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Abstract—There has been growing interest in extending tradi-
tional vector-based machine learning techniques to their tensor
forms. Support tensor machine (STM) and support Tucker
machine (STuM) are two typical tensor generalization of the con-
ventional support vector machine (SVM). However, the expressive
power of STM is restrictive due to its rank-one tensor constraint,
and STuM is not scalable because of the exponentially sized
Tucker core tensor. To overcome these limitations, we introduce
a novel and effective support tensor train machine (STTM) by
employing a general and scalable tensor train as the parameter
model. Experiments validate and confirm the superiority of the
STTM over SVM, STM and STuM.

Index Terms—support vector machine, tensor train, classifica-
tion

I. INTRODUCTION

Classification algorithm design has been an important topic

in machine learning, pattern recognition and computer vision

for decades. One of the most representative and successful

classifiers is the support vector machine (SVM) [1], which

achieves an enormous success in pattern classification by

minimizing the Vapnik-Chervonenkis dimensions and structural

risk. However, a standard SVM model is based on vector inputs

and cannot directly deal with matrices or higher dimensional

data structures called tensors, which are very common in

real-life applications. For example, a grayscale picture is

stored as a matrix which is a second-order tensor, while

color pictures have a color axis and are naturally third-

order tensors. The common SVM realization on such high

dimensional inputs is by reshaping each sample into a vector.

However, when the number of training samples is relatively

small compared to the feature vector dimension, it may easily

result in poor classification performance due to overfitting [2]–

[4]. To overcome this, researchers have focused on exploring

new data structures and corresponding numerical operations.

Tensors constitute a versatile data structure which has recently

received much attention in the machine learning community. In

particular, tensor decomposition techniques have found various

applications. In [5] a tensor train based polynomial classifier

is proposed that encodes the coefficients of the polynomial as

a tensor train. In [6] tensor trains are used to compress the

traditional fully connected layers of a neural network into tensor

train layers with much fewer parameters. Tensor trains have

This work is supported by the Hong Kong Research Grants Council
under General Research Fund (GRF) Project 17246416, and the University
Research Committee of The University of Hong Kong.

also been exploited to represent nonlinear predictors [7] and

classifiers [8]. Moreover, the canonical polyadic (CP) tensor

decomposition has been used for speeding up the convolution

step in convolutional neural networks [9] and the Tucker

decomposition for the classification of tensor data [10] etc.
Not surprisingly, standard SVMs have also been extended to

tensor formulations yielding significant performance enhance-

ments [11], [12]. Ref. [11] proposes a supervised tensor learning

(STL) scheme by replacing the vector inputs with tensor

inputs and decomposing the corresponding weight vector into

a rank-1 tensor, which is trained by the alternating projection

optimization method. Based on this learning scheme, [13]

extends the standard linear SVM to a general tensor form

called the support tensor machine (STM). Although STM lifts

the overfitting problem in traditional SVMs, the expressive

power of a rank-1 weight tensor is limited, which translates

into an often poor classification accuracy. In [14], the rank-1

weight tensor of STM is generalized to CP forms for stronger

model expressive power. However, the determination of a good

CP-rank is NP-complete [15]. In [12], an STM is generalized to

a support Tucker machine (STuM), which replaces the rank-1

tensor in STM with Tucker format tensor. Nevertheless, the

number of parameters in the Tucker form is exponentially large,

which still suffers from the curse of dimensionality. The idea

of combining the tensor train decomposition and SVM is first

proposed in [16]. However, the parameter tensor W in [16] is

trained in full tensor format and a tensor train decomposition is

then implemented to obtain its tensor train format. As such, the

curse of dimensionality still prevails since the model parameter

is still represented and trained in full tensor format.
Consequently, this work proposes a support tensor train

machine (STTM) wherein the rank-1 weight tensor of an

STM is replaced by a tensor train that can approximate any

tensor with a scalable number of parameters. We highlight

that the main difference between [16] and our work is that we

train the parameter tensor W in tensor train format directly

while [16] trains the parameter tensor W in full tensor format

before decomposing the latter into a tensor train. Therefore, the

approach in [16] still suffers from the curse of dimensionality.

Our proposed STTM exhibits the following advantages:

1) With a small sample size, an STTM has comparable or

better classification accuracies than the standard SVM.

2) The expressive power of a tensor train increases with its

tensor train ranks. This means an STTM can capture much
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richer structural information than an STM and lead to an

improved classification accuracy.

3) The tensor train in STTMs is more scalable than the

Tucker tensor in STuMs, and results in a more efficient

training especially when the number of training samples

is large.

4) A tensor train mixed-canonical form can be readily

exploited to further speed up algorithmic convergence.

In the following, Section II introduces some tensor basics and

the key ideas of the SVM and STM. The proposed STTM is

presented in Section III. Experiments are given in Section IV

to show the advantages of an STTM over SVM, STM and

STuM. Finally, Section V draws the conclusions.

II. PRELIMINARIES

A. Tensor Basics

Tensors are multi-dimensional arrays that are higher order

generalization of vectors (first-order tensors) and matrices

(second-order tensors). A dth-order or d-way tensor is de-

noted as A ∈ R
n1×n2×···×nd and the element of A by

ai1i2...id , where 1≤ ik ≤ nk, k = 1, 2, . . . , d. The numbers

n1, n2, . . . , nd are called the dimensions of the tensor A. We

use boldface capital calligraphic letters A, B, . . . to denote

tensors, boldface capital letters A, B, . . . to denote matrices,

boldface letters a, b, . . . to denote vectors, and roman letters

a, b, . . . to denote scalars. AT and aT are the transpose of

a matrix A and a vector a. The unit matrix of order n is

denoted In. An intuitive and useful graphical representation of

scalars, vectors, matrices and tensors is depicted in Figure 1.

The unconnected edges, also called free legs, are the indices of

the array. Therefore scalars have no unconnected edge, while

matrices have 2 unconnected edges. We will mainly employ

these graphical representations to visualize the tensor networks

and operations in the following sections whenever possible and

refer to [17] for more details. We now briefly introduce some

important tensor operations.

Definition 1: (Tensor k-mode product): The k-mode product

of a tensor A ∈ R
n1×···×nk×···×nd with a matrix U ∈ R

pk×nk

is denoted as B = A×k U and defined by

B(i1, . . . , ik−1, j, ik+1, . . . , id) =
nk∑

ik=1

U(j, ik)A(i1, . . . , ik, . . . , id),

where B ∈ R
n1×···×nk−1×pk×nk+1×···×nd .

The graphical representation of a 3-mode product between a

third-order tensor A and a matrix U is shown in Figure 2,

where the summation over the i3 index is indicated by the

connected edge.

Definition 2: (Reshaping) Reshaping is another often

used tensor operation. Employing MATLAB notation,

“reshape(A, [m1,m2, . . . ,md])" reshapes the tensor A into

another tensor with dimensions m1, m2, . . . ,md. The total

number of elements of the tensor A must be
∏d

k=1 mk.

a a A A

Fig. 1: Graphical representation of a scalar a, vector a, matrix A,
and third-order tensor A.

n1

n2

n3 p3A U

Fig. 2: 3-mode product between a 3-way tensor A and matrix U .

Definition 3: (Vectorization) Vectorization is a special re-

shaping operation that reshapes a tensor A into a column

vector, denoted as vec(A).
Definition 4: (Tensor inner product) For two tensors A,B ∈

R
n1×n2×···×nd , their inner product 〈A,B〉 is defined as

〈A,B〉 =
n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

ai1,i2,··· ,idbi1,i2,··· ,id .

Definition 5: (Frobenius norm) The Frobenius norm of a

tensor A ∈ R
n1×n2×···×nd is defined as ||A||F =

√〈A,A〉.
B. Tensor Decompositions

Here we introduce two related tensor decomposition methods,

namely, the rank-1 tensor decomposition used in STM and the

tensor train (TT) decomposition used in STTM.

1) Tensor Rank-1 Decomposition: A d-way tensor A ∈
R

n1×n2×···×nd is rank-1 if it can be written as the outer product

of d vectors

A = a(1) ◦ a(2) ◦ · · · ◦ a(d), (1)

where ◦ denotes the vector outer product, and each element in

A is the product of the corresponding vector elements:

A(i1, . . . , id) = a(1)(i1)a
(2)(i2) · · ·a(d)(id).

Storing the component vectors a(1), . . . ,a(d) instead of the

whole tensor A significantly reduces the required number of

storage elements. However, a rank-1 tensor is rare in real-world

applications, so that a rank-1 approximation to a general tensor

usually results in unacceptably large approximation errors. This

calls for a more general and powerful tensor approximation, for

which the TT decomposition serves as a particularly suitable

choice.

2) Tensor Train Decomposition: A TT decomposition [18]

represents a d-way tensor A as d third-order tensors A(1),

A(2), . . . , A(d) such that a particular entry of A is written as

the following matrix product

A(i1, . . . , id) = A(1)(:, i1, :) · · ·A(d)(:, id, :). (2)
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n1 n2 n3 n4

A(1) A(2) A(3) A(4)

r1

r2 r3 r4

Fig. 3: Tensor train decomposition of a 4-way tensor A into 3-way
tensors A(1), . . . ,A(4).

Each tensor A(k), k = 1, . . . , d, is called a TT-core and

has dimensions rk × nk × rk+1. Storage of a tensor as a TT

therefore reduces from
∏d

i=1 ni down to
∑d

i=1 riniri+1. In

order for the left-hand-side of (2) to be a scalar we require

that r1 = rd+1 = 1. The remaining rk values are called the

TT-ranks. Figure 3 illustrates the TT-decomposition of a 4-way

tensor A, where the edges connecting the different circles

indicate the matrix-matrix products of (2).

Definition 6: (Left orthogonal and right orthogonal TT-

cores) A TT-core A(k)(1 ≤ k ≤ d) is left orthogonal when

reshaped into an rknk × rk+1 matrix A we have that

ATA = Irk+1
.

Similarly, a TT-core A(k) is right orthogonal when reshaped

into an rk × nkrk+1 matrix A we have that

AAT = Irk .

Definition 7: (Site-k-mixed-canonical tensor train) A tensor

train is in site-k-mixed-canonical form [19] when all TT-cores

{A(l) | l = 1, . . . , k − 1} are left orthogonal and {A(l) | l =
k + 1, . . . , d} are right orthogonal.

Turning a TT into its site-k-mixed-canonical form requires

d− 1 QR decompositions of the reshaped TT-cores. Changing

k in a site-k-mixed-canonical form to either k − 1 or k + 1
requires one QR factorization of A(k). It can be shown that

the Frobenius norm of a tensor A in a site-k-mixed-canonical

form is easily computed from

||A||2F = ||A(k)||2F = vec(A(k))T vec(A(k)).

C. Support Vector Machines

We briefly introduce linear SVMs before discussing STMs.

Assume we have a dataset D={xi, yi}
M
i=1 of M labeled

samples, where xi ∈ R
n are the samples or feature vectors

with labels yi ∈ {−1, 1}. Learning a linear SVM is finding a

discriminant hyperplane

f(x) = wTx+ b (3)

that maximizes the margin between the two classes where w
and b are the weight vector and bias, respectively. In practice,

the data are seldom linearly separable due to measurement

noise. A more robust classifier can then be found by introducing

the slack variables ξ1, . . . , ξM and writing the learning problem

f(X ) =

...

X

w(d)

+ b

w(1)

w(2)

Fig. 4: Graphical representation of an STM hyperplane function.

as an optimization problem

min
w,b,ξ

1

2
||w||2F + C

M∑

i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,M. (4)

The parameter C controls the trade-off between the size of

the weight vector w and the size of the slack variables. It

is common to solve the dual problem of (4) with quadratic

programming, especially when the feature size n is larger than

the sample size M .

D. Support Tensor Machines

Suppose the input samples in the dataset D={X i, yi}
M
i=1 are

tensors X i ∈ R
n1×n2×···×nd . A linear STM extends a linear

SVM by defining d weight vectors w(i) ∈ R
ni (i = 1, . . . , d)

and rewriting (3) as

f(X ) = X ×1 w
(1) ×2 · · · ×d w

(d) + b. (5)

The graphical representation of (5) is shown in Figure 4. The

tensor X is contracted along each of its modes with the weight

vectors w(1), . . . ,w(d), resulting in a scalar that is added to

the bias b. The weight vectors of the STM are computed by the

alternating projection optimization procedure, which comprises

d optimization problems. The main idea is to optimize each

w(k) in turn by fixing all weight vectors but w(k). The kth

optimization problem is

min
w(k),b,ξ

1

2
β ||w(k)||2F + C

M∑

i=1

ξi

subject to yi((w
(k))T x̂i + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,M, (6)

where

β =

l �=k∏

1≤l≤d

||w(l)||2F and x̂i = X i

l �=k∏

1≤l≤d

×l w
(l).

The optimization problem (6) is equivalent to (4) for the linear

SVM problem. This implies that any SVM learning algorithm

can also be used for the linear STM. Each of the weight

vectors of the linear STM is updated consecutively until the

loss function of (6) converges. The convergence proof can

be found in [13, p. 14]. Each single optimization problem in

learning an STM requires the estimation of only a few weight
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f(X ) =

...w1 W(d)

+ b

W(1) W(2)

...X (1) X (2) X (d)

Fig. 5: Tensor graphical representation of an STTM hyperplane
function.

parameters, which alleviates the overfitting problem when M
is relatively small. The weight tensor obtained from the outer

product of the weight vectors

W = w(1) ◦w(2) ◦ · · · ◦w(d) (7)

is per definition rank-1 and allows us to rewrite (5) as

f(X ) = 〈W ,X 〉+ b. (8)

The constraint that W is a rank-1 tensor has a significant impact

on the expressive power of the STM, resulting in an usually

unsatisfactory classification accuracy for many real-world data.

In this paper, we address this problem by representing W as

a TT with prescribed TT-ranks.

III. SUPPORT TENSOR TRAIN MACHINES

A. Linear Support Tensor Train Machines

We first introduce the proposed STTM for binary classifi-

cation, and then extend it to the multi-classification case. The

graphical representation for tensors shown in Figure 1 will

be used to illustrate the different operations. As mentioned

in Section II-D, an STM suffers from its weak expressive

power due to its rank-1 weight tensor W . To this end, the

proposed STTM replaces the rank-1 weight tensor by a TT with

prescribed TT-ranks. Moreover, most real-world data contains

redundancies and uninformative parts. Based on this knowledge,

STTM also utilizes a TT decomposition to approximate the

original data tensor as to alleviate the overfitting problem even

further. The conversion of the training sample to a TT can be

done using the TT-SVD algorithm [18, p. 2301], which allows

the user to determine the relative error of the approximation. A

graphical representation of the STTM hyperplane equation is

shown in Figure 5. Both the data tensor X and the weight tensor

W are represented by TTs and the summations correspond to

computing the inner product 〈X ,W〉. The TT-cores W(1),

W(2), . . ., W(d) are also computed using an alternating

projection optimization procedure [11], namely iteratively

fixing d− 1 TT-cores and updating the remaining core until

convergence. This updating occurs in a “sweeping” fashion,

whereby we first update W(1) and proceed towards W(d).

Once the core W(d) is updated, the algorithm sweeps back to

W(1) and repeats this procedure until meets the termination

criterion. Suppose we want to update W(k). First, the TT of

the weight tensor W is brought into site-k-mixed-canonical

form. From Section II-B2, the norm of the whole weight

tensor is located in the W(k) TT-core. In order to reformulate

the optimization problem (6) in terms of the unknown core

W(k), we first need to re-express the inner product 〈X ,W〉
in terms of W(k) as vec(W(k))T x̂. The vector x̂ is obtained

by summing over the tensor network for 〈W ,X 〉 depicted

in Figure 5 with the TT-core W(k) removed and vectorizing

the resulting 3-way tensor. These two computational steps to

compute x̂ are graphically depicted in Figure 6. The STTM

hyperplane function can then be rewritten as vec(W(k))T x̂+b,
so that W(k) can be updated from the following optimization

problem

min
W(k),b,ξ

1

2
||W(k)||2F + C

M∑

i=1

ξi

subject to yi(vec(W(k))T x̂i + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,M, (9)

using any computational method for standard SVMs. Suppose

now that the next TT-core to be updated is W(k+1). The

new TT for W then needs to be put into site-(k + 1)-mixed-

canonical form, which can be achieved by reshaping the new

W(k) into an rknk × rk+1 matrix W (k) and computing its

thin QR decomposition

W (k) = Q R,

where Q is a rknk × rk+1 matrix with orthogonal columns

and R is an rk+1 × rk+1 upper triangular matrix. Updating

the tensors W(k),W(k+1) as

W(k) := reshape(Q, [rk, nk, rk+1]),

W(k+1) := W(k+1) ×1 R,

results in a site-(k + 1)-mixed-canonical form for W . An

optimization problem similar to (9) can then be derived for

W(k+1).

The training algorithm of the STTM is summarized as

pseudo-codes in Algorithm 1. The TT-cores for the weight

tensor W are initialized randomly. Bringing this TT into site-

1-mixed-canonical form can then be done by applying the

QR decomposition step starting from W(d) and proceeding

towards W(2). The final R factor is absorbed by W(1),

which brings the TT into site-1-mixed-canonical form. The

termination criterion in line 4 can be a maximum number of

loops and/or when the training error falls below a user-defined

threshold. To extend the binary classification STTM to an

L-class classification STTM, we employ the one-versus-one

strategy due to accuracy considerations [20]. Specifically, we

construct L(L−1)/2 binary classification STTMs, where each

STTM is trained on data samples from two classes. The label

of a test sample is then predicted by a majority voting strategy.

B. Nonlinear Support Tensor Train Machines

The extension from a linear STTM to a nonlinear STTM

is straightforward and we succinctly describe it here. The

nonlinearity of the SVM is introduced through feature mapping
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W(1) W(d)

X (1) X (d)X (k)

rk rk+1

nk

...

...

...

...

W(k−1) W(k+1)

X (k−1) X (k+1)

nk x̂
rk+1rk

Summation vectorization

Fig. 6: The computation diagram of x̂.

Algorithm 1 STTM Algorithm

Input: TT-ranks r2, . . . , rd of W(1),W(2), . . . ,W(d); Train-

ing dataset {X i ∈ R
n1×···×nd , yi ∈ {−1, 1}}Mi=1; Relative

error ε of TT approximation of X .

Output: The TT-cores W(1),W(2), . . . ,W(d); The bias b.

1: Initialize W(k) ∈ R
rk×nk×rk+1 as a random/prescribed

3-way tensor for k = 1, 2, . . . , d.

2: Compute the TT approximation of training samples

{X i}Mi=1 with relative error ε using TT-SVD.

3: Cast W into the site-1-mixed-canonical TT form.

4: while termination criterion not satisfied do
5: for k = 1, . . . , d− 1 do
6: W(k), b ← Solve optimization problem (9).

7: W (k) ← reshape(W(k), [rknk, rk+1]).
8: Compute thin QR decomposition W (k) = QR.

9: W(k) ← reshape(Q, [rk, nk, rk+1]).
10: W(k+1) ← W(k+1) ×1 R.

11: end for
12: for k = d, . . . , 2 do
13: W(k), b ← Solve optimization problem (9).

14: W (k) ← reshape(W(k), [rk, nkrk+1]).

15: Compute thin QR decomposition W (k)T = QR.

16: W(k) ← reshape(QT , [rk, nk, rk+1]).
17: W(k−1) ← W(k−1) ×3 R

T .

18: end for
19: end while

φ(x). The dual format of the original SVM is

min
α1,α2,··· ,αM

M∑

i=1

αi−1

2

M∑

i,j=1

αiαjyiyj〈φ(xi), φ(xj)〉

subject to

M∑

i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . ,M, (10)

where αi are the Lagrangian multipliers. When the dual

problem (10) is solved, the model hyperplane parameters can

be represented as:

w =

M∑

i

αiyiφ(xi). (11)

We can then derive the resulting hyperplane function as

f(x) =

M∑

i

αiyi〈φ(xi), φ(x)〉+ b. (12)

It is easily noticed that all input samples appear in the inner

product format in equation (12). Therefore, we can introduce

the kernel trick so that the model of kernel SVM reads

f(x) =
M∑

i

αiyik(φ(xi), φ(x)) + b, (13)

where k() denotes the kernel function, which can be Gaussian

RBF kernel, polynomial kernel etc. Based on the kernel SVM

formulation, the nonlinear STTM is then introduced as follows.

We first construct two new vectors, namely,

w̄ = [α1, α2, . . . , αM ]T ∈ R
M

x̄ = [y1k(φ(x1), φ(x)), . . . , yMk(φ(xM ), φ(x))]T ∈ R
M .
(14)

In that case, equation (13) can be reformulated as

f(x̄) = w̄T x̄+ b, (15)

which can be regarded as a new linear SVM problem and

we can then utilize the linear STTM method for finding the

solution with similar procedures as in solving equation (3).

C. Complexity Analysis

We consider the linear STTM here only since the analysis

for the nonlinear case is similar. Assume that the tensorial

training data D={X i yi}
M
i=1 are given, where tensors X i ∈

R
n1×n2×···×nd are in TT format and their ranks are r1, . . . , rd.

With n := max{n1, . . . , nd} and r := max{r1, . . . , rd},

the computation complexity of forming the small-size SVM

optimization problem (9) from the overall STTM optimization

problem is O(Mdnr3). The complexity is linear to the

tensorial data order d due to the TT structure. Moreover, real-

world tensorial data often exhibit the low-rank property, namely
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r is often small, which indicates the overall complexity is also

small. For data storage, the traditional SVM calls for O(Mnd)
space, while that of the STTM is O(Mnr2). This again shows

a great reduction especially when the data order d is large.

IV. EXPERIMENTS

Since STM and STuM are both linear classifiers and no

kernel trick is introduced, here we only compare linear

STTM with them for fairness. Specifically, we present three

experiments that show the superiority of the proposed linear

STTM over standard SVM, STM and STuM in terms of

classification accuracy. All experiments are implemented in

MATLAB on an Intel i5 3.2GHz desktop with 16GB RAM.

Note that STM, STuM and STTM can separate their overall

optimization problem into d standard SVM problems. We

employ the MATLAB built-in SVM solver fitcsvm to get

the solution for standard SVM, STM and STTM, while use

the public code* released by the authors of [12] for STuM.

When calling fitcsvm, we select a linear kernel with default

parameters and set the outlier fraction as 2% for all experiments.

A. CIFAR-10 Binary Classification

Here we demonstrate three different aspects of the proposed

STTM: a comparison of its test accuracy versus SVMs, STMs

and STuMs, the influence of the TT-rank on the test accuracy,

and the necessity of using the site-k-mixed-canonical form in

Algorithm 1.

1) Classification: The CIFAR-10 database [21] is used in

this binary classification experiment, which consists of 60k

32× 32 color images from 10 classes, with 6000 images each.

The airplane and automobile classes were arbitrarily

chosen to compare the test accuracy of the proposed STTM

with SVM, STM and STuM. The first 3000 samples of both

classes were used for training while the test sets were used

to check the model classification performance. Vectorizing the

data samples results in a feature dimension of 3072, which may

lead to overfitting when the training sample size is much smaller.

To verify the effectiveness of STTM with different number of

training samples, we divided the 3000 training samples into 30
experiments of varying sample batch sizes, namely 100, 200,. . .,
2900, 3000. For each batch size we trained a standard SVM,

STM, STuM and STTM. The dimensions of the weight Tucker

core in STuM are set as all 3 due to the its code constraint. Prior

to training the STTM, each data sample was converted into

a TT of 3 TT-cores with dimensions n1 = n2 = 32, n3 = 3
and ε = 10−2. The TT-ranks of the weight TT were fixed

to r1 = r4 = 1, r3 = 3 and different experiment runs were

performed where r2 varied from 2 to 32. The best r2 are chosen

on a validation set. The resultant test accuracy of STTM are

compared with the test accuracy of the SVM, STM and STuM

subject to different training sample sizes in Figure 7. It is

easily noticed that STTM almost always achieves the best test

accuracy in all sample sizes, while STM sometimes performs

worse than a standard SVM, especially when the batch size

*http://www.eecs.qmul.ac.uk/~ioannisp/source.htm

Fig. 7: Test accuracy of SVM, STM, STuM and STTM trained with
different sample sizes.

Fig. 8: Test accuracy of STTM on different TT-rank r2.

is below 400. The limitation on the performance of the STM

is probably due to the poor expressive power of the rank-1

weight tensor. A batch size of 500 samples suffices for the

STTM to achieve the best test accuracy of the standard SVM

over all sample sizes, which demonstrates the superiority of

STTM at fewer training samples.

2) Effect of TT-Rank on Test Accuracy: Figure 8 shows

the STTM test accuracy for all tested 31 TT-ranks when the

training batch size is equal to 1k, 1.5k and 2k, respectively.

To accommodate for the effect of random initialization, the

average test accuracy is presented over five different runs. The

maximal test accuracy for these three sizes are achieved when

r2 is 4, 5 and 6, respectively. A downward trend of all three

curves can be observed for TT-ranks larger than the optimal

value, indicating that higher TT-ranks may lead to overfitting.

On the other hand, decreasing the TT-rank from its optimal

value also decreases the test accuracy down to the STM case.

An extra validation step to determine the optimal TT-ranks is

therefore highly recommended. It can also be observed that

the overall test accuracy improves with an increasing sample

size.

3) Updating in Site-k-Mixed-Canonical Form: The effect of

keeping the TT of W in a site-k-mixed-canonical form when

updating W(k) is also investigated. Figure 9 shows the training

accuracy for each TT-core update iteration in Algorithm 1, with

and without the site-k-mixed-canonical form. Updating without

the site-k-mixed-canonical form implies that lines 3, 8-10 and

15-17 of Algorithm 1 are not executed, which results in an

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-20155.pdf- 6 -

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 09:41:29 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9: Comparison of training accuracy of STTMs trained with and
without site-k-mixed-canonical form.

oscillatory training accuracy ranging between 50% and 89%
without any overall convergence. Updating the TT-cores W(k)

in a site-k-mixed-canonical form, however, displays a very fast

convergence of the training accuracy to around 92%.

B. MNIST Multi-Classification

Next, the classification accuracy of a standard SVM, STM,

STuM and STTM are compared on the MNIST dataset [22],

which has a training set of 60k samples, and a testing set

of 10k samples. Each sample is a 28 × 28 grayscale picture

of a handwritten digit {0, . . . , 9}. Even though the sample

structure is a 2-way tensor, we opt to reshape each sample

into a 7 × 4 × 7 × 4 tensor, as this provides us with more

flexibility to choose TT-ranks when applying Algorithm 1.

Since 10(10− 1)/2 = 45 binary classifiers need to be trained

for this multi-classification problem, the weight vector obtained

from the standard SVM is used to initialize the STM, STuM

and STTM methods. For the STM initialization, the SVM

weight vector is reshaped into a 28× 28 matrix from which

the best rank-1 approximation is used. For the STuM and

STTM initialization, the SVM weight vector is reshaped into

a 7× 4× 7× 4 tensor and then converted into its Tucker and

TT, respectively, with prescribed tensor ranks. Table I shows

the experiment setting for those four methods. All classifiers

were trained for training sample batch sizes of 10k, 20k, 30k

and 60k in four different experiments. The test accuracy of the

different methods for different batch sizes are listed in Table II.

STTM achieves the best classification performance for all sizes.

The STM again performs worse than the standard SVM due

to the restrictive expressive power of the rank-1 weight matrix.

Though STuM is one of the generalization formats of STM,

it suffers from the curse of dimensionality due to its Tucker

tensor model structure. The training procedure of STuM costs

more than 7.5hrs and 59hrs when the training sample sizes

are 10k and 20k, respectively, while only seconds or minutes

for SVM, STM and STTM. We do not post the test accuracy

of STuM when the training sample sizes are 30k and 60k

since they cost much more time than other three methods. This

observation indicates that an STuM may not work well when

the training sample size is large due to its exponentially large

model size.

TABLE I: Experiment settings for the four methods.

Method Input Structure Tensor ranks

SVM 784× 1 vector NA
STM 28× 28 matrix 1
STuM 7× 4× 7× 4 tensor 4, 4, 4, 4
STTM 7× 4× 7× 4 tensor 1, 5, 5, 4, 1

TABLE II: Test accuracy (%) under different training sample sizes.

Method
Training Sample Size

10k 20k 30k 60k

SVM 91.64 92.84 93.28 93.99
STM 88.36 89.96 89.82 90.54
STuM 90.45 92.28 − −
STTM 92.27 93.71 93.86 94.12

C. ORL Multi-Classification

In this experiment, the classification accuracy of a standard

SVM, STM, STuM and STTM are compared on the ORL

database†. ORL database contains 400 grayscale face images,

and the detailed information about ORL datasets is listed in

Table III. We randomly choose 320 face pictures as training data

and the left 80 as testing data. To solve this multi-classification

problem, 40(40-1)/2= 780 binary classifiers are needed to

be trained by using each method. The parameter tensors of

STM, STuM and STTM are initialized randomly according to

their preset tensor ranks. The detailed experiment settings and

classification accuracy (average value of five repeated tests) for

ORL32x32 and ORL64x64 when employing different methods

are listed in Table IV and Table V. STTM achieves a similar

classification performance compared with that of SVM and

they both perform better than STM and STuM.

TABLE III: Detailed information of experimental datasets.

Datasets Number of samples Number of classes Size

ORL 32x32 400 40 32x32
ORL 64x64 400 40 64x64

TABLE IV: Experimental settings and classification accuracy (%) of
four methods for ORL32x32.

Method Input structure Tensor ranks Test accuracy

SVM 1024x1 vector NA 96.25
STM 32x32 matrix 1 93.75
STuM 8x4x8x4 tensor 4, 4, 4, 4 93.50
STTM 8x4x8x4 tensor 1, 4, 4, 4, 1 96.25

TABLE V: Experimental settings and classification accuracy (%) of
four methods for ORL64x64.

Method Input structure Tensor ranks Test accuracy

SVM 4096x1 vector NA 96.25
STM 64x64 matrix 1 92.71
STuM 8x8x8x8 tensor 4, 4, 4, 4 94.40
STTM 8x8x8x8 tensor 1, 4, 4, 4, 1 96.25

†http://www.zjucadcg.cn/dengcai/Data/FaceData.html
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V. CONCLUSIONS

We have proposed, for the first time, a support tensor

train machine (STTM) for classifier design. On the one hand,

STTM employs a more general tensor train structure to largely

escalate the model expressive power, which leads to a better

classification accuracy than STM. On the other hand, the

tensor model in STTM is more scalable than in STuM, which

achieves a faster training when the training sample size is

large. Experiments have demonstrated the superiority of STTM

over standard SVM, STM and STuM in terms of classification

accuracy, particularly when trained with small sample sizes.
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