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Abstract—Unsupervised domain adaptation aims to transfer
knowledge from a source domain to a target domain so that
the target domain data can be recognized without any explicit
labelling information for this domain. One limitation of the
problem setting is that testing data, despite having no labels,
from the target domain is needed during training, which prevents
the trained model being directly applied to classify unseen
test instances. We formulate a new cross-domain classification
problem arising from real-world scenarios where labelled data
is available for a subset of classes (known classes) in the target
domain, and we expect to recognize new samples belonging to
any class (known and unseen classes) once the model is learned.
This is a generalized zero-shot learning problem where the
side information comes from the source domain in the form of
labelled samples instead of class-level semantic representations
commonly used in traditional zero-shot learning. We present
a unified domain adaptation framework for both unsupervised
and zero-shot learning conditions. Our approach learns a joint
subspace from source and target domains so that the projections
of both data in the subspace can be domain invariant and easily
separable. We use the supervised locality preserving projection
(SLPP) as the enabling technique and conduct experiments under
both unsupervised and zero-shot learning conditions, achieving
state-of-the-art results on three domain adaptation benchmark
datasets: Office-Caltech, Office31 and Office-Home.

Index Terms—unsupervised domain adaptation, zero-shot
learning, locality preserving projection, subspace learning

I. INTRODUCTION

Training a visual recognition model for image classification
requires large amount of annotated data which hinders its
application in many real-world scenarios where very few or
no labelled images exist in the target domain. One solution is
to use the labelled data from a different domain for training
and apply the model to the target task. For example, if we
assume our task is to classify artistic images for which we do
not have much labelled data, it maybe conversely easier to get
access to many labelled natural images. Training a classifier
with the natural images and applying it directly to the artistic
data suffers due to the inherent domain shift. To address this
problem, domain adaptation approaches have been proposed to
transform original features so that the transformed source and
target features can be aligned [1]–[7]. Recently, deep feature
learning approaches have drawn much attention by using end-
to-end deep models to learn domain-invariant features from
different domains [8]–[16].

Although significant efforts have been made to address
the domain adaptation problem, most focus on unsupervised
domain adaptation for which the target domain data are

assumed to be accessible for learning although no labelling
information is available. This is a strong assumption and
hinders a direct application of the learned model to out-of-
sample classification. In many real-world scenarios, it is easier
to get some labelled examples for some classes than the others
in the target domain. With these limited labelled samples from
the target domain, it is worth investigating the possibility
of domain adaptation without accessing the testing samples.
For this purpose, we formulate a novel domain adaptation
problem under the zero-shot learning (ZSL) [17] condition
and subsequently propose a viable solution to it.

Specifically, we present a unified framework for visual
domain adaptation under both unsupervised and zero-shot
learning conditions. Our approach aims to learn a subspace
in which the domain and target data can be aligned and well-
separated. To this end, a supervised locality preserving pro-
jection (LPP) [17], [18] is employed as an enabling technique
for subspace learning. For unsupervised domain adaptation,
we propose a confidence-aware pseudo label selection scheme
to gradually align the domains in an iterative learning strategy.
To evaluate the effectiveness of the proposed approaches, we
conduct experiments on commonly used datasets for domain
adaptation, achieving state-of-the-art performance.

II. PROBLEM FORMULATION

To facilitate our presentation in the following sections,
we firstly formulate domain adaptation problems under the
unsupervised learning and zero-shot learning conditions re-
spectively. Given a labelled dataset Ds = {(xsi , ysi )}, i =
1, 2, ..., ns from the source domain S, xsi ∈ Rds

represents the
feature vector of i-th training example in the source domain,
ds is the feature dimension in the source domain and ysi ∈ Ys

denotes the corresponding label. For the unsupervised domain
adaptation problem, the task is to classify an unlabelled dataset
Dt = {xti}, i = 1, 2, ..., nt from the target domain T , where
xti ∈ Rdt

represents the feature vector in the target domain
and dt is the dimensionality of features. The target label space
Yt is equal to the source label space Ys. It is assumed that
both the labelled source domain data Ds and the unlabelled
target domain data Dt are available for unsupervised domain
adaptation learning.

For a zero-shot learning condition, we have Ds as above as
well as a labelled dataset Dtl = {(xtli , ytli )}, i = 1, 2, ..., ntl

from the target domain T . xtli ∈ Rdt

and ytli ∈ Ytl are the
feature and label of the i-th labelled example respectively. The
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Fig. 1. The proposed framework of domain adaptation for unsupervised
(upper) and zero-shot learning (bottom).
Blue and Red markers represent data from source and target domains respec-
tively. The Black markers represent learned class-level representations. The
shapes of “triangle”, “diamond” and “square” denote three different classes
whilst the shape of “circle” represent unlabelled samples. Filled and hollow
markers represent ground truth labelling and predictions respectively. The
main difference between unsupervised and zero-shot learning conditions is
the access of target data for training as denoted by the presence and absence
of the hollow markers in the left of the two conditions illustrated above.

task is to classify any given new instance xt from the target
domain by learning an inference model y = f(xt) ∈ Yt. It is
noteworthy that Ytl ⊂ Yt = Ys, that is, only a subset of the
target labels have labelled training examples available during
learning, while the instance to classify could belong to any
class in the whole target label space.

The domain adaptation problem under zero-shot learning
conditions is relatively new and under-explored. It differs
from the traditional unsupervised domain adaptation in two
ways. On one hand, unsupervised domain adaptation assumes
there is no labelled data from target domain, while in the
zero-shot learning problem it is assumed there exist some
labelled examples from the target domain although the labelled
examples are only restricted to a subset of the whole target
label space. On the other hand, the testing samples in the
zero-shot learning condition are not available during training
while in the unsupervised condition they are used for training
together with other labelled data. An illustration for the two
conditions is shown in Figure 1. In addition, the zero-shot
learning condition is also different from supervised domain
adaptation [19], [20] and semi-supervised domain adaptation
[21], [22] where labelled examples in the target domain are
assumed to be available for all classes (i.e. Ytl = Yt).

Domain adaptation under zero-shot learning condition poses
different challenge from other domain adaptation problems.
It could be easy to classify target data from known classes
but quite difficult for those from unseen classes since models
learned under this condition could bias to known classes and
mistakenly classify all target data as known classes.

III. RELATED WORK

In this section, we firstly review existing work related
to unsupervised domain adaptation. Subsequently, we briefly

describe zero-shot learning problems, how we formulate the
domain adaptation problem under the zero-shot learning con-
dition and existing work related to ours.

A. Unsupervised Domain Adaptation

Unsupervised domain adaptation has attracted much at-
tention in recent years. Existing approaches to unsupervised
domain adaptation in literature can be roughly categorized
into two groups: feature transformation approaches [1]–[7]
and deep feature learning approaches [8]–[16].

Feature transformation approaches aim to transform the
source domain and/or target domain features such that trans-
formed source and target domain data can be aligned. As such
the classifier learned from labelled source data can be directly
applied to target data. Usually linear transformations are used
by learning the projection matrices with different optimization
objectives and a kernel trick can help to explore the non-linear
relations between source and target domain data if necessary.
The most commonly employed objective for unsupervised
domain adaptation is to align data distributions in source and
target domains [1], [2]. For this purpose, Maximum Mean Dis-
crepancy (MMD) based distribution matching has been used to
reduce differences of the marginal distributions [2], conditional
distributions or both [1], [7]. Manifold Embedded Distribution
Alignment (MEDA) [7] learns a domain-invariant classifier
based on the transformed features where the transformation
aims to align both the marginal and conditional distributions
with quantitative account for their relative importance. Joint
Geometrical and Statistical Alignment (JGSA) [4] learns two
coupled projections that project the source and target domain
data into a joint subspace where the geometrical and distribu-
tion shifts are reduced simultaneously. Apart from the distribu-
tion alignment, recent feature transformation based approaches
also promote the discriminative properties in the transformed
features. Scatter Component Analysis (SCA) [5] aims to learn
a feature transformation such that the transformed data from
different domains have similar scattering and the labelled data
are well separated. A Linear Discriminant Analysis (LDA)
framework was proposed in [23] by learning class-specific
projections. Similarly, Li et al. [24] proposed an approach
to feature transformation towards Domain Invariant and Class
Discriminative (DICD) features.

The proposed approach in this paper falls under this cate-
gory since it learns a joint subspace from source and target
domains. To learn the projection matrix transforming both
source and target features into the joint subspace, we take
advantage of pseudo labels of target data and iteratively update
the projection matrix with the combination of labelled source
data and pseudo-labelled target data. This strategy of using the
pseudo labels of the target domain data with iterative learning
has been employed in many approaches [1], [2], [4], [7]. In
contrast to the iterative learning in the existing approaches
which use all the pseudo-labelled target data, we select a part
of target data which have been labelled with relatively higher
confidence whilst ignore the ones with lower confidence in
each iteration (see Section IV-D).



Deep feature learning approaches to domain adaptation
were inspired by the success of deep Convolutional Neural
Networks (CNN) in visual recognition [25]. Attempts have
been made to take advantage of the powerful representation
learning capability of CNN combined with a variety of feature
learning objectives. Most deep feature learning approaches aim
to learn domain-invariant features from raw image data in
source and target domains in an end-to-end framework. Specif-
ically, the objectives of feature transformation approaches have
been incorporated in the deep learning models. To learn the
domain-invariant features through a deep CNN, the gradient
reversal layer was proposed in [8] and used in other deep
feature learning approaches [10], [14], [15] as well. The
gradient reversal layer connects the feature extraction layers
and the domain classifier layers. During backpropagation, the
gradients of this layer multiplies a certain negative constant
to ensure the feature distributions over two domains are
made similar (as indistinguishable as possible for the domain
classifier). Deep Adaptation Networks (DAN) [9] and Residual
Transfer Network (RTN) [11] aim to learn transferable features
from two domains by matching the domain distributions of
multiple hidden layer features based on MMD. Deep CORAL
[26] integrates the idea of CORAL [3] into a deep CNN
framework to learn features with favoured properties (i.e.
aligned correlations over source and target distributions for
multiple layer activations). These approaches only consider
the alignment of marginal distributions and cannot ensure the
separability of target data. Deep Reconstruction Classification
Network (DRCN) [27] trains a feature learning model using
labelled source data and unlabelled target data in the super-
vised and unsupervised learning manners respectively. More
recently, the prevalent Generative Adversarial Network (GAN)
loss has been employed in Adversarial Discriminative Domain
Adaption (ADDA) [28] with promising results.

Though deep learning based approaches are able to train the
models in an end-to-end way, their performance on benchmark
datasets has not outperformed the feature transformation based
approaches especially when the deep features are used for
feature transformation itself.

B. Zero-Shot Learning

Zero-shot learning (ZSL) aims to recognize novel classes by
transferring knowledge learned from known classes to unseen
classes [17]. ZSL has attracted much attention since it provides
a promising solution to the sparse labelling issues in real world
applications. In traditional zero-shot visual recognition tasks,
the source domain data are usually of a different modality
such as human-defined class attributes and large corpus hence
it suffers from the semantic gap between visual and semantic
representations [17]. Since the domain adaptation problem
under the zero-shot learning condition formulated in Section
II assumes both source and target data are from visual domain,
the semantic gap issue suffered in traditional zero-shot learning
tasks can be alleviated though the domain shift still exists.
Traditional ZSL approaches can only tackle the class-level
semantic representations (e.g., attributes and word vectors)

even the source domain data come with multiple labelled
examples [29]. As a result, most existing ZSL methods are
not ready to be directly applied in our proposed problem.

Domain adaptation under the zero-shot learning condition
has been investigated in [30] and [19]. However, this work only
focused on the conventional zero-shot learning [31] where the
test instances are restricted to be only from unseen classes.
Our work aims to address the generalized zero-shot learning
problem [31] which arises from a more realistic situation
where test instances can belong to any class (i.e. either known
or unseen classes).

IV. METHOD

The proposed method aims to learn a subspace from the
domain and target features so that the transformed features in
the subspace are domain-invariant and well-separated. We have
many options for this purpose including linear discriminant
analysis (LDA) and supervised locality preserving projection
(SLPP). According to [17], SLPP has favourable properties
that data structures can be preserved after projection hence
avoiding overfitting to the training data. It is therefore appro-
priate for the problems where test data and training data have
different distributions. For unsupervised domain adaptation,
there is no labelling information available for target domain
data. To address this issue, we use pseudo labels generated
by a classifier (e.g. nearest neighbour). To avoid the wrongly
labelled target instances undermining the subspace learning
process by propagating the errors to the next iteration, we
propose a Confidence-Aware Pseudo Label Selection (CAPLS)
scheme. For the zero-shot learning condition, we use the la-
belled source data and labelled target data to learn the subspace
and project both source and target data into the subspace
in which the out-of-sample classification can be done using
nearest neighbour (to the learned class-level representations).
In the following subsections, we describe each component in
detail.

A. Data Preprocessing

As the first step of our approach, l2 normalization is applied
to all data as follows:

x̂ = x/||x||2. (1)

The use of l2 normalization results in the data points dis-
tributed on the surface of a hyper-sphere which will help
to align data from different domains [17]. Our experimental
results in this study also provide empirical evidence that
sample normalization is beneficial to superior performance.
Besides, feature normalization (e.g., Z-score normalization)
might be needed depending on the features used, which,
however, is not a must for deep features employed in our
experiments.

B. Joint Subspace Learning

We aim to learn a subspace to which the source and target
domain data can be projected by a projection matrix and the
projected data are domain-invariant and well-separated. To



this end, the supervised locality preserving projection [17] is
employed. We denote the projection matrix as P ∈ Rds×d,
where d is the dimensionality of the subspace and ds is
assumed to be equal to dt in the following presentation for
convenience without loss of generality.

In SLPP, the following cost function is employed to learn
the projection matrix P :

L(P ;W,X l) =
∑
i,j

||PTxi − PTxj ||22Wij (2)

where xi is the i-th column of the labelled data matrix X l

which is a collection of labelled data in both source and target
domains and each column vector represents an instance. The
similarity matrix W is defined as follows:

Wij =

{
1, yi = yj ,
0, otherwise

(3)

That is, Wij is set to 1 when xi and xj have the same label
regardless of which domain they are from, otherwise the value
is set 0. This is different from the original SLPP in [17] where
the distances between samples are considered to construct the
similarity matrix W . Here we ignore the within-class sample
distances since we aim to align the source and domain data
in the learned subspace. It has been proved empirically that
Eq.(3) is sufficient to capture the intrinsic data structures
to learn a domain-invariant yet discriminative subspace by
minimizing the cost function defined in Eq.(2).

Minimizing the cost function in Eq.(2) enables the instances
of the same class stay close to each other in the learned
subspace no matter whether they are from the same domain or
different domains. Following the treatment in [17], [18], the
objective can be rewritten in the following form:

max
P

Tr(PTX lDX lTP )

Tr(PT (X lLX lT + I)P )
(4)

where L = D−W is the laplacian matrix, D is a diagonal ma-
trix with Dii =

∑
j Wij and the regularization term Tr(PTP )

is added for penalizing extreme values in the projection matrix
P .

The problem defined in Eq.(4) is equivalent to the following
generalized eigenvalue problem:

X lDX lT p = λ(X lLX lT + I)p, (5)

solving the generalized eigenvalue problem gives the optimal
solution P = [p1, ..., pd] where p1, ..., pd are the eigenvectors
corresponding to the largest d eigenvalues.

C. Recognition in Subspace

Once the joint subspace is learned, we can project data from
either source or target domain into the subspace by:

zi = PTxi (6)

where zi is the projection of xi in the subspace.

Algorithm 1 Domain Adaptation Under Zero-Shot Learning
condition
Input: The labelled source data Ds = {(xsi , ysi )}, i =

1, 2, ..., ns and labelled target data Dtl = {(xtli , ytli )}, i =
1, 2, ..., ntl, dimensionality of subspace d, test instance
from target domain xt.

Output: The projection matrix P and predicted label ŷt.
1: Do data pre-processing using Eq.(1);
2: Learn the joint subspace (projection matrix P ) using

Eq.(5);
3: Predict the label ŷt for test instance xt using Eq.(9).

To facilitate the separability of data projected into the
subspace, we follow [17] and apply the centralization (i.e.
mean subtraction) and l2 normalization to all the projections:

z ← z − z̄, (7)

z ← z/||z||2, (8)

where z̄ is the mean of all the projected training data (i.e., all
the source and target data for unsupervised domain adaptation
condition; source data and labelled target data for zero-shot
learning condition).

Given any instance xt from the target domain, we now
predict its corresponding label yt. We firstly project the
instance from target domain into the subspace by Eq.(6) and
then apply the centralization and normalization by Eq.(7) and
Eq.(8). The label of a target instance is then predicted with:

ŷt = arg min
y

||zt − z̄y||2, y ∈ Yt, (9)

where

z̄y =

∑
i z

s
i δ(y, y

s
i ) +

∑
j z

lt
j δ(y, y

lt
j )∑

i δ(y, y
s
i ) +

∑
j δ(y, y

lt
j )

(10)

is the mean vector of the projected source data whose labels
are y, δ(y, yi) = 1 if y = yi and 0 otherwise. Note that the
class means z̄y are calculated using only labelled source data
for unsupervised domain adaptation and labelled target data
are also used for zero-shot learning problem. Following [17],
we apply l2 normalization to z̄y before using them in Eq.(9).

To this point, it is straightforward to apply the proposed
approach to the zero-shot learning condition and the algorithm
is summarized in Algorithm 1. For unsupervised domain
adaptation, however, we only have labelled data from source
domain and labelled target data are needed for domain align-
ment. To this end, we use pseudo-labelled target instances
and the iterative learning strategy described in the following
subsection.

D. Unsupervised Domain Adaptation Using CAPLS

Our domain adaptation framework based on joint subspace
learning (c.f. Section IV-B) requires labelled data from both
source and target domains for domain alignment. However,
for unsupervised domain adaptation problem, we do not have
any labelled target data. To address issue, as mentioned above,



we use pseudo labelled target for domain-invariant subspace
learning. Specifically, we learn a projection matrix P0 using
only labelled source data and get the pseudo labels of all the
target data using Eq.(9). Once the target data are labelled,
we combine the pseudo-labelled target data with the labelled
source data and relearn the projection matrix P . This process
is repeated for multiple times, as a result, the learned subspace
becomes more domain-invariant and discriminative until con-
vergence.

One drawback of the iterative learning strategy used in most
exiting approaches is that the classification errors in the early
iterations will be propagated to the later iterations thus leading
the algorithm to a sub-optimal solution. To alleviate this issue,
we propose a confidence-aware pseudo label selection scheme.
Instead of using all the pseudo-labelled target data, we select a
portion of them with high confidence to combine with labelled
source data for the next iteration learning.

Specifically, we transform the distance from a given test
instance z to the i-th class representation z̄i (i.e. di = ||z −
z̄i||2 in Eq.(9) into probability qi using the following softmax
function:

qi =
e−di∑|Ys|
i=1 e

−di

(11)

where |Ys| is the number of labels of the source data (also
that of the target data). qi denotes the probability that the given
test instance belongs to the i-th class.

Now we use Q ∈ Rnt×|Ys| to collectively denote the
predicted probability matrix of all the target data and Qij

denotes the probability of i-th target instance belong to j-th
class. For each class, there is no doubt that the target instances
labelled as this class with higher probabilities are more likely
correctly labelled, hence they should be selected to participate
in the next iteration of learning. As a result, in t-th iteration,
we select top t/T percent pseudo-labelled target instances for
each class as trustable ones for the next-iteration learning,
where T is the total number of iteration. It is noteworthy that
the selection is class-wise so that there exists pseudo-labelled
target data selected for each class. The complete unsupervised
domain adaptation approach using CAPLS is summarized in
Algorithm 2 whose time complexity is O(T (d3 + dn2)).

V. EXPERIMENT

In this section, we describe our experiments on three com-
monly used domain adaptation datasets (i.e. Office+Caltech
[34], Office31 [30] and Office-Home [35]) under unsupervised
and zero-shot learning conditions. The experimental results are
presented and compared with those of state-of-the-art domain
adaptation approaches.

A. Datasets

Office+Caltech dataset is one of the most commonly used
datasets for unsupervised domain adaptation released by Gong
et al. [34]. The dataset consists of four domains: Amazon
(images downloaded from online merchants), Webcam (low-
resolution images by a web camera), DSLR (high-resolution
images by a digital SLR camera) and Caltech-256. 10 common

Algorithm 2 Unsupervised Domain Adaptation Using CAPLS
Input: The labelled source data Ds = {(xsi , ysi )}, i =

1, 2, ..., ns and unlabelled target data Dt = {(xti}, i =
1, 2, ..., nt, dimensionality of subspace d, number of iter-
ation T .

Output: The projection matrix P and predicted label {ŷt}.
1: Initialize t = 0;
2: Do data pre-processing using Eq.(1);
3: Learn the projection P0 using only Ds;
4: Assign pseudo labels for all target data using Eq.(9);
5: while t ≤ T do
6: t← t+ 1;
7: Select top t/T percent trustful pseudo-labelled target

data for each class;
8: Learn Pt using Ds and selected pseudo-labelled target

data;
9: Update pseudo labels for all target data using Eq.(9).

10: end while

classes from all four domains are used: backpack, bike, calcu-
lator, headphone, computer-keyboard, laptop-101, computer-
monitor, computer-mouse, coffee-mug, and video-projector.
There are 2533 images in total with 8 to 151 images per
category per domain. The Decaf6 [36] features (activations of
the 6th fully connected layer of a convolutional neural network
trained on ImageNet) are used in our experiments for a direct
comparison with others.

Office31 dataset [30] is also a benchmark dataset commonly
used for evaluating different domain adaptation approaches.
The dataset consists of three domains: Amazon, Webcam and
DSLR. There are 31 common classes for all three domains
containing 4,110 images in total. ResNet50 [37] has been
commonly used to extract features or as the backbone of deep
models in literature, hence we use ResNet50 features in our
experiments for this dataset.

Office-Home dataset [35] is another dataset recently re-
leased for evaluation of domain adaptation algorithms. It
consists of four different domains: Artistic images, Clipart,
Product images and Real-World images. There are 65 object
classes in each domain with a total number of 15,588 images.
Again, we extracted ResNet50 features in our experiments for
fair comparisons with others.

B. Experiments on Unsupervised Domain Adaptation

To evaluate the effectiveness of our proposed approach
on unsupervised domain adaptation, we conduct comparative
experiments on all three datasets. Following the standard pro-
tocols [7], [34], we exhaustively select two different domains
from one dataset as the source domain and target domain
respectively, which allow us to have 12, 6 and 12 combina-
tions for Office+Caltech, Office31 and Office-Home datasets
respectively. We compare the performance of our approaches
with those of typical state-of-the-art methods including both
feature transformation and deep feature learning approaches.



TABLE I
CLASSIFICATION ACCURACY (%) ON OFFICE-CALTECH DATASET FOR UNSUPERVISED DOMAIN ADAPTATION. THE FEATURE TRANSFORMATION

APPROACHES USE DECAF6 FEATURES. COLUMNS DISPLAY RESULTS OF SOURCE→ TARGET PAIRS.

Method C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W Average
DCORAL [26] 92.4 91.1 91.4 84.7 - - 79.3 - - 82.8 - - -

DDC [32] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 84.9 100.0 81.1 89.5 98.2 88.2
DAN [9] 92.0 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100.0 80.3 90.0 98.5 90.1

CORAL [6] 92.0 80.0 84.7 83.2 74.6 84.1 75.5 81.2 100.0 76.8 85.5 99.3 84.7
SCA [5] 89.5 85.4 87.9 78.8 75.9 85.4 74.8 86.1 100.0 78.1 90.0 98.6 85.9
JDA [1] 89.6 85.1 89.8 83.6 78.3 80.3 84.8 90.3 100.0 85.5 91.7 99.7 88.2

JGSA [4] 91.4 86.8 93.6 84.9 81.0 88.5 85.0 90.7 100.0 86.2 92.0 99.7 90.0
MEDA [7] 93.4 95.6 91.1 87.4 88.1 88.1 93.2 99.4 99.4 87.5 93.2 97.6 92.8

SLPP 91.3 73.6 86.6 82.6 72.2 82.8 71.8 79.5 100.0 79.2 88.5 99.3 84.0
CAPLS(LDA) 91.1 85.4 94.9 83.5 86.4 90.4 87.7 92.5 100.0 87.8 92.4 99.7 91.0
CAPLS(Ours) 90.8 85.4 95.5 86.1 87.1 94.9 88.2 92.3 100.0 88.8 93.0 100.0 91.8

TABLE II
CLASSIFICATION ACCURACY (%) ON OFFICE31 DATASET FOR

UNSUPERVISED DOMAIN ADAPTATION. THE FEATURE TRANSFORMATION
APPROACHES USE RESNET50 FEATURES AND DEEP MODELS USE

RESNET50 AS BACKBONES. RESULTS ARE FROM THE ORIGINAL PAPER
EXCEPT THE ONES LABELLED WITH ∗ FOR WHICH WE REPORT THE

RESULTS FROM THE SUPPLEMENTARY MATERIAL OF [7].

Method A→W D→W W→D A→D D→A W→A Average
DAN∗ [9] 80.5 97.1 99.6 78.6 63.6 62.8 80.4
JDDA [13] 82.6 95.2 99.7 79.8 57.4 66.7 80.2
RTN [11] 84.5 96.8 99.4 77.5 66.2 64.8 81.6

MADA [14] 90.0 97.4 99.6 87.8 70.3 66.4 85.2
GTA [33] 89.5 97.9 99.8 87.7 72.8 71.4 86.5
iCAN [15] 92.5 98.8 100.0 90.1 72.1 69.9 87.2

CDAN-M [16] 93.1 98.6 100.0 92.9 71.0 69.3 87.5
MEDA [7] 86.2 97.2 99.4 85.3 72.4 74.0 85.7

SLPP 77.9 97.4 99.2 80.1 68.4 66.2 81.5
CAPLS(LDA) 77.0 99.1 99.8 77.9 61.8 60.8 79.4
CAPLS(Ours) 90.6 98.6 99.6 88.6 75.4 76.3 88.2
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Fig. 2. The effect of different values of d (left) and T (right).

We follow [7] and use per-image accuracy as the evaluation
metric in all our experiments.

In addition, we also report the performance of some baseline
methods to evaluate how different components of our approach
contribute to the final performance. To evaluate the contribu-
tion of the CAPLS strategy, we remove it from our approach
and report the performance of the baseline method dubbed
SLPP. To compare the performance of different subspace
learning algorithms, we replace the SLPP with LDA and
report the performance of this baseline which is named as
CAPLS(LDA).

Our approach consists of two hyper-parameters: the di-
mensionality of subspace d and the number of iterations T .
We conduct an experiment to investigate how our approach
is sensitive to these two hyper-parameters. Firstly, we fix

T = 20 and set d = {16, 32, 64, 128, 256, 512} respectively
and get results presented in Figure 2 (left). It is obvious that
when d is greater than 64, we can achieve stable accuracy
for all three datasets. Secondly, we set d = 128 and T =
{5, 10, 15, 20, 25, 30} respectively and get results shown in
Figure 2 (right), which indicates our approach is not sensitive
to the number of iterations T . As a result, we set fixed values
as d = 128 and T = 20 across all the experiments in this
section.

Table I shows the results of comparative experiments on Of-
fice+Caltech dataset under the unsupervised domain adaptation
condition. For a fair comparison, the results of all methods
are based on Decaf6 features. By comparing our approach
with two baseline methods, i.e., SLPP and CAPLS(LDA), we
can see that both the SLPP based joint subspace learning
and the confidence-aware pseudo label selection scheme play
important roles in achieving good performance for unsuper-
vised domain adaptation. We compare our approach with three
deep learning based methods (i.e. DCORAL [26], DDC [32]
and DAN [9], GTA [33]). Our approach achieves superior
accuracy than the deep feature learning models in most tasks
and a superior average accuracy of 91.8%. When compared
with other feature transformation approaches, our approach
ranks the second in terms of the average accuracy over 12
tasks with slightly worse performance than MEDA [7] which
is a combination of manifold feature learning and dynamic
distribution alignment techniques.

Table II shows the results of comparative experiments on
Office31 dataset under the unsupervised domain adaptation
condition. For a fair comparison, all the feature transformation
approaches use ResNet50 features and all the deep learning
methods use ResNet50 as their backbones. Our proposed
approach achieves the best performance of 88.2% in terms
of the average accuracy over 6 tasks, outperforming seven
state-of-the-art deep feature learning methods (i.e., DAN [26],
JDDA [13], RTN [11], MADA [14], iCAN [15] and CDAN-
M [16]) and the competitive feature transformation approach
MEDA [7]. The comparison with two baseline methods also
indicate the effectiveness of SLPP as the subspace learning al-
gorithm and the necessity of CAPLS for unsupervised domain
adaptation.

Table III displays the results of comparative experiments
on Office-Home dataset. Since this is a relatively new dataset,



TABLE III
CLASSIFICATION ACCURACY (%) ON OFFICE-HOME DATASET FOR UNSUPERVISED DOMAIN ADAPTATION. THE FEATURE TRANSFORMATION

APPROACHES USE RESNET50 FEATURES AND DEEP MODELS USE RESNET50 AS BACKBONES. RESULTS ARE FROM THE ORIGINAL PAPER EXCEPT THE
ONES LABELLED WITH ∗ FOR WHICH WE REPORT THE RESULTS FROM THE SUPPLEMENTARY MATERIAL OF [7].

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Average
DAN∗ [9] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
JAN∗ [12] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN-M∗ [16] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8
MEDA [7] 54.6 75.2 77.0 56.5 72.8 72.3 59.0 51.9 78.2 67.7 57.2 81.8 67.0

SLPP 49.3 70.5 74.9 55.7 68.9 69.7 57.2 47.3 75.4 67.5 53.0 80.5 64.2
CAPLS(LDA) 47.1 72.8 77.6 57.3 76.5 78.0 55.8 47.7 81.7 65.9 52.6 84.5 66.5
CAPLS(Ours) 56.2 78.3 80.2 66.0 75.4 78.4 66.4 53.2 81.1 71.6 56.1 84.3 70.6

TABLE IV
CLASSIFICATION ACCURACY (%) ON OFFICE-HOME DATASET FOR ZERO-SHOT LEARNING CONDITION. WE REPORT THE MEAN ACCURACY OVER 5

RANDOM KNOWN/UNSEEN CLASS SPLITS AND STANDARD ERRORS OF THE MEAN.

Method R→A R→C R→P
Known Unseen H Known Unseen H Known Unseen H

1NN 64.7± 0.7 52.3± 0.7 57.8± 0.2 71.6± 0.4 32.5± 0.7 44.7± 0.7 87.0± 0.6 67.5± 1.0 76.0± 0.5
SVM 72.1± 0.3 58.4± 0.4 64.5± 0.3 66.6± 0.3 37.7± 1.2 48.1± 1.0 88.4± 0.3 71.8± 1.5 79.2± 0.8
LDA 68.9± 0.4 60.7± 0.7 64.5± 0.4 71.5± 0.6 42.6± 0.7 53.3± 0.5 88.9± 0.3 78.0± 0.4 83.1± 0.2

MR [38] 68.2± 0.9 2.1± 0.3 4.0± 0.6 71.9± 1.0 2.3± 0.4 4.5± 0.8 88.1± 0.4 3.7± 0.7 7.0± 1.3
BiDiLEL [17] 73.9± 1.1 9.0± 1.2 15.9± 1.8 74.3± 0.8 8.3± 0.6 14.9± 1.0 89.4± 0.3 14.0± 1.4 24.2± 2.0

Ours 72.2± 0.7 64.6± 0.9 68.2± 0.5 73.8± 0.9 46.5± 1.0 57.0± 0.7 89.3± 0.2 78.6± 0.5 83.6± 0.2

there are very few results reported on it. We compare with the
results from supplementary materials of [7]. Again ResNet50
is used for feature extraction or backbone networks for a
fair comparison. We can see that our proposed approach
outperforms others significantly with the average accuracy
of 70.6%. In addition, the two baseline methods have worse
results than our full model which validates the effectiveness
of our framework.

Although our method achieves state-of-the-art results when
deep features are employed, its performance degrades when
hand-crafted features are used on Office-10 dataset for which
the experimental results are not presented in this paper. One
possible reason is our method favours the feature space with
smaller domain shift which provides more correct pseudo-
labels at the beginning of training.

C. Experiments on Zero-Shot Learning

To evaluate the proposed framework under a zero-shot
learning condition, we conduct experiments on Office-Home
dataset which consists of a sufficient number (65) of classes
for ZSL. The source and target domain features are extracted
by ResNet50 pre-trained on ImageNet. To simulate a ZSL
scenario, we randomly select 35 classes as known classes for
which there are labelled target data during subspace learning
and the rest 30 classes are “unseen” for which no target data
are available for learning. In our experiments, the “RealWorld”
domain serves as source domain whilst “Art”, “Clipart” and
“Product” domains serve as target domain respectively. The
reason is “RealWorld” domain data are usually easier to collect
than other three domains in realistic applications. As a result,
we have three tasks: R→A, R→C and R→P. In each task, all
source domain (“RealWorld”) data are used for training. In
addition, half of the target data in each class are reserved for
testing and the other half for training only if they belong to
known classes.

We use fixed training/test data split for target domain data
and randomly generate 5 known/unseen class splits for a thor-
ough evaluation 1. Considering the unbalanced number of test
images in different classes, we use per-class mean accuracy for
evaluation in this experiment. Following the common way in
evaluating generalized zero-shot learning algorithms [31], we
report the mean accuracy on known classes Accknown and un-
seen classes Accunseen respectively as well as their harmonic
mean H = 2∗Accknown∗Accunseen/(Accknown+Accunseen).

We compare our approach with two baseline methods:
1 Nearest Neighbour (1NN) and Support Vector Machine
(SVM). All source domain data and labelled target domain
data are combined for training without considering any do-
main alignment in these two baseline methods. We also
compare with state-of-the-art zero-shot learning algorithms.
As mentioned in Section II, traditional zero-shot learning
algorithms can only handle class-level representations in the
source domain. To adapt them to our problem, we calculate
class-level source domain representations by averaging the
source domain samples belonging to the same class. After this
adaptation, we apply two zero-shot learning algorithms, i.e.,
bidirectional latent embedding learning (BiDiLEL) [17] and
manifold regularized ridge regression (MR) [38] to our prob-
lem for the comparison. We also replace the SLPP with LDA
in our framework to validate the importance of preserving data
structure when learning subspace of favourable properties.

Table IV shows the results of comparative experiments
on Office-Home dataset under zero-shot learning condition.
We can see that the adapted zero-shot learning algorithms
fail in this problem with very low classification accuracy
in terms of unseen classes though BiDiLEL achieves the
best accuracy on known classes. As a result, two adapted
zero-shot learning algorithms perform much worse than the

1https://github.com/hellowangqian/domain-adaptation-capls.



baseline methods in terms of the harmonic mean H . Our
proposed framework works reasonably well on all three tasks
with high classification accuracy for both known and unseen
classes. With the use of SLPP, our approach achieves the best
classification accuracy on unseen classes and second best on
known classes. The experimental results provide evidence that
our proposed framework is a promising solution to domain
adaptation problems under zero-shot learning conditions.

VI. CONCLUSION

In this paper, we propose a unified framework for visual
domain adaptation under unsupervised and zero-shot learning
conditions. A domain-invariant and discriminative subspace is
learned by SLPP using labelled/pseudo-labelled data from both
domains. A confidence-aware pseudo label selection scheme is
proved to be effective for choosing proper pseudo-labelled tar-
get samples in the iterative learning. Our experimental results
on unsupervised domain adaptation and zero-shot learning
problem prove that the proposed approach achieves state-of-
the-art performance.
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