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Abstract—In this paper, we solve the problem of adapting
classifiers across domains. We consider the problem of domain
adaptation for multi-class classification where we are provided a
labeled set of examples in a source dataset and we are provided a
target dataset with no supervision. In this setting, we propose an
adversarial discriminator based approach. While the approach
based on adversarial discriminator has been previously proposed;
in this paper, we present an informed adversarial discriminator.
Our observation relies on the analysis that shows that if the
discriminator has access to all the information available including
the class structure present in the source dataset, then it can guide
the transformation of features of the target set of classes to a
more structure adapted space. Using this formulation, we obtain
state-of-the-art results for the standard evaluation on benchmark
datasets. We further provide detailed analysis which shows that
using all the labeled information results in an improved domain
adaptation.

I. INTRODUCTION

Deep learning frameworks have solved many computer
vision tasks such as object recognition, object detection, image
generation, etc. With the advent of deep learning, models that
are trained on a large number of images are ubiquitously being
used. However, it was shown by Tzeng et al. [1]] that while
generically trained deep networks have a reduced dataset bias,
there still exists a domain shift between different datasets
and it is required to adapt the features appropriately. In the
adversarial framework, one of the methods viz. unsupervised
domain adaptation through backpropagation [2], solved this
problem by adding an auxiliary task that solves the problem of
domain classification. The main observation for this method is
that for classifiers to be adapted across domains, the domain
classifier should fail. This can be easily achieved through a
gradient reversal layer that modifies features to worsen the
ability to classify domains and it requires no labels to be
available in the target dataset. But, due to the limited capacity
of using a binary discriminator, it introduces a problem of
mode collapse in the feature space for source and target
domains. The binary discriminator tends to mix all the target
(or source) samples into a single domain class. In contrast to
a binary discriminator, the proposed informative discriminator
considers all the source label information and encourages
target samples to be mis-classified into one of the source
class. It helps the target sample to preserve its multiple modes.
For the source sample, the multiple modes are preserved by
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the regular classifier. The binary discriminator model [2] is
considered as a baseline for the proposed model. Through
the proposed method we show that by making the adversarial
domain classifier informative and providing it all the infor-
mation available at the source, one can obtain an improved
performance achieving an impressive improvement of 8.2%
over the corresponding baseline of gradient reversal [2]] on
the Amazon-DSLR adaptation task. This method also obtains
an improvement of 6.21% over the very recently proposed
approach that also considers introducing additional source
label information [3]].

To summarize, this paper makes the following contributions:

o We propose a method that uses all source label informa-
tion in a scalable way by using an informative domain
discriminator.

o We show that providing the source label in the discrim-
inator helps to preserve the mode information of target
samples.

e This paper also provides additional insights into un-
derstanding our method by providing results for hyper-
parameter sensitivity, inclusion of hierarchical class la-
bels, discrepancy distance, statistical significance tests
and feature visualization. This level of detailed analysis
comprehensively supports our claims regarding the effi-
cacy of the proposed approach.

II. LITERATURE REVIEW

Domain adaptation problem has been widely studied in the
research area of computer vision. Many successful domain
adaptation methods try to make the source and target distribu-
tion closer to each other. Tzeng et al. [1] uses the maximum
means discrepancy (MMD) in the feature space of source and
target domain. The multi kernel MMD between other layers
applied in the Domain adaptation network (DAN) [4]. Other
MMD based methods are proposed such as joint adaptation
network (JAN) [5]] and [6]. Target entropy minimization used
in the residual domain adaptation network (RTN) [7]. Cor-
relation alignment based domain adaptation achieved by the
minimizing the Coral loss [8]]. The coral loss based method
also applied in the deep learning framework called Deep
Coral [9]]. Other coral loss based method proposed in the [10].
In the [11]] Wasserstein distance [12]] has been applied to make
the two distribution closer. Other similarity based adaptation
network such as associative domain adaptation network [/13]]
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Fig. 1. The proposed architecture includes a deep feature extractor (G ), classifier (G'c) and discriminator (G'g).

also has been successfully applied. The subspace alignment
based model was proposed by the [14]. In the [15] model
learns a pairwise similarity function between the classes to
solve the domain adaptation problem. Image generation task
using the Generative adversarial network [[16]], applied in the
unsupervised domain adaptation task. In the [[17]], auto encoder
framework used to learn the source to target mapping. Recent
work by [[18]-[23]] used the similar concept by the generative
adversarial network to adapt the target domain. For source
to target mapping, cycle consistency framework [24] for the
domain transfer is proposed by the [25]. Multimodal text gen-
eration problem from the image and other modality, has been
studied in [26]. In the asymmetric domain adaptation models,
different feature extractors for source and target have been
used [27]]-[30]. In the [31] different batch normalization used
for the adaptation. Other work such as [32] used the different
alignment layer between the source and target network. [33]
propose to maximize the discrepancy between two classifierss
outputs to detect target samples that are far from the support
of the source. Adversarial dropout [34] was applied to adapt
the target domain. Recently attention based model has been
proposed in the [35] to solve the domain adaptation problem.
Other exemplar based method [36] have also explored ways
to bring similar attention distributions closer. There are other
frameworks based on adversarial learning used to solve the
domain adaptation problem. The proposed model lies in the
adversarial domain adaptation framework setting. [2] used
a simple binary discriminator to learn indistinguishable fea-
ture mapping by the discriminator between the source and
target domain. There are other adversarial method such as
Adversarial discriminator for domain adaptation (ADDA) [37]],
conditional adversarial domain adaptation (CDAN) [38]], Multi
discriminator for domain adaptation (MADA) [3], Cycle-
Consistent Adversarial Domain Adaptation (CyCDA) [24],
PixelDA [20]], PADA [39] and other recent adversarial feature

learning methods are proposed in the [34], [40]-[44] Domain
adaptation in scene graph was also applied in [45]. Recent
work by [33] adapts the classifier by maximizing the discrep-
ancy between two classifier’s outputs to detect target samples
that are far from the support of the source. This method uses
the prediction probability of the target samples to measure the
discrepancy. The closest related work to our approach is the
work by [3]] that extends the gradient reversal work [2]] by
including a class specific discriminator. Class structure based
adaptation has been explored by CDAN [38]]. CDAN uses the
class structure to compute the focal loss by concatenating
the class prediction with features. But our objective is to
make the discriminator more efficient by providing the sub
class structure [46], [47]. So the idea of using the class label
structure is different than that of CDAN. Specifically, in the
discriminator, we add more information regarding the source
classes (the negative class of the discriminator). Other than
this, CDAN and MADA both use the predicted target label
(from the classifier) to compute the conditional distribution.
But in our case, we are not relying on the target prediction
score. Our method is complementary to most of the advances
made in adversarial techniques and shows that an informative
discriminator is crucial for obtaining significant improvements
in the adversarial setting.

III. BACKGROUND: DISCRIMINATOR FOR DOMAIN
ADAPTATION

The seminal generative adversarial network (GAN) [16] and
its different variants, used an adversarial loss to make a gener-
ator learn the true data distribution. The basic motivation of the
adversarial methods [|16] is to align the fake (generated) and
real distributions. These, however do so without considering
the complex multimodal structures underlying in these data
distributions. As a result, all the generated data classes are
confused with real data. It leads to loss of the discriminative
structure of data for different distribution. The discriminative



structure from the discriminator also helps to generate the
paraphrase sentence generation problem [48]. Particularly, in
the domain adaptation scenario, it is crucial to preserve the
multimodal structured data for solving the classification prob-
lem. To overcome the mode collapse problem, one of the solu-
tions is proposed by Odena et al. [49] by extending the vanilla
GAN architecture by introducing the auxiliary classification
task on the discriminator. It leads to generated images being
more distinct and sharp. Our proposed discriminator considers
all the source label information to prevents loss of modes. We
also propose a hierarchical structure for the discriminator when
suitable. All the adversarial methods performance relies on
the efficiency of the discriminator. One could make it more
efficient by providing the sub-class structure of the data as
suggested by [46]], [47]. In the discriminator classification task,
class labels can be considered as sub-classes, and they are well
defined and distinct. By providing it to the discriminator, we
observe that it helps to learn additional structure of the data.

A. Domain-Label Discriminator

Domain label discriminator is a simple binary classifier,
which aims to misclassify the source and target domain
samples. Most of the adversarial models [2], [12] use the do-
main label discriminator for the image generation and domain
adaptation. In the binary discriminator, all target samples (or
generated fake samples) are mis-classified as a single source
(true) domain. In the domain adaptation scenario, the target
features generated by the feature extractor, obtains invariance
in domain, but loses its multimodal structure. This mode
information can be preserved by the proposed informative
discriminator.

B. Class-Label Discriminator

If two distributions are underlying the modes, then perfor-
mance of a binary classifier can be improved by using the
sub- class structure of dataset [46[, [47]. In the proposed
model, we use a class label based discriminator to improve
the capacity of the discriminator to classify the source and
target distribution. [49] applied an auxiliary classifier, in the
discriminator of the vanilla GAN architecture [16], [50], to
predicts the class label for generate better images without
mixing the multimodal structure of data. These works provide
an intuition that by providing the information about the struc-
ture of data to discriminator, data distribution can be captured
effectively. To keep the multi-modal structure of target data
MADA [3]] used N-discriminators for each mode (class) of
data. The underlying problem with such multiple discriminator
approaches is that its scalability is limited. The model will be
more complex as the number of classes increases. Another
problem with MADA is that it uses the target class prediction
score to decide the discriminator. For a wrong prediction
it may lead to a different mode. We instead use a single
discriminator to perform the source and target classification
task along with the task of predicting the correct source label.

IV. PROPOSED APPROACH

A. Problem Description

We address the problem of unsupervised domain adaptation,
where there are no labels in the training data for the target
domain. More formally, we are given data for a source domain,
S = (xf,y5);=, of ng labeled examples and a target domain,
T = (a})*, of n; unlabeled examples. The labels are not
provided. The source domain and target domain are sampled
from joint distributions P(X,Y;) and Q (X%, Y;) respectively,
where P # (. The assumption here is that the label set is
common for source and target domains. The aim of our model
is to provide a deep neural network that enables learning of
transferable features f = Gy(z) and an adaptive classifier
y = Gy(f) to reduce the shift in the joint distributions across
domains, such that the target risk Pr(y ,)q[Gy(Gf(z) # ¥]
is minimized by jointly minimizing the source risk and the
distribution discrepancy by a discriminated domain adaptation.
At the time of training, we have access to all the source domain
data along with corresponding labels S = (xf,ys);, and all
unlabeled target data 7' = (z!)"

=
1/i=1"

B. Proposed Model

In this proposed model, there are three main components:
feature extractor (G'y), classifier (G.) and informative discrim-
inator (G ). All the components are deep neural networks. This
model is trained in an end-to-end fashion using the adversarial
and classification loss. In contrast to [2]] and [3], instead of a
binary discriminator, we use a multi class discriminator. We
also do not use any prediction score to predict or adapt the
target samples, and we empirically show that it is actually
detrimental in the proposed model.

1) Feature Extractor (Gy): Feature extractor is a deep feed
forward convolution neural network architecture consisting of
different feed forward layers. The task of this module is to map
the input data x in the feature space G (). It is parameterized
by parameter ;. We assume that input data x is mapped to a
D-dimensional feature vector Gy (z,07) € Rp

2) Classifier Network (G.): Classifier is also a deep feed
forward network, consisting of fully connected layers. It is
parameterised by the 6. In the training time, it maps the source
data feature f, obtained from the feature extractor to class
label y. G.(fs,0.) ~ Y where Y is the source class label
distribution. This module is trained based only on the cross-
entropy loss between the predicted source label and the ground
truth source label.

3) Discriminator Network (G4): The task of any discrimi-
nator is to learn the source and target discrepancy. It considers
the source features f; or target features f; and help to
mis-classify them as source or target label. In the proposed
model, we used a multi-class discriminator, which maps the
source sample to its class label value while target samples
are classified as fake label. This module is parameterized by
f4. Using the reverse gradient layer, a target sample will be
mis-classified as one of the source class labels. In the case



of source sample, all the source samples may also be mis-
classified. But the loss of multi-modal structure for source is
prevented by the classifier.

C. Training and Loss Function

During training, there are two objectives for the model,
first is to minimize the label prediction loss on the source
dataset and optimize the parameters of feature extractor and
classifier. Other is to make features more indistinguishable
for source and target domain. For making the features indis-
tinguishable, we reverse the gradient from the discriminator
to back-propagate to the feature extractor. Our discriminator
trains to classify the source class label and target domain. We
reverse the gradient to make the features that are unfavorable
for the discriminator.

The additional loss will encourage a target sample to be
mis-classified as one of the source classes by the discriminator.
In the case of binary discriminator the target sample will be
mis-classified as source domain (mixing of all the classes). In
contrast to the binary discriminator methods, in the proposed
method, the classes will not be mixed up and will be classified
as only one of the source class. For all the source samples, the
discriminator mis-classifies into a single target domain, but this
is already prevented by the classification module that is based
on true labels for the source samples. So by the proposed
model both target and source sample features are prevented
from having a mode collapse.

loss(6,0,,0q) :ni Z L,(Gy(Gy(xi)),yi)+
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A is a trade-off parameter between the two objectives and |C|
is the number of source classes. L, and L, are the cross
entropy loss for classifier and discriminator respectively. Dy
and D, are the source and target domain respectively. G, G
and (G4 are the feature extractor, classifier and discriminator.

V. RESULTS & EXPERIMENTS

In this section, we evaluate our model on various
widely used benchmarks. Following the common setting in
unsupervised domain adaptation, we used the Alexnet [51]]
architecture pre-trained on the Imagenet dataset for our
base model. Results are compared with the state-of-
art methods such as [1]-[7], [9], [19], [32], [38[, [52],
[53]. The proposed model has been evaluated on the

Office-31 [54], Office-Home datasets [53], Caltech-
Bing datasets [55] and ImageCLEF datasets. Other
details and codes are provided in the project page

https://vinodkkurmi. github.io/DiscriminatorDomainAdaptation.

A. Office-31 dataset

Office-31 [54] is a benchmark for domain adaptation, com-
prising 4,110 images in 31 classes collected from three distinct
domains: Amazon (A), which contains images downloaded
from amazon.com, Webcam (W) and DSLR (D), which con-
tain images taken by web camera and digital SLR camera
with different photographical settings, respectively. To enable
unbiased evaluation, we evaluate on all the 6 possible transfer
tasks such as A—W, D— W, W—D, A—D, D—A and
W—A. The performance is shown in Table [} It is noteworthy
that the proposed model promotes the classification accuracy
substantially on hard transfer tasks, e.g., A—W and A—D,
where the source and target domains are substantially different.
In the 4 out of 6 shifts, it achieves the highest accuracy. For the
other 2 shifts, we achieve comparable performance because
in these cases the source domain has fewer examples than
target domain. Therefore it becomes hard for the discriminator
to learn the modes of the datasets for this case. However,
we can see that average performance is better than all the
other base line methods. The encouraging results highlights
the importance of informative discriminator based domain
adaptation in deep neural networks, and suggests that this
model is able to learn more transferable representations for
effective domain adaptation.

B. Home-Office dataset

We also evaluated our model on the Office-Home
dataset [53]] for unsupervised domain adaptation. This dataset
consists of four domains, Art (Ar), Clipart (Cl), Product
(Pr) and Real-World (Rw). Each domain has common 65
categories. The Art domain contains the artistic description of
objects such as painting, sketches etc. The Clipart are the col-
lection of clipart images. In the Product domain images have
no background. The Real-World domain consists of object
capture from the regular camera. We evaluated our model by
considering the Art data as source data and remaining dataset
as target dataset. So we have three adaptation tasks, Ar — ClI,
Ar — Pr and Ar — Rw. The performance reported in Table

C. Caltech-Bing dataset

For demonstrating the idea that if we provide more source
dataset information to discriminator, it performs well, we used
subset of Caltech-Bing dataset [55] that consists of 43 classes
with 3 parents classes as aquatic (11 classes), terrestrial (23
classes) and avian (9 classes). We call it mini-Bing (B) and
mini-Caltech (C) dataset. There are total 4960 images in
mini-Caltech and 20731 images in mini-Bing dataset. The
performance on both task (Caltech — Bing and Bing —
Caltech) are shown in Table

D. MNIST-MNIST-M dataset

We also experimented with the MNIST dataset as source
data. In order to obtain the target domain (MNIST-M) [57]]
we blend digits from the original set over patches randomly
extracted from color photos from BSDS500 [58]]. The adapta-
tion result is shown in the Table [[II



TABLE I
CLASSIFICATION ACCURACY EVALUATION OF DIFFERENT DOMAIN ADAPTATION APPROACHES ON THE STANDARD OFFICE-31 [|54]] DATASET. ALL
METHODS ARE EVALUATED IN THE "FULLY-TRANSDUCTIVE” PROTOCOL USING THE ALEXNET PRETRAINED [51]] MODEL. OUR METHOD (LAST ROW)

OUTPERFORMS COMPETITORS ON THE THREE ADAPTATION TASK.

Method A—-W D—-W W — D A—D D— A W= A Avg
DDC [1] 61.0 £ 05 | 95.0+£ 03 98.5 £ 0.3 649 +£04 | 472+ 05 | 494+ 04 | 693
DAN [4] 68.5 + 03 | 96.0 £ 0.1 99.0 £ 0.1 66.8 =02 | 500+ 04 | 498 £03 | 71.6
DeepCoral [9] 664 + 04 | 957 £ 03 99.2 £ 0.1 66.8 =06 | 528 £ 02 | 51.5£03 | 72.0
WDAN [6] 669 £ 02 | 959 £ 0.2 99.0 +£ 0.1 644 £02 | 53.8+£0.1 | 527 £0.2 | 72.1
DHN [53] 683 £00 | 961 £00 | 988+ 0.0 | 664+ 00 | 555+0.0 | 53.0+ 0.0 | 73.0
DRCN [52] 68.7 £ 03 | 964 £ 03 9.0+ 02 | 66.8 £05 | 560405 | 549 £ 05 | 73.6
RTN [7] 733+02 | 96.8 £ 0.2 | 99.6 + 0.1 710 £ 02 | 505+ 03 | 51.0 £ 0.1 | 73.7
GRL [2] 73.0 £ 05 | 964 £ 03 99.2 £ 0.3 723+ 03 | 524 £ 04 | 504 £05 | 739
121 [19] 753 +£00 | 965 £ 0.0 | 99.6 £ 00 | 71.1 £0.0 | 50.1 £0.0 | 52.1 £ 0.0 | 74.1
JAN [5] 752 £ 04 | 96.6 £ 0.2 99.6 + 0.1 728 £ 03 | 575£02 | 563 £02 | 763
CDAN [38] 779 £ 03 | 969 £ 0.2 | 1000 £0.0 | 746 £02 | 551 4+£03 | 575+ 04 | 77.0
ADIAL [32] 755 +00 | 96.6 £ 00 | 995+00 | 73.6 £0.0 | 581 + 0.0 | 594 + 0.0 | 77.1
MADA [3] 785 +02 | 998 £ 0.1 | 1000 £0.0 | 741 £ 0.1 | 560 £0.2 | 545+ 03 | 77.1
IDDA [ours] 822 £+ 08 | 998 £ 0.2 | 100.0 = 0.0 | 824 + 0.5 | 541 £ 04 | 525 £ 03 | 78.5
TABLE I TABLE IV

CLASSIFICATION ACCURACY (%) ON HOME-OFFICE DATASET [53]] FOR
UNSUPERVISED DOMAIN ADAPTATION ON ALEXNET [51]] MODEL

CLASSIFICATION ACCURACY (%) ON ImageCLEF DATASET FOR
UNSUPERVISED DOMAIN ADAPTATION (ALEXNET [51]])

Method Ar — CI Ar — Pr | Ar — Rw Avg Method I—-P P—I1 1—-C C—l C—P | P—C | Avg
Alexnet [51] 26.4 32.6 41.3 3343 AlexNet [51]] 66.2 70.0 84.3 71.3 59.3 84.5 739
DAH [53] 31.6 40.7 51.7 41.33 DAN [4] 67.3 80.5 87.7 76.0 61.6 88.4 76.9
DAN [4] 31.7 43.2 55.1 43.33 GRL [2] 66.5 81.8 89.0 79.8 63.5 88.7 78.2
GKT [56] 34.5 43.6 55.3 44.46 RTN [7] 67.4 82.3 89.5 78.0 63.0 90.1 78.4
GRL [2] 36.4 45.2 54.7 45.43 MADA [3] 68.3 83.0 91.0 80.7 63.8 92.2 79.8
JAN [5] 355 46.1 57.7 46.43 IDDA 68.3 81.8 92.3 81.6 67.2 92.8 80.6
CDAN [38] 38.1 48.7 60.3 49.03
IDDA [ours] 38.9 50.7 58.8 49.46
TABLE III A. Target risk error minimization

CLASSIFICATION ACCURACY EVALUATION OF DIFFERENT DISCRIMINATOR
BASED DOMAIN ADAPTATION APPROACHES ON THE CALTECH-BING AND
MNIST & MNIST-M DATASET.

Method C—-B|B—-C|M-—MM
Source Only [51] 36.16 72.67 52.25
Binary Discriminator [2]] 36.35 73.29 76.66
Parent Label Discrimina- 36.50 73.87 -
tor[our]

Class Label Discrimina- 36.98 74.62 82.29
tor(IDDA)[ours]

E. Results on ImageCLEF Dataset

ImageCLEF-2014 dataset consists of 3 domains: Caltech-
256 (C), ILSVRC 2012 (I), and Pascal-VOC 2012 (P). There
are 12 common classes, and each class has 50 samples.There is
a total of 600 images in each domain. We evaluate models on
all 6 transfer tasks: I—-P, P—I, I-C, C—I, C—P, and P—C.
The results on the ImageCLEF are reported in Table

VI. ANALYSIS

In this section we provide an analysis for the proposed
model using the aspects such as distribution discrepancy and
statistical significant test. We further provide hyper-parameter
sensitivity and feature visualization analysis.

1) Domain adaptation theory: As suggest by the [59] the
target risk error e;(h) for hypothesis h is bounded by the
source risk error and distribution distance.

1
€t(h1,ha) < es(hi, ha) + idHAH(Dth) (3)
where the source-target distance is defiend as:
dyan(p. D))
=2 sup |Pp[h(z)=1]| - |Pp,[ hz) =1)| @
h1,h2€ H

where h(z) = hi(x) ® hao(x)

2) Symmetric hypothesis space for multi-class classifica-
tion: We can construct a symmetric difference hypothesis
HAH,. [60] for multi-class hypothesis. Choose hypothesis
hMz) = hi(z) ® ha(z) - & he(x). HAH, = {hlh =
hi(z) ® ha(x)-+ @ he(x) 5 hi,ho .. he(x) € H} where ¢
is the number of classes. We assume that the hypothesis space
H. is the set of all hypothesis produced by the classifier.
Similarly hypothesis space H, is the set of all hypothesis
produced by the discriminator. Consider fixed D, and D, over
the representation space produced by the feature extractor and
a family of label predictors ..

dy,an.A(Ds, Dy)

=2 sup |Pp,[h(x)=1]| - |Pp,[ h(z) =1]| ©
heH-AH,.
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Fig. 2. Classification accuracy on office dataset
(A—W, D—W and W—D), when we use the
predicted target label(from the softmax of clas-
sifier) in the discriminator.

Fig. 3.

(a) Before Adaptation (b) After Adaptation

Fig. 5. The effect of adaptation on the distribution of the extracted features
(best viewed in color) for MNIST — MNIST-M dataset. The figure shows t-
SNE visualizations of the CNN’s activation (a) in case when no adaptation was
performed and (b) in case when our adaptation procedure was incorporated
into training. yellow points correspond to the source domain examples
(MNIST data), while violet ones correspond to the target domain (MNIST-M).
Adaptation makes the two distributions of features much closer

Assume that the family of domain classifiers H is rich enough
to contain the symmetric difference hypothesis set of H.. In
the proposed class label based discriminator this assumption
not only holds but also achieves a more tighter bound than the
binary discriminator used in [2[]

dy,an.A(Ds, Dy)

<2 sup [Pp[h(z)=1]-Pp,[ h(z)=1]
heHqAHqg
dy.amn.a(Ds,Dy) <2 sup  |a(h) — 1] (6)
heHAHg

where a(h) = Pp_[ h(z) = 1] + Pp,[ h(xz) = 0].

Now we construct symmetric hypothesis set HgAH4 such
that h/(z) = h(z) ® het1(z) and Pp_ [ her1(x) = 1] =0
Vx € D

HaAHq = {hlh = h1(x) ® ha(x) -+ @ he(2)  het,
hi,hy... hc(.’L‘), hc+1 € 7‘[}

a(h) < Pp,up,[ I (z) = 1] = a(h) (7)

where c is the number of classes. The hypothesis k' is achieved
by the class based domain discriminator model Gg4. Thus,
optimal discriminator gives the upper bound for H. AH. At
the same time, back propagation of the reversed gradient

Classification accuracy on office
(A—W) dataset, when we consider the most
confident predicted target label (from the soft-
max of classifier) to train the model.

Fig. 4. Sensitivity on the A\ experiment. Dis-
criminator accuracy with respect to A on office
(A—W) dataset. Here A = 1.0 gives the
lowest accuracy , which is desired in the domain
adaptation task

changes the representation space so that «(G4) becomes
smaller effectively reducing dy a3, (Ds,D¢) and leading to
the better approximation of €s(h) by €;(h).

3) Distribution discrepancy: The domain adaptation the-
ory [59] suggests A-distance as a measure of cross domain dis-
crepancy, which, together with the source risk, will bound the
target risk. The proxy A-distance is defined as d 4 = 2(1—2¢),
where € is the generalization error of a classifier (e.g. kernel
SVM) trained on the binary task of discriminating source and
target. Figure [/| shows d 4 on tasks A —D and A —W, with
features of source only model, Binary discriminator [2f], and
proposed informative discriminator model. We observe that d 4
using our model features is much smaller than d 4 using source
only model and RevGrad(binary discriminator) [2] features,
which suggests that our features can reduce the cross-domain
gap more effectively.

B. Statistical significance analysis

We have analysed statistical significance [61]] for our pro-
posed informative discriminator method against binary label
discriminator [2] and source only method for the domain
adaptation task. The Critical Difference (CD) for Nemenyi test
depends upon the given confidence level (which is 0.05 in our
case) for average ranks and number of tested datasets. If the
difference in the rank of the two methods lies within CD (in
our case CD = 0.6051), then they are not significantly different.
Figure[6] visualizes the post hoc analysis using the CD diagram
for A— D, A — W and B — C dataset respectively. From the
figures, it is clear that our Informative discriminator (IDDA)
is best and is significantly different from the GRL(binary
discriminator) [2] and source only model.

C. Feature visualization

Adaptability of target to source features can be visualized
using the t-SNE embeddings of images feature. We follow
similar setting in [1]], [2] and [3]] and plot t-SNE embeddings
of the MNIST — MNIST-M dataset in the Figures [5}

D. Parameter sensitivity for discriminator accuracy

We also investigate the effects of the value of parameter
A € {0,0.1,0.4,0.7,1,1.4,1.7,2}. We plot in Figure [ the
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Fig. 6. Analysis of statistically significant difference for (a)A — D, (b)A — W and (c)B — C in Source only, Binary label Discriminator (GRL) [2]] and
proposed model (IDDA), with a significance level of 0.05. The mean rank is plotted on x-axis. The CD is 0.6051 and all the methods are way outside the
CD, so are statistically significant over source only trained model. We can see IDDA is statistically significantly over GRL in all 3 adaptation tasks
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Fig. 7. Proxy A-distance for Amazon — Webcam and Amazon — DSLR
tasks for method Source only, Binary discriminator [2] and proposed model.

discriminator accuracy on target data (classifying source v/s
target domain) with respect to value of A\ on tasks Amazon —
Webcam. Observe that discriminator accuracy first decreases
and then increases as A varies and demonstrates a U-shaped
curve. We choose A\ = 1 where the discriminator accuracy are
lowest, i.e source and target domain are more indistinguish-
able. In this experiment we do not use any target labels.

E. Empirical evaluation of model by using predicted labels

In a recent work [3]], the authors considered the use of
predicted target information. In order to validate the idea of
using target class prediction label in the proposed model, we
consider them in following ways:

1) Using 2N class discriminator: In this case we construct
the discriminator for classifying is 2N classes, where IV is
the number of class label in the dataset. Here each sample is
classify by the discriminator from the 2N classes (it could
belong to source class label or target class label). For the
source data, we used the provided source data label, while
in the case of target we used the soft-max output of target
prediction probability from the classifier (C). Results for the
three task of office dataset are shown in the Figure [2] We
observed that use of predicted target information actually
results in reduced performance.

2) Using only confident target samples: We experimented
for A —W by taking the target samples which are more certain
about the class (using the classification softmax probability).
We observed that in our cases avoiding use of target labels
is better than using predictions. Figure [3] shows the result for
different threshold value for which, we consider that target
sample to train the discriminator.

VII. CONCLUSION

We proposed a method for obtaining an informative dis-
criminator that aids improved domain adaptation. Our analysis
showed that this discriminator indeed helps us in obtaining
statistically significant improvement that can also be justified
theoretically. We further observed through visualization that
domain adapted features do result in domain invariant feature
representations. In future, we aim to further explore relations
with respect to structured source representations that can yield
improved domain adaptation. To some extent, we have already
justified this through the use of hierarchical classifiers. The
incorporation of structure in source and correlating that with
the target structure is a promising direction which we have
initiated through this work.
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