two accuracy metrics followed
by Huang et al [8]: 1) Pixel-based accuracy (P-metric), the
number of pixels with correct labels divided by the total
number. 2) Component-based accuracy (C-metric), the ratio
of the number of a component with correct labels to the total
number. A component is correctly labeled if the number of its
correct pixels is up to 75%.

D. Results and Discussion

Experiments on Huang’s Dataset. We train our network
on our dataset and test it on Huang’s dataset. Notice that
Huang’s dataset has ten ground truths for each category,
differing from our dataset’s configuration(one ground truth
for all categories). We remove and combine components to
apply the same settings. It’s unfair to evaluate the network on
C-metric due to the inconsistent number of components. We
evaluate on P-metric merely. Besides, some components are
annotated by mistake. We relabel them to ensure all sketches
are fine-labeled correctly. Also, the same preprocessing has
been implemented before testing. The above contents will be
explained in the appendix.

TABLE I
ACCURACY(%) ON HUANG’S DATASET, USING THE P-METRIC.

Huang | CRF SFSegNet
Airplane 74.0 55.1 65.5
Bicycle 72.6 79.7 834
Candelabra 59.0 72.0 64.9
Chair 52.6 66.5 63.0
Fourleg 77.9 81.5 79.4
Human 62.5 69.7 77.0
Lamp 82.5 82.9 94.3
Rifle 66.9 67.8 80.4
Table 67.9 74.5 61.4
Vase 63.2 83.3 73.1
Average 67.9 73.2 74.2

Note: Best results are in boldface.

Table [lI] shows that our method outperforms the Huang’s
method [8] and has similar performance but much less test
time-consuming(l to 2 sketches per second) compared with
the CRF model [18]. However, towards certain categories,
SFSegNet is about 20% less than CRF. The most likely cause
of unsatisfactory accuracy results is, CRF has categorization
information for each sketch. Without the prior knowledge,
it’s a tough work to classify strokes by only relying on
grouping information. For example, some instances in class
“Candelabra” have more than one candles which are far apart
from each other. The local feature representation brings less
correlation between them. Shown in Fig. [3] the lamp-like
handle makes the network easily recognize it as a “lamp”
object, though we are pretty sure that a candelabra couldn’t
have a lamp inside.

Experiments on Our Dataset. We report the comparative
performance of our network SFSegNet and other methods
including FCN [13]], LinkNet-34 [20], U-Net [|16] as baselines,

due to their successfully application in semantic segmentation.
We also discuss the effect of the affine transform encoder.
To avoid the background label biasing normal labels during
training, all models use the reweighting loss. Segmentation
results are shown in Fig. [3]

TABLE III
ACCURACY(%) ON OUR DATASET, USING THE P-METRIC.

FCN-8s | FCN-16s | FCN-32s | LinkNet-34 | U-Net || SESegNet
Airplane 91.1 91.2 90.5 92.3 80.9 93.3
Bicycle 92.8 91.9 89.8 94.0 86.9 93.3
Candelabra| 92.4 91.9 91.2 92.7 89.6 94.3
Chair 86.9 85.9 85.7 87.7 79.4 90.3
Fourleg 86.6 86.2 84.9 88.1 83.8 89.2
Human 83.7 82.9 81.8 85.9 71.0 85.1
Lamp 86.6 87.2 86.2 90.1 87.5 91.4
Rifle 88.6 87.7 87.2 90.3 84.7 91.1
Table 85.7 84.2 85.1 86.7 81.0 90.7
Vase 91.2 90.9 90.3 90.3 87.9 93.5
Average 88.6 88.0 87.3 89.8 83.9 91.2

Note: Best results are in boldface.

TABLE IV
ACCURACY(%) ON OUR DATASET, USING THE C-METRIC.
FCN-8s | FCN-16s | FCN-32s | LinkNet-34 | U-Net || SFSegNet
Airplane 85.0 85.3 83.8 78.9 86.4 87.3
Bicycle 85.2 83.8 80.3 74.6 85.9 85.6
Candelabra| 94.1 93.1 92.8 83.2 94.1 95.3
Chair 86.9 85.4 86.1 83.4 88.4 89.6
Fourleg 84.1 83.3 81.7 71.5 86.3 87.5
Human 81.6 81.1 79.3 74.3 85.7 82.8
Lamp 87.1 88.0 87.5 83.3 91.2 92.1
Rifle 82.0 80.3 80.0 72.4 83.4 83.2
Table 82.2 79.6 81.5 72.2 84.6 87.5
Vase 92.2 92.4 91.9 84.7 91.2 94.9
Average 86.0 85.2 84.5 71.9 87.7 88.6

Note: Best results are in boldface.

1) Reweighting strategy: Quantitative results including the
segmentation accuracy based on P-metric and loss during
training are shown in Figl] We can observe from Figl6(b)|
that, when the reweighting strategy has been deactivated, the
loss of each network is decreasing, however, the accuracy is
increasing slightly and eventually stops at a low level. Suffer-
ing heavily from heavy class imbalance problem, the model
predicts pixels in one component which produces meaningless
results. And Fig[6(a)|indicates that the reweighing strategy can
solve the problem and speed up fitting. Each of them gains
high accuracy within about 10 epoch.

2) Baselines: The quantitative results of the proposed net-
work and the competitors are presented in Table and
The average labeling accuracy for each class is presented. We
can observe that our model performs the best in each metric.
Using P-metric, the average accuracy is 2.9% higher than
FCN-8s, 3.5% higher than FCN-16s, 3.5% higher than FCN-
32s, 1.5% higher than the LinkNet and 8.0% higher than the
U-net. Using P-metric, the average accuracy is 2.9% higher
than FCN-8s, 3.8% higher than FCN-16s, 4.6% higher than
FCN-32s, 12.1% higher than the LinkNet and 1.0% higher
than the U-net.

1 35

09
3
08 1
> 07 25
2
-
0.6 ¢
§ \ 2
< % Z=— SFSegNet 2
2 =TT LinkNet:34| o~
= : 15
s \/ FCN-8s
G
- 8 T URNet 1
\
I\
' -~
\ s a 0.5
e ITEE=L s ~
R e) Ty e
o 4 Agh S

0 5 10 15 20 25 30 35 40 45 50
Epoch

(a) Reweighting strategy activated.

1 35
=== SFSegNet
09 ! S
1 < - LinkNet-34
n 3
0.8 Y FCN-8
\ \
v T = U-Net L 25

0.7 = :
5o
g 06 V)
SR T L2
5} \ \ “»
< 05 v 2
Q
B \ 0 s
S 04) '
= 0
2oz

\
\

r 05

(b) Reweighting strategy deactivated.

Fig. 6. Comparison of segmentation results

TABLE V
ACCURACY (%) ON OUR DATASET, COMPARED WITH THE APPLICATION OF
THE AFFINE TRANSFORM ENCODER(ATE).

P-metric C-metric
ATE v v
Airplane 924 | 93.3 | 86.7 | 87.3
Bicycle 93.1 | 93.3 | 84.1 | 85.6
Candelabra | 92.8 | 94.3 | 94.1 | 95.3
Chair 873 | 90.3 | 86.2 | 89.6
Fourleg 86.3 | 89.2 | 83.0 | 87.5
Human 835 | 851 | 82.0 | 82.8
Lamp 88.5 | 914 | 90.3 | 92.1
Rifle 88.6 | 91.1 | 80.6 | 83.2
Table 87.5 | 90.7 | 85.7 | 87.5
Vase 91.5 | 935 | 923 | 949
Average 89.2 | 91.2 | 86.5 | 88.6

Note: Best results are in boldface.

3) Affine transform encoder: We remove all affine trans-
form encoders from our SFSegNet to discuss their effect. Table
shows the comparison results. Three stages of SFSegNet
learn strokes structural features from hierarchy layers and
obtain good results in segmentation, even better than baselines.
We note that some components composed of straight strokes
but labeled more than two categories. We believe there is a
strong possibility that shaking strokes bring noise to convo-
lutional features and make the components’ probability map
predict more than one part. With spatial invariance during
convolution, the strokes’ features are canonicalized and our
model can achieve a better segmentation result.

V. CONCLUSION

In this paper, a sketch-targeted deep network named SFSeg-
Net is proposed. We observe the class imbalance through blank
labels and component labels. By using a reweighting strategy
during training, the background pixels are ignored and the
overall structure information in part-wise is well preserved.
To prevent the disturbance caused by shaking strokes, we
apply the affine transform encoder to gain spatial invariance
during convolution to get more robust features. Essentially,

it learns from the structural information among the drawing
strokes. Thus the fully convolutional decoder is able to get the
better segmentation results. Experimental results validated the
effectiveness of our proposed method.

APPENDIX

In this paper, components from Huang’s dataset [_8] are
removed or combined to make sketches consistent with our
dataset. Configurations are shown in Table [V]]

REFERENCES

[1] A. Chaurasia and E. Culurciello, “Linknet: Exploiting encoder represen-
tations for efficient semantic segmentation,” in Visual Communications
and Image Processing (VCIP), 2017 IEEE. 1EEE, 2017, pp. 1-4.

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” arXiv preprint arXiv:1412.7062, 2014.

[3] ——, “Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834-848,
2018.

[4] F. Cordier, K. Singh, E. Etem, M.-P. Cani, and Y. Gingold, “Sketch-
based modeling,” in Proceedings of the 37th Annual Conference of the
European Association for Computer Graphics: Tutorials. Eurographics
Association, 2016, p. 7.

[5] M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa, “Sketch-based
image retrieval: Benchmark and bag-of-features descriptors,” [EEE
transactions on visualization and computer graphics, vol. 17, no. 11,
pp. 1624-1636, 2011.

[6] D. Ha and D. Eck, “A neural representation of sketch drawings,” arXiv
preprint arXiv:1704.03477, 2017.

[7]1 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

[8] Z. Huang, H. Fu, and R. W. Lau, “Data-driven segmentation and labeling
of freehand sketches,” ACM Transactions on Graphics (TOG), vol. 33,
no. 6, p. 175, 2014.

[9] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in Advances in neural information processing systems, 2015,
pp. 2017-2025.

[10] D. H. Kim and M.-J. Kim, “A curvature estimation for pen input seg-
mentation in sketch-based modeling,” Computer-Aided Design, vol. 38,
no. 3, pp. 238-248, 2006.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

TABLE VI

DATASET CONFIGURATION

Huang Huang(with our config)
Components| R | G | B [Components| R | G | B
body 255| 0 | O |body 0 | 64 128
wing 0 [255[0 |[wing 12810 (0
Airplane horistab 0 [0 255 tail 0 [128]0
vertstab 255[255|0 |tail 0 [128]0
engine 25510 |255]ignore
propeller 0 [255]255|ignore
saddle 255| 0 | O |seat 1921 0 | O
frontframe [0 [255[0 |[body 0 [64 [128
wheel 0 [0 [255]tire 255] 1280
handle 255]255|0 |handle 12810 [128
Bicycle pedal 25510 |255|foottread 0 [64 [0
chain 0 [255]255]chain 128|164 [0
fork 128]/0 [0 |body 0 |64 [128
backframe [0 |[128[0 [body 0 |64 [128
backcover [0 [0 [128|body 0 |64 [128
base 255| 0 | O |base 0 |255| 0
candle 0 [255]0 [candle 0 [128]128
Candelabra fire 0 [0 [255]fire 128128128
handle 255[255|0 |handle 12810 [128
shaft 255|0 |255 |handle 12810 [128
arm 0 [255]255 [handle 12810 [128
back 2551 0 | O |back 641 0|0
leg 0 [255/0 [limb 64 | 128128
seat 0 [0 [255]seat 19210 |0
arm 255]255|0 |limb 64 | 128128
stile 255|0 |255|back 64 |0 |0
Chair gas lift 0 [255]255|limb 64 | 128128
base 128[0 [0 [limb 64 [128]128
foot 0 [128]0 [limb 64 | 128128
stretcher 0 [0 [128[limb 64 128128
spindle 1281280 |back 64 |0 |0
rail 0 |[128]128]back 64 |0 [0
body 255| 0 | O |body 0 | 64 128
ear 0 [255]0 |head 64 |1280
Fourleg head 0 [0 [255]|head 64 [128]0
leg 255[255|0 |limb 64 | 128128
tail 255|0 |255|tail 0 [128]0
head 255] 0 | O |head 64 [128] 0
body 0 [255[0 [body 0 |64 [128
Human arm 0 [0 [255[uplimb 0 [192]0
leg 255(255|0 |lowlimb 12819210
hand 255|0 |255 |uplimb 0 [192]0
foot 0 [255]255|lowlimb 1281920
tube 255| 0 | O |[tube 2551 0 | 0
Lamp base 0 [255[0 [base 0 [255]0
shade 0 [0 [255|shade 0 [0 [255
barrel 255| 0 | O |body 0 | 64 128
body 0 [255]0 |body 0 |64 [128
handgrip 0 [0 [255|handgrip 128[255(0
Rifle magazine 255(255|0 |magazine 0 [255]255
trigger 25510 |255 | trigger 19211280
butt 0 [255[255]body 0 |64 [128
sight 128|/0 [0 |[body 0 |64 [128
top 2551 0 | O [top 192] 0 |128
leg 0 [255]/0 [handle 12810 [128
stretcher 0 [0 [255]handle 12810 [128
Table base 255(255|0 |base 0 [255]0
topsupport [255[0 [255|handle 12810 [128
legsupport |0 [255|255|handle 12810 [128
midsupport |128(0 [0 |handle 12810 [128
lip 2551 0 | O [lip 192128128
Vase handle 0 [255]/0 [handle 12810 [128
” body 0 [0 [255]body 0 |64 [128
foot 255[255|0 |base 0 [255]0

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

H. Li, H. Wu, X. He, S. Lin, R. Wang, and X. Luo, “Multi-view pairwise
relationship learning for sketch based 3d shape retrieval,” in Multimedia
and Expo (ICME), 2017 IEEE International Conference on. IEEE,
2017, pp. 1434-1439.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.

J. Pu and D. Gur, “Automated freehand sketch segmentation using radial
basis functions,” Computer-Aided Design, vol. 41, no. 12, pp. 857-864,
2009.

X. Qian, X. Tan, Y. Zhang, R. Hong, and M. Wang, “Enhancing sketch-
based image retrieval by re-ranking and relevance feedback,” IEEE
Transactions on Image Processing, vol. 25, no. 1, pp. 195-208, 2016.
0. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234-241.

J. Sénchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifica-
tion with the fisher vector: Theory and practice,” International journal
of computer vision, vol. 105, no. 3, pp. 222-245, 2013.

R. G. Schneider and T. Tuytelaars, “Example-based sketch segmentation
and labeling using crfs,” ACM Transactions on Graphics (TOG), vol. 35,
no. 5, p. 151, 2016.

T. M. Sezgin, T. Stahovich, and R. Davis, “Sketch based interfaces:
early processing for sketch understanding,” in Proceedings of the 2001
workshop on Perceptive user interfaces. ACM, 2001, pp. 1-8.

A. A. Shvets, A. Rakhlin, A. A. Kalinin, and V. I. Iglovikov, “Automatic
instrument segmentation in robot-assisted surgery using deep learning,”
in 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA). 1EEE, 2018, pp. 624-628.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
J. Song, Q. Yu, Y.-Z. Song, T. Xiang, and T. M. Hospedales, “Deep
spatial-semantic attention for fine-grained sketch-based image retrieval.”
in ICCV, 2017, pp. 5552-5561.

Z. Sun, C. Wang, L. Zhang, and L. Zhang, “Free hand-drawn sketch
segmentation,” in European Conference on Computer Vision. Springer,
2012, pp. 626-639.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1-9.

F. Wang, S. Lin, H. Li, H. Wu, J. Jiang, R. Wang, and X. Luo,
“Multi-column point-cnn for sketch segmentation,” arXiv preprint
arXiv:1812.11029, 2018.

F. Wang, S. Lin, H. Wu, R. Wang, and X. Luo, “Data-driven method
for sketch-based 3d shape retrieval based on user similar draw-style
recommendation,” in SIGGRAPH ASIA 2016 Posters. ACM, 2016,
p. 34.

X. Wu, Y. Qi, J. Liu, and J. Yang, “Sketchsegnet: A rnn model for
labeling sketch strokes,” in 2018 IEEE 28th International Workshop on
Machine Learning for Signal Processing (MLSP). 1EEE, 2018, pp. 1-6.
F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2881-2890.

	I Introduction
	II Related work
	II-A Image Segmentation
	II-B Sketch Segmentation and Labeling

	III Methodology
	III-A Architecture of SFSegNet
	III-B Affine Transform Encoder
	III-C Fine-tune
	III-D Preprocessing

	IV Experiments
	IV-A Datasets
	IV-B Implementation Details
	IV-C Evaluation
	IV-D Results and Discussion
	IV-D1 Reweighting strategy
	IV-D2 Baselines
	IV-D3 Affine transform encoder

	V Conclusion
	Appendix
	References

