
Proactive Minimization of Convolutional Networks
Bendegúz Jenei

Institute of Informatics
University of Szeged

Jenei.Bendeguz@stud.u-szeged.hu

Gábor Berend
Institute of Informatics

University of Szeged
MTA-SZTE

Research Group on Artificial Intelligence
berendg@inf.u-szeged.hu

László Varga
Institute of Informatics

University of Szeged
vargalg@inf.u-szeged.hu

Abstract—Optimizing the performance of convolutional neural
networks (CNNs) in real applications (i.e., production programs)
is crucial. The desired network can perform a task while
having minimal evaluation time and resource requirement. The
evaluation time of a network strongly depends on the number of
layers and the number of convolutional kernels in each layers.
Therefore, by minimizing the network while keeping its accuracy
high is a frequent task. In this paper, we present variations
of a method for the automatic minimization of convolutional
networks. Our method minimizes the neural network by omitting
convolutional kernels during the training process, while also
keeping the quality of the results high.

Index Terms—Deep Learning, Convolutional Networks, Auto-
matic Scaling

I. INTRODUCTION

The benefits of using properly sized neural networks in-
clude portability and resource efficiency. With less demanding
networks, cheaper hardware such as mobile devices will be
capable of running convolutional networks, making them more
widely available. The computational costs can also be reduced,
producing results faster and with more modest hardware.

Classical approach for determining the optimal network
structure is a trial-by-error strategy trying out various networks
structures and choosing one giving acceptably good results
with the minimal computational cost. Another, more automatic
method for finding optimal network structure is using grid
search, i.e., training multiple networks with varying number
of neurons in each layer. The above processes, however, can be
long and time consuming, since training networks from scratch
can be resource demanding, and/or require human interaction.

In this paper, we propose automatic ways of determining
the appropriate neuron count and network size for a given
problem. This way, no repeated testing and trial-and-error is
required for finding proper hyperparameters of the network.
The other advantage of our proposed solution is that the
minimization process works automatically without requiring
human intervention. This approach is also less resource de-
manding in contrast to more resource intensive solutions,

This research was in part supported by the project ”Integrated program
for training new generation of scientists in the fields of computer science”,
no EFOP-3.6.3-VEKOP-16-2017-0002. The project has been supported by
the European Union and co-funded by the European Social Fund. This work
was in part supported by the National Research, Development and Innovation
Office of Hungary through the Artificial Intelligence National Excellence
Program (grant no.: 2018-1.2.1-NKP-2018-00008).

such as the grid search, i.e., training multiple networks with
different numbers of neurons in each layer.

The method described in this paper tries to proactively de-
termine the size of the network, by measuring its performance
in the training process repeatedly and removing neurons based
on various strategies. This is done by minimizing a network
of initially bigger size. Then – with an appropriate selection
strategy – we select a neuron to omit in the training process
and checking if the network performance can be restored
without the selected neuron. If good network performance
can be obtained without the selected neuron, then we per-
manently remove it from the structure, and iteratively repeat
the selection-reduction cycle.

We designed a test environment for testing neuron selection
strategies for the minimization, and propose thee strategies for
it. We also designed a process for the automatic minimization
of networks, and evaluated the process under various condi-
tions with a great number of software tests, by minimizing a
fully convolutional neural network trained for edge detection.

II. RELATED WORK

CNNs have a prevalent presence in computer vision re-
search [1]–[3]. Dropout [4] is a popular approach to increase
the generalization ability of neural networks. By temporarily
deactivating neurons with a predefined probability, it has the
property to mitigate overfitting by preventing the assignment
of excessive credit to a single neuron. Dropout essentially can
be viewed as training an ensemble of classifiers at a time in
an efficient manner [5], however, it does not remove neurons
permanently from the network. Dropout is typically applied
for fully connected layers in neural networks, but they are
applicable for convolutional layers as well.

Our solution resembles dropout in that it essentially de-
activates specific kernels of the CNN. A major distinction
compared to drouput is nonetheless that instead of doing the
deactivation in a stochastic manner and for a single batch,
we deactivate kernels for multiple batches and might as well
decide to discard them for the rest of the training and inference
time.

Zhou et al. [6] performed ablation experiments by turning
off individual units in CNNs. The main motivation in [6],
however, was not to decrease the computational needs of the
CNN architecture employed, but to gain insights about how

IJCNN 2019 - International Joint Conference on Neural Networks, Budapest Hungary, 14-19 July 2019

978-1-7281-2009-6/$31.00 ©2019 IEEE paper N-20176.pdf

specific kernels of CNNs specialize for the detection of certain
object categories. In our work, we perform deactivation of
convolution kernels in order to gain smaller – hence less
resource intensive – networks without a substantial loss in
performance for the task of edge detection.

Minimizing the complexity of neural networks has been
in the focus of multiple previous research efforts [7]–[9].
[7] proposed a general approach for simplifying the model
complexity of neural networks according to the minimum
description length principle with their main goal not being
to reduce the number of neurons, rather to minimize overall
model complexity. The algorithm described in [8] specifi-
cally deals with the enhancement of CNN architectures. The
proposed approach is orthogonal to ours, as the main goal
in [8] was not to decrease the size of a CNN, but rather
to decrease the computational workload necessary for an
unmodified CNN without relying on hardware acceleration. By
analyzing the linear algebraic properties of the computations in
CNNs, the algorithm proposed in [8] was capable of reducing
computational requirements up to 47% without a serious loss
in accuracy.

Molchanov et al. [9] introduced a CNN pruning framework
similar to ours in a transfer learning setting. [9] relied on the
large pre-trained networks, i.e., VGG-16 [3] and AlexNet [1],
that they iteratively pruned and fine-tuned for image recogni-
tion and hand gesture recognition. Our framework differs from
theirs in that we do not rely on pre-trained networks and our
evaluation is focused on edge detection.

[10] proposed the minimization of neural networks by
first training a high accuracy neural network and distilling its
knowledge by a smaller student network which tries to mimic
the behavior of the large teacher network. This approach
nonetheless requires training multiple neural nets. Polino et
al. proposes the joint usage of model distillation and quanti-
zation in order to increase model compression [11]. The recent
work of [12] proposes a redundancy-aware in-training pruning
strategy which builds upon the partitioning of the model.
This redundancy-aware approach operates on a magnitude-
based strategy, i.e. weights below a certain threshold were
pruned. This is different from our approach we disable entire
convolutional kernels instead of single weights, furthermore,
our criterion for pruning kernels is not magnitude-based.

III. EXPERIMENTAL SETUP

For the development of the methods we designed an ex-
perimental framework. This included a task for training the
network, a test data set and various metrics for developing
and evaluating automatic network minimization techniques.
We implemented our framework in Tesorflow [13].

We decided to use a simple image processing task to
train the network for, namely we aimed at training a fully
convolutional neural network which is capable of reproducing
the output of the Canny edge detector [14] for any given input
image. Although the Canny edge detector involves a sequence
of complex steps, the network mimicking its behavior does
not have to be too complex, which makes the design of the

methods easier and enables us to perform a large number of
evaluations.

One should note, that the provided method can be extended
for any types of neural networks (e.g., classification networks,
RCNN-s, etc.) containing convolutional or fully connected
layers. One only have to implement the removal of the compu-
tational units (i.e., convolutional kernels, or perceptrons) from
the network.

A. Input data

The input data was gained from two sources. The input for
training and validating the edge detection network was given
by the Visual Object Classes Challenge 2012 (VOC2012) data
set [15]. The VOC data set contains colored pictures with
various objects of interest (including classes for airplanes,
people, bicycles, horses, etc.) As our task was to perform edge
detection, we did not rely on the labels of the images during
training, solely the images themselves. For testing the final
results, we used the test image set of the 2017 MS COCO
database [16].

We cropped each image to the same size of 256×256 pixels
and used the centre of the original image. Images with a size
smaller then 256 pixels in any dimensions were padded with
zeros.

The input of the networks had only one color channel, there-
fore, RGB images were converted to grey scale. The expected
outputs were the results of the Canny edge detector, which we
generated by the built-in Canny function of MATLAB.

We partitioned the data set to three parts. The training data
was given by 10000 images of the VOC2012 data set. Another
100 images from the VOC2012 was used for validation of the
nets. Finally, to get a sound final evaluation, we tested the
accuracy on the 2017 MS COCO database containing 40670
images.

IV. METHODS

The starting point of the optimization is a maximal neural
network. We start by determining a maximal networks struc-
ture that we assume is capable of learning the task at hand.

Then, pruning of the maximal network is performed in a
two-stage procedure:

• First, train the maximal network until convergence,
• Then proactively omit convolutional kernels by removing

them from the network until no more kernels can be
removed while keeping the quality of the results within
a tolerance limit.

The iterative network minimization process uses a back-
tracking process, together with various neuron selection strate-
gies that is illustrated in Figure 1.

The backtracking process includes saving the current stage
of the network. Then, we select a convolutional kernel that we
want to omit, and remove it from the network. The reduced
network might have worse performance, therefore, we fine-
tune the net by performing a limited number of training
steps to gain back the accuracy of the results. Finally, we
check if the results have approximately the same accuracy.

Exiting

criterion met?

Train 2k steps

Score below

threshold?

Select a neuron

Restore the network

Yes

Yes

No

Save the network

No

Input network

Minimized network

Fig. 1. Process of the network optimization method.

We accept the new networks structure if the new accuracy is
above an adaptive threshold value determined as a function of
the previous evaluation of the model. If the accuracy of the
imputed network is below the predefined tolerance level, we
reject the last pruning step on the network and revert it to its
previous state.

This process has a handful of parameters that we describe
next. First of all, we need to have a neuron selection strategy to
choose which convolutional kernel to omit. We detail various
selection methods we considered in Section IV-A.

We also need to define a proper threshold for the tolerance
level based on which we decide on the acceptance or the rever-
sion of the change in the network structure. For this purpose
we compared the εold previous accuracy of the network on the
validation data set and compared it to the εnew new accuracy.
We kept the change if

εnew ≥ τ · εold , (1)

for some τ ∈ [0, 1] threshold value. We employed different
stopping criteria for our network reduction approach in con-
junction with the different neuron filtering strategies.

Based on preliminary experiments we used a network con-
taining three convolutional layers each followed by a ReLU
activation. The kernels of each convolutional layer had the

Fig. 2. Illustration of the maximal network.

size of 5× 5× [input channel count]. The first two layers had
5 kernels, while the final layer had only one output, i.e., the
predicted edge map. This network structure is illustrated in
Figure 1.

We trained the network with the Adam optimizer [17]
minimizing the loss function

1− E(M,M̂) , (2)

where

E(M,M̂) =
2P (M, M̂)

2P (M,M̂) +N(M,M̂)
, (3)

having
P (M,M̂) =

∑
M ∗ M̂ (4)

and
N(M, M̂) =

∑
|M − M̂ | . (5)

Here, we assume, that M is the output of the neural network
and M̂ is the expected edge map. Note that in the binary case,
(3) is equivalent to the standard f1 measure often employed
in information retrieval [18].

The training of the initial networks was performed with a
batch size of 3 images, using 10000 iterations.

A. Neuron Selection Strategies for the Reduction

We used various strategies for selecting the neuron to omit.
In this Section we summarize our findings.

1) Sequential Neuron Selection: The first selection strategy
is a simple sequential method. When applying this approach
we omitted all the neurons in a sequence one after the other.
We started with the first kernel of the first layer (i.e., the layer
connected directly to the input) and omitted one neuron at a
time.

After removing the current neuron, we trained the network
for 2000 iterations and checked if the performance of the new
net fulfilled the condition in (1). In case the condition is not
met, we reverted the net to its previous checkpoint. If the
threshold condition was fulfilled we accepted the change. No
matter if the pruning was accepted or rejected, the algorithm
continued with probing the next neuron in the sequence. The
stopping criteria for this selection method was checking all
the possible neurons.

2) Random Neuron Selection: We also evaluated a random
strategy, where kernels to be omitted were selected randomly.
After removing and training the net further, we again checked
if the new net can be accepted according to condition (1). This
approach was allowed to propose kernel removals at most 50
times (including accepted and rejected proposals as well).

3) Selection Based on Cosine Similarity: Our assumption
was that reduction is possible if the network contains redun-
dancy in the kernels, i.e., some kernels perform very similar
operations.

In order to reduce redundancy and network size simul-
taneously, we designed a selection strategy based on the
cosine similarity. Before each reduction step, we calculated the
cosine similarities between the kernels of the same layers. The
similarity was calculated by comparing vectors gained from
the weights of the kernel together with the bias of the neuron.
This gave us similarity matrices showing the correspondence
between kernels.

With the similarity matrices at hand, we still needed a
numerical tool for comparing the kernels with one single
number. Therefore, we calculated statistics for each kernel by
the following tools:

• Average similarity with other neurons (Avg);
• Standard deviation of cosine similarities (Std);
• Maximal similarity with other neurons (Max);
• Minimal similarity with other neurons (Min);
• Median of cosine similarities with other neurons (Med).

To find out witch of the above metrics can be used for
selecting the neuron to omit, we designed a set of experiments,
where we calculated the statistics of neurons, and also tested
the performance of the nets after removing the neuron.

We calculated the accuracy of the network directly after
disabling a particular neuron and after training the net for
10000 iterations. Then, we compared the final accuracy of the
results to the statistics gained from the cosine similarities with
three correlation coefficients.

As a convolutional kernel can hold the same information
as another one by using an inverse kernel, we calculated
statistics for the original and the absolute values of the cosine
similarities as well.

We used one hundred networks trained from different
random seeds to grain a reliable result. We calculated the
correlations within each layers of the networks, and examined
the average values of the results. The summary of our results
can be found in Table I.

TABLE I
CORRELATIONS BETWEEN NETWORK ACCURACY AFTER DISABLING A
NEURON COMPARED TO THE STATISTICS ON THE COSINE SIMILARITY.

LOSS DENOTES THE f1 SCORE AFTER OMITTING THE NET; BEST DENOTES
CORRELATION WITH THE BEST PERFORMANCE AFTER FURTHER

TRAINING. TABLES SHOW THREE CORRELATION COEFFICIENTS: PEARSON
(PRS); KENDALL (KND) AND SPEARMAN (SPR). THE TWO TABLES SHOW
STATISTICS USING THE SIGNED AND ABSOLUTE COSINE SIMILARITY AS

WELL.

Signed Cosine Similarity
Avg Std Max Min Med

loss(prs) 0.21 0.26 0.06 -0.32 -0.20
loss(knd) 0.02 0.20 0.13 -0.30 -0.01
loss(spr) 0.04 0.28 0.21 -0.27 -0.02
best(prs) 0.11 0.14 0.15 -0.05 0.13
best(knd) 0.09 0.08 0.09 -0.04 0.09
best(spr) 0.13 0.12 0.14 -0.06 0.14

Absolute Cosine Similarity
Avg Std Max Min Med

loss(prs) 0.30 0.26 0.30 0.15 0.28
loss(knd) 0.18 0.16 0.19 0.08 0.16
loss(spr) 0.24 0.22 0.26 0.11 0.22
best(prs) 0.04 0.05 0.06 0.02 0.03
best(knd) 0.03 0.04 0.05 -0.01 0.02
best(spr) 0.04 0.06 0.07 -0.01 0.02

TABLE II
STATISTICS SHOWING THE PERFORMANCE OF NETWORKS BEFORE AND

AFTER DISABLING ONE NEURON BASED ON COSINE SIMILARITY. RESULTS
ARE GIVEN FOR ONLY DISABLING THE NEURON WITH A MAXIMAL VALUE

OF THE ONE SPECIFIED CHARACTERISTICS (I.E., AVERAGE; STANDARD
DEVIATION; MAXIMUM; MINIMUM; MEDIAN) OF COSINE SIMILARITY
WITHIN ITS LAYER, WITHOUT FURTHER TRAINING. THE TABLE ALSO
SHOWS STATISTICS CORRESPONDING TO DISABLING EACH NEURON.

Before After After/Before Ratio
Cos-Avg

0.7

0.467 0.667
Cos-Std 0.617 0.881
Cos-Max 0.584 0.835
Cos-Min 0.481 0.687
Cos-Med 0.516 0.736

Any neuron 0.549 0.784

According to the results, immediately after omitting a
neuron there are week correlations between the statistics of
the cosine similarity and the performance of the new network.

In case of the signed correlations, the strongest correlation
is with the minima of the cosine similarities, which is an
inverse correlation. This indicates that choosing the net with
the minimal cosine similarity will result in the best output.

We observed somewhat strong positive correlations for the
standard deviation, which means that our networks relied less
on the neurons with big deviation in cosine similarity. These
phenomena are quite counter-intuitive, hence, worth a deeper
examination which can be subject to later research.

We also found that omitting neurons in the networks leads to
major drops in the accuracy and concluded that further training
with the modified network is necessary. (Related statistics can
be seen in Table II.) Therefore, we decided to choose a strategy
based on the best result after refinement training.

Based on Table I we found that the signed cosine similarity
is the best for the neuron selection. We found the strongest
correlation with the maxima of the cosine similarities, indi-

TABLE III
STATISTICS SHOWING THE PERFORMANCE OF NETWORKS BEFORE, AND

AFTER DISABLING ONE NEURON BASED ON COSINE SIMILARITY AND
FURTHER TRAINING THE NET TO REGAIN ACCURACY. RESULTS ARE

GIVEN FOR ONLY DISABLING THE NEURON WITH A MAXIMAL VALUE OF
THE ONE SPECIFIED CHARACTERISTICS (I.E., AVERAGE; STANDARD

DEVIATION; MINIMUM; MAXIMUM; MEDIAN) OF COSINE SIMILARITY
WITHIN ITS LAYER, WITHOUT FURTHER TRAINING. THE TABLE ALSO
SHOWS STATISTICS CORRESPONDING TO DISABLING EACH NEURON.

Before Refined Refined/Before Ratio
Cos-Avg

0.7

0.710 1.013
Cos-Std 0.710 1.013
Cos-Max 0.710 1.013
Cos-Min 0.710 1.014
Cos-Med 0.710 1.014

Any neuron 0.709 1.026

cating that after omitting the neuron with the highest maximal
similarity, the network can be refined to high accuracy. In
many cases, this meant that the new net was closely as good
– or in some cases even better then – the one before (see
Table III).

This phenomena is understandable, since kernels with high
cosine similarities are similar to other kernels performing
similar tasks. This is redundancy in the network and by
reducing redundancy, the performance can be restored.

We also used this set of experiments for finding the optimal
parameters of the network minimization process. We found
that – on average – after removing a neuron the further training
need approximately 500 iterations to converge. Hence, running
2000 iterations described in Section IV-A1 is sufficient to
regain maximal performance.

The net reduction method composed of this approach is
based on removing the neuron with the highest cosine simi-
larity. Again, if the accuracy cannot be restored after a given
amount of iterations, we revert the net to the checkpoint prior
to the removal of the given neuron. In this case, we also try to
remove the neuron with the second biggest cosine similarity,
and finally the third one. We repeat this process until the third
try in a sequence does not result in a successful removal, or
we reach a limit of 20 tries.

V. RESULTS AND DISCUSSION

We performed experiments by training the networks de-
scribed above and minimizing them by the proposed mini-
mization approaches. We compared three basic approaches:

• The sequential method trying to remove all the neurons
(later referenced as Sequential);

• Removal of 50 randomly selected neurons (denoted as
Random50);

• And the maximal cosine similarity-based approach with
20 tries (denoted as CosMax).

We evaluated the networks in four sets of test cases. In the
first case, the acceptance threshold in (1) was set to τ = 0.85,
and in the further cases it was set to 0.90, 0.95 and 0.98. In
each case, we ran the training and minimization 50 times to
grain statistically solid results.

TABLE IV
STATISTICS SHOWING THE PERFORMANCE OF NETWORKS BEFORE, AND
AFTER DISABLING ONE NEURON BASED COSINE SIMILARITY. RESULTS

ARE GIVEN FOR ONLY DISABLING THE NEURON WITH A MAXIMAL VALUE
OF THE ONE SPECIFIED CHARACTERISTICS (I.E., AVERAGE; STANDARD
DEVIATION; MINIMUM; MAXIMUM; MEDIAN) OF COSINE SIMILARITY

WITHIN ITS LAYER, WITHOUT FURTHER TRAINING. TABLE ALSO SHOWS
STATISTICS CORRESPONDING TO THE DISABLING EACH NEURON.

Threshold Method Validation f1 Test f1

85%
CosMax 0.599 0.596
Random 0.591 0.589

Seq 0.602 0.601

90%
CosMax 0.602 0.598
Random 0.593 0.588

Seq 0.606 0.602

95%
CosMax 0.663 0.660
Random 0.611 0.609

Seq 0.635 0.631

98%
CosMax 0.693 0.688
Random 0.678 0.672

Seq 0.679 0.673

We evaluated the networks with two considerations in
mind. First, we wanted to see how successful the reduction
strategies were in removing kernels. Therefore, we calculated
the average number of removed neurons for the methods. This
can be seen in Figure 3.

Second, we must note, that a reduced network is not
worth a lot if its accuracy is greatly degraded. Therefore, we
calculated the average drop of accuracy for the methods. This
is summarized in Figure 4. We calculated these statistics by
the average of the f1 score, in percent relative to the f1 score
of the first non-reduced network. We also calculated statistics
comparing the validation and test evaluations, which can be
found in Table IV.

Overall, we can say that the most (around 8) neurons
were discarded for low tolerance thresholds, i.e., when using
τ = 0.85 and τ = 0.9. In turn, the low threshold value for τ
resulted in a drop in f1 score around 10%. We can say that
by sacrificing a great portion of accuracy, we can significantly
reduce the network.

On the other hand, by increasing the acceptance threshold
– i.e., forcing the nets to re-gain most of their accuracy after
removing a neuron – we can maintain good performance while
keeping most of the neurons.

Using a high acceptance threshold τ , we found that the
sequential and random methods performed better, than the
CosMax. They were able to omit 4-7 neurons (in the case
of τ = 0.98 and τ = 0.95, respectively), compared to the 2-4
neurons disabled by the CosMax. This was again in turn of
a higher drop in the accuracy.

With the highest acceptance threshold, however, the Ran-
dom a Seq methods were able to disable 4 more neurons,
while still maintaining a high accuracy (i.e., only a 2% drop
was observed).

Our results revealed that the random and sequential neuron
removal strategies performed better compared to the CosMax
strategy as they removed more neurons, or the same amount
of neurons with a smaller drop in accuracy.

85 90 95 98

Cos Max 8,00 7,88 3,98 1,90

Random 8,00 8,00 7,24 4,30

Seq 8,00 7,92 6,14 4,26

8,00 7,88

3,98

1,90

8,00 8,00

7,24

4,30

8,00 7,92

6,14

4,26

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

Fig. 3. Number of average removed neurons by the different network reduction strategies.

85 90 95 98

Cos Max 10,366% 9,841% 3,556% 0,753%

Random 11,179% 10,802% 8,818% 2,286%

Seq 10,095% 9,462% 6,394% 2,203%

10,4%
9,8%

3,6%

0,8%

11,2% 10,8%

8,8%

2,3%

10,095%
9,462%

6,394%

2,203%

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

Fig. 4. Average drop in f1 score after the neuron removal process relative to the f1 score before removal.

Concerning the computational costs of the process, we can
say that training one network in our experiments took 40,000
iterations (10, 000 for the initial training and 3 × 5 × 2000
for the reduction attempts) with the iterative approach; less
then 50,000 iterations for the CosMax strategy and 110,000
iterations for the Random50 strategy. With the grid search
strategy training networks for 10,000 iterations would have
taken 150,000 iterations, giving a substantially longer training
time.

According to our results, using the Sequential and
Random50 strategies with a high τ = 0.95 or τ = 0.98
acceptance threshold can be useful for minimizing networks.
The Seq method seems to be a bit better as it has the
advantage of having a lower iteration count than Random50.
The CosMax strategy, on the other hand has the possibility
of terminating even earlier performing informed removals,
therefore it might minimize the network in less steps than
the other strategies.

VI. CONCLUSION AND FURTHER WORK

We proposed an algorithmic framework for the proactive
minimization of convolutional networks and provided three
strategies for iterative removal of neurons from a convolutional
network. We evaluated the proposed methods to train and
minimize a network for edge detection.

We found that the proposed methods were capable of
automatically reduce the size of the initial networks by 26%
in our tests without a significant degradation in the network
performance in trying to replicate the behavior of a Canny
edge detector.

The proposed methods are faster than the traditional trial-
and-error strategies for finding optimal network structures, as it
does not need long processes of training networks of different
structures from scratch. As opposed to the repeated training
of the network with different size, we proposed to train one
single network and fine-tune it in an effective manner.

We must emphasize that our findings can be generalized
to other tasks and networks structures as well. The proposed

methods can be used for pruning any type on network that
has removable computational units (i.e., convolution kernels,
or perceptrons). In the future we are extending the studies to
other types of networks, e.g., classification nets, RCNNs, and
larger fully convolutional nets. Previous work on minimizing
CNNs has focused on image classification rather than edge
detection. As such, we are planning to adapt existing network
pruning strategies for edge detection and empirically compare
them to the method proposed in this paper.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pp. 770–778, 2016.

[2] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks.,” in NIPS
(C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
eds.), pp. 91–99, 2015.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[4] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, Jan. 2014.

[5] K. Hara, D. Saitoh, and H. Shouno, “Analysis of dropout learning
regarded as ensemble learning,” in International Conference on Artificial
Neural Networks, pp. 72–79, Springer, 2016.

[6] B. Zhou, Y. Sun, D. Bau, and A. Torralba, “Revisiting the importance
of individual units in cnns via ablation,” CoRR, vol. abs/1806.02891,
2018.

[7] G. E. Hinton and D. van Camp, “Keeping the neural networks simple
by minimizing the description length of the weights,” in Proceedings of
the Sixth Annual Conference on Computational Learning Theory, COLT
’93, (New York, NY, USA), pp. 5–13, ACM, 1993.

[8] J. Cong and B. Xiao, “Minimizing computation in convolutional neural
networks.,” in ICANN (S. Wermter, C. Weber, W. Duch, T. Honkela,
P. D. Koprinkova-Hristova, S. Magg, G. Palm, and A. E. P. Villa, eds.),
vol. 8681 of Lecture Notes in Computer Science, pp. 281–290, Springer,
2014.

[9] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
CoRR, vol. abs/1611.06440, 2016.

[10] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NIPS Deep Learning and Representation Learning
Workshop, 2015.

[11] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” in International Conference on Learning
Representations, 2018.

[12] X. Dong, L. Liu, G. Li, P. Zhao, and X. Feng, “Fast CNN pruning via
redundancy-aware training,” in Artificial Neural Networks and Machine
Learning - ICANN 2018 - 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part
I, pp. 3–13, 2018.

[13] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[14] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. PAMI-8,
pp. 679–698, Nov 1986.

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The PASCAL Visual Object Classes Challenge 2012 (VOC2012).”

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision – ECCV 2014 (D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, eds.), (Cham), pp. 740–755, Springer
International Publishing, 2014.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

[18] D. C. Blair, “Information retrieval, 2nd ed. c.j. van rijsbergen. london:
Butterworths; 1979: 208 pp. price: $32.50,” Journal of the American
Society for Information Science, vol. 30, no. 6, pp. 374–375, 1979.

