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Abstract—Recognizing gaits without human cooperation is of
importance in surveillance and forensics because of the benefits
that gait is unique and collected remotely. However, change of
camera view angle severely degrades the performance of gait
recognition. To address the problem, previous methods usually
learn mappings for each pair of views which incurs abundant
independently built models. In this paper, we proposed a View
Transformation Generative Adversarial Networks (VI-GAN) to
achieve view transformation of gaits across two arbitrary views
using only one uniform model. In specific, we generated gaits in
target view conditioned on input images from any views and the
corresponding target view indicator. In addition to the classical
discriminator in GAN which makes the generated images look
realistic, a view classifier is imposed. This controls the consistency
of generated images and conditioned target view indicator and
ensures to generate gaits in the specified target view. On the
other hand, retaining identity information while performing view
transformation is another challenge. To solve the issue, an identity
distilling module with triplet loss is integrated, which constrains
the generated images inheriting identity information from inputs
and yields discriminative feature embeddings. The proposed VT-
GAN generates visually promising gaits and achieves promising
performances for cross-view gait recognition, which exhibits great
effectiveness of the proposed VI-GAN.

I. INTRODUCTION

Gait refers to the locomotion of human body, which depicts
one’s unique walking style and has been proved potential for
person identification. Distinct from other popular biometric
modalities such as face, iris, fingerprint, vein and lip-print,
the uniqueness of gait is the fact that it can be collected
without awareness of the observed subject, i.e., it can be
captured remotely without prior informed consent and without
physical contact. This brings some competitive benefits as a
biometric trait, e.g., gait is unobtrusive and hard to hide as
well as pretend. Considering the advantages, gait recognition
is significant in applications of forensics and surveillance
security.

However, gait recognition is still a challenging because of
various factors in practical scenarios, for instance, walking
direction (or view) variation [15], non-constant walking speed
[29], bear loading [28], appearance of or different type of
carrying bags [20], changes of dressing [32], efc. Among these
factors, the most representative one is view variation because
the observed subject may appear and walk along different
route under one deployed camera in real world. It attracts
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Fig. 1. Comparison between gaitGAN and the proposed VI-GAN. (a) The
former normalizes GEIs from arbitrary views to a reference one, and (b) the
latter directly transform gait images between any pair of views.

wide interest in recent works and boosts the accuracy of gait
recognition. However, previous literatures mainly focus on
distilling features, which rarely visualizes differences between
gaits across different views. In this work, we also target on
the cross-view gait recognition task and further try to explicitly
compares the distinctiveness of gaits from various views.

To address gait recognition across views, previous research
experiences three stages which are model-based methods,
mapping-based methods and deep learning-based methods. In
the early stage, researchers mainly focus on body measurement
based on human body model, e.g., extracting view invariant
features by measuring geometric parameters of human body
[3], or reconstructing 3D body using depth sensors and then
re-projecting to 2D in arbitrary view [37]. However, the former
is not accurate and the latter is too complicated. In addition,
the depth sensors are not practical in real scenarios due to
its higher expenses. In contrast, gait recognition using visual
RGB sensors is more practical since the fact that surveillance
cameras are deployed everywhere. Thus, approaches using 2D
images are arising in the middle stage, which correlate gait
templates across views by linear mapping such as regressing
gait templates from one view to another view [15], [16],
[21] or projecting gait templates across views into a common
feature space via asymmetric mapping [1], [2], [21], [31].
These approaches are popular in past years because of their
effectiveness and computational efficiency. However, this kind
of approaches can only process gaits across views in pair,
which will yield multiple models with the increase of views.



In addition, these methods rely on view estimation, though it
is not a problem nowadays. With development of deep neural
networks, it is fashion to distill view invariant features using
convolutional neural networks (CNN) [11], [26], [30]. This
kind of methods significantly improve the accuracy of cross-
view gait recognition. However, CNN is a black-box, which is
hard to interpret visually. In comparison, view transformation
using encoder-decoder model [34] or generative adversarial
network (GAN) [9], [33] as regressor exactly solves the
interpretable problem, which transforms gait templates from
various views to a canonical one only using a single model.
However, it can only transform gaits to a specific one, which
is hard to visualize view relationship between pairs from any
two views. If we want to transform gaits across any two views,
a lot of models are needed, i.e., the number of views. In
contrast, this paper tries to visualize the view transformation
relationship between any two views using only one model
and thus achieve cross-view gait recognition explicitly. The
difference between current GAN-based view normalization
and the proposed VI-GAN is shown in Fig. 1.

Recently, image translation [4], [13], [18] using conditional
GAN becomes one of the hottest topics in computer vision,
which transforms images from source domain to target domain
conditioned on specific requirements such as style transfer,
image impainting, image editor, efc. For instance, some recent
works try to generate persons in specific pose, synthesize
faces in conditioned expression, hair style or even gender.
In specific, the popular starGAN [4] can simultaneously
process several attributes using only a single model, which
demonstrates great success in face editing. Inspired by idea of
starGAN, the paper proposes to perform view transformation
between gaits from any two views name view transformation
GAN (VT-GAN). As in Fig. 2, the proposed VI-GAN archi-
tecture consists of a generator, a discriminator and a similarity
preserver. The generator G takes the gait templates from
source view and the corresponding reference view indicator
as input, and generates images in the reference view. And,
the discriminator D learns to not only distinguish if the input
images are real but also classify the synthesized images to its
corresponding view class. To preserve the identity information
and make the synthesized gaits discriminative, we impose two
regularization terms, i.e., identity preserving term and identity
discriminative term. The former forces the generated gaits
close to the target reference one and the latter pulls feature
embedding of generated images extracted by a similarity
preserver ® close to their corresponding positive samples in
target view and push the negatives far away with a margin.
Through such a supervised training strategy, the synthesized
gait image (on the target view) created by generator can be
distinguished against the same/different subject under the same
view (i.e. target view). In this way, we achieved identity-
preserved view transformation by a single model and depicts
relationships across any two views.

To conclude, the proposed VI-GAN brings following ben-
efits,

e A novel view-transformation framework for cross-view

gait recognition named VT-GAN is presented. Distinct
from existing GAN-based approaches which normalizes
gaits to a unified view, the proposed framework takes both
gaits in source view and a reference view indicator as in-
put and generates gaits in the reference view controlled by
a real/fake discriminator and a view classifier. In this way,
the proposed VI-GAN can achieve view transformation
across any two views using a single model.

o We integrate an identity preserver to the whole frame-
work, which attempts to preserve the identity information
while performing view transformation. This is beneficial
to gait recognition.

II. RELATED WORKS

In this section, we review literatures in two fields that
are related to our work, i.e., cross-view gait recognition and
conditional generative adversarial networks.

A. Cross-view Gait Recognition

The development of approaches for cross-view gait recog-
nition includes three stages, i.e., model-based methods,
mapping-based methods and deep learning-based methods. In
the early stage, approaches are focused on constructing and
analysing human body model, i.e., body parameters measure-
ment [3] and 3D reconstruction [37]. The former is simple
but suffers poor performances. And in contrast, the 3D-based
model achieved promising performance, but it is expensive
as well as complicated since multiple calibrated cameras are
needed. After that, mapping-based approaches using 2D im-
ages are prevailing to address the cross-view gait recognition
problem. These methods either learn to map gaits from one
view to another view, i.e., VTM-based (view transformation
model) models [15], [16], [23], [39], or asymmetrically project
gaits from different views to a shared space, i.e., CCA-like
(canonical correlation analysis) models [2], [21], [31]. Though
this kind of approaches achieve promising performance, they
heavily rely on view estimation. Moreover, these approaches
only perform gait recognition across a couple of views which
would yield abundant of models with increasing number of
views. Recently, approaches using neural network achieves
significant performances. For instance, Wu et al. [30] pro-
posed to learn differences between gaits from arbitrary views
with CNN. Shiraga et al. [26] proposed GEINet based on
CNN framework which demonstrate effectiveness when view
changes are small. However, these models suffer interpretation
problem due to the black-box characteristics of CNN. More
recently, GAN is applied to gait recognition which try to
explicitly visualize the synthesized GEIs while keeping com-
petitive performances, e.g. gaitGAN [33] and MGANSs [9].
These models normalized gaits from different views into a
reference one which behaves as a regressor but only uses one
single model. Rather than view normalization, the proposed
method attempts to synthesize gaits of arbitrary views from a
typical view. It is useful to predict unknown views of a typical
identities.
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Fig. 2. The architecture of the proposed VT-GAN. It consists of three modules, i.e., generator G, discriminator D and similarity preserver ®. Generator G
inputs the concatenation of source/condition gait image from arbitrary view and target view indicator, and synthesizes gait image from target view. Discriminator
D learns to distinguish between synthesized gait image and real gait image and classify real gait image to its corresponding view. Similarity preserver &

learns to pull positive gait pairs together and push negative gait pairs away.

B. Conditional Generative Adversarial Networks

Generative adversarial networks (GAN) [6] has been ac-
tively studied since it was proposed and incurs many varia-
tions. One of the most popular is conditional GANs [22] which
are usually conditioned on class labels [22], text description
[24] and specific attributes [4], [18], [27]. In specific, Choi
et al. [4] proposed starGAN which achieves multiple domain
transferring conditioned on provided domain information us-
ing a single model. They achieved remarkable performances
in facial attribute transfer and facial expression generation.
Inspired by this, we presented a novel framework which
treats view angle as attribute and tries to synthesize arbitrary
views controlled by provided view indicator. Different from
starGAN, an identity-preserving module is integrated to our
framework, which tries to keep the identity consistency while
performing view transfer. By coordinating losses of GAN and
imposed identity-related losses, the proposed framework thus
can synthesize view-guided identity-preserving gaits for cross-
view gait recognition.

III. VIEW TRANSFORMATION GENERATIVE ADVERSARIAL
NETWORK

The proposed View Transformation Generative Adversarial
Network (VT-GAN) aims to transform gaits from one specific
view to arbitrary views using a single model. The overall
framework of the proposed VI-GAN is shown in Fig. 2 which
consists of a generator (=, a discriminator D and an identity
preserver ®. The generator G takes the gaits x4, from source
view 6 and the target view indicator ¢ as input, and generate
gaits in the target view ¥, i.e., G(Zspe,C) — Zgse. In the
proposed VI-GAN, we use one-hot vector to denote the view
indicator where the target view is assigned 1 and other views
are assigned 0. Thus, zg.. from the source view 6 can be
translated to z4s; from arbitrary view 9 specified by indicator
c. And, the discriminator D learns to not only distinguish if the
input images are real but also classify the synthesized images

to its corresponding domain. That is, the discriminator pro-
duces probability distributions for both real/fake discrimina-
tion and view classification [4], D : 2 — {Dy;s(x), Des(2)},
where z is the input to discriminator. To preserve the identity
information and make the synthesized gaits discriminative,
we impose two regularization terms, i.e., identity preserving
term and identity discriminative term. The former forces the
generated gaits close to the target reference one and the latter
pulls feature embedding of generated images extracted by a
similarity preserver ® [5] close to their corresponding positive
samples in target view and push the negatives far away with
a margin.

Adversarial Loss. We apply adversarial learning in our
training process to constrain the output of G visually similar
to the reference gait x5 from view ¢. The adversarial loss is
defined as

Ead'u (Ga Ddis » PO, Py, pc) = Ezdstwpg (Tast) [log Ddis (xdst)]

+EIS7‘CNP8 (Tsre),cvpe(c) [log(l — Dais (G(wsrca c) ) )](71
)

where pg and py are sample distributions in source view 6
and target view 4, respectively. p. denotes the distribution
of view indicator. G tries to generate gaits G(Zspc,c) in
target view ¢ conditioned on gaits .. from source view
6 and the corresponding view indicator ¢, while Dg;s; aims
to distinguish between generated gait image G(zg¢,c) and
real gait image x45;. G tries to minimize the objective while
Dg;s competes against it which maximizes the objective, i.e.,
ming maxp,,, Ladv (G, Dais, Po, P9, Pe)-

It is worth noting that the generated gait image cannot be
mapped back to the source one. This is because the person
may carry a bag or wear a coat whose style is unpredictable
in source view and our aim is to synthesize gait image in target
view as well as normal walking condition.

View Classification Loss. For a given gait image x4,
one of our aim is to translate it to another view specified
by view indicator c. To fulfill the condition, an auxiliary view



classifier is added on the top of D as in [4] and incurs a
view classification loss when iteratively optimizing G and
D. In specific, D learns to classify the real GEI x4 to its
corresponding view while G tries to synthesize gait image
G(zsre,c) that can be classified to the view specified by
indicator c. To optimize D, we minimize the following loss
function

ﬁgs (Dcls; p197pc> = Erdstwpg (zast),e~pe(c) [_ IOg Dcls(c‘xdst)]

2
where D (c|z4s¢) is the probability distribution of input gait
image over view indicator computed by D. It is worth noting
that D¢)s is learned from real gaits in target view. When
optimizing G, generated gait image and its corresponding view
indicator are used. The loss function is defined as

ﬁgs (G po,Pe) = Eauypompy (2ore),empe(e) [~ 108 Dets (€| G (@sre, 033);

By minimizing the loss function, G attempts to synthesize gait
image that can be classified to the view specified by c.

Reconstruction Loss. To make the generated gait image
similar to the real target at low frequencies, we additionally
add an reconstruction loss, i.e., we use an ¢; loss to minimize
the reconstruction error between the generated gait image and
real target gait image which can be denoted as

Eid(G7p9apc) = Eazsrcwpg(xsm),cwpc(c) Hlxdst_G(wsrc» C)Hl]

“)
It has been proved by previous works that ¢; distance [5],
[13], [18] helps regularize the adversarial training process, and
preserve appearance consistency.

Identity-preserving Loss. Since our ultimate goal is to
achieve cross-view gait recognition, identity preserving be-
comes essential while translate gait image in source view
to target views. As analysed before, we do not only bridge
view gaps between gaits in source and target view but
also make them identity-distinguishable while performing gait
view translation. Thus, exploring the potential and underlying
identity-related information rather than only image style is
significant. To achieve this, we integrate a three-stream net-
work @ (also be called identity preserver) to regularize the
generation process as shown in Fig. 2. That is, ¢ learns to
distinguish real gait images in target view by identity while G
tries to generate gait images from source view that satisfy the
classification criterion. Thus, we decompose the loss function
into two parts: a similarity preserving loss of real gait images
for ® optimization and another similarity preserving loss of
fake gait images for G optimization. We use triplet loss [25]
to train the identity preserver module, i.e.,

Liri(Tanc, Tposs Tneg) = max{d(Tanc, Tpos)—d(Tanc, xneg)—i—p,((;})»

where Tgpnc, Tpos and T,y are three normalized embed-
dings which denotes anchor, positive and negative sample,
respectively. In specific, the embeddings are extracted by
®. d(-,-) denotes the Euclidean distance between two input
elements, and p > 0 represents the margin between classes
in the embedding space. We set p = 0.8 empirically in our

experiment. By minimizing the 10ss, d(Zgnc; Tpos) tends to be
0 and d(Zune, Tneg) tends to be greater than d(zene, dpos) With
a margin p. When the condition is fulfilled, the loss becomes 0
and no gradient would be back-propagated. When optimizing
®, embeddings of real GEIs in target view are utilized, the
loss function is denoted as £... On the other hand, the anchor
Zane is replaced to embedding of translated GEI G(x g, ¢)
when optimizing G. The loss function loss function is thus
denoted as £&,. The main difference between £2, and LS,
are where the anchor embedding is from, i.e., real gait images
or translated gait images.

Overall Objective. As analysed, our aim is to transform
gait image from one specific view to arbitrary views and
meanwhile preserve the identity information. To achieve the
aim, the above losses work cooperatively and the overall

objective function is
L= Lagw +MLE, + XoLig + A3LE, (6)

where A\¢,t € {1,2,3} are trade-off hyper-parameters which
balance contribution of four losses. In practice, we set A\; = 1
and A2 = A3 = 10 in our experiments.

Training Strategies. As in Fig. 2, the proposed VI-GAN
includes three modules, i.e., identity preserver ®, discrimina-
tor D and generator G. In the training phase, we alternatively
optimize each component. This is, we update parameters
of one module while keeping parameters of the other two
modules fixed. The discriminator learns to distinguish whether
the input gait image is generated and classify it to its corre-
sponding view. The similarity preserver learns to separate the
input gait image by its identity. And, the generator tries to
generate gaits to satisfy the requirements of both discriminator
and identity preserver. We do not stop the training procedure
until the objective is converged or maximum iterations are
reached.

IV. EXPERIMENTS

In this section, we describe details about the experimental
setup, implementation settings and evaluate the proposed VT-
GAN on cross-view gait recognition task.

A. Experiment Settings

Dataset. The CASIA gait database B [36] is adopted for
evaluation of view transformation and cross-view gait recog-
nition in our experiment. This dataset is widely used for gait
recognition under view change because of its abundant gait
sequences and view variations, i.e., the database involves of
110 gait sequences from 11 views (varying from 0° to 180°
with a interval of 18°) per subject and totally 124 subjects.
For each view, the subject is collected 10 times of which six
are in normal conditions (i.e., the subject walks in tight cloth
without bearing load, denoting as NM#01 — 06), two are
with a bag ( denoting as BG#01 — 02) and two are in a
coat (denoting as C'L#01 — 02). It is worth to pointing out
that both silhouettes of gait sequences and corresponding gait
energy images (GEIls) [7] are provided in the dataset. GEI is
the average image of gait silhouettes in a walking cycle which



(b)

Fig. 3. An example of GEIs from 11 views. Each row includes GEIs of the
same subject from 0° to 180° with 18° interval. (a) shows GEIs of three
different subjects in terms of three rows. (b) exhibits GEIs in three different
conditions of the same subject, i.e., NN, BG and CL.

has shown effectiveness in previous works [2], [7], [21], [30],
[32]. Thus, GEI is adopted to represent gait patterns in our
paper. Fig. 3 lists some examples of GEIs from 11 views in
which (a) shows GEIs from different subjects in NM condition
and (b) shows GEIs in different conditions from the same
subject.

Setup. To compare fairly, we follow the experiment setup
in gaitGAN [33]. The dataset is equally separated into two
groups, one involves of first 62 subjects that is used for
training the proposed VI-GAN and another includes the rest
62 subjects that is used for cross-gait recognition evaluation.
When training the proposed VT-GAN, all GEIs of the 62
subjects are utilized. In the evaluation stage, four GEIs in
normal walking condition from each view form the gallery set,
i.e., NM+#01—04,. And, three challenging probe sets are built,
ProbeNM (N M#04 — 05), ProbeBG (BG#01 — 02), ProbeCL
(CL#01 — 02). It is worth noting that the proposed VI-GAN
not only performs view transformation, but also normalizes
other variations. Thus, GEIs in ProbeBG and ProbeCL will be
normalized to standard NM condition while performing view
transformation.

Evaluate Metric. As VTM-based methods [15], [16], [23]
that gait features from gallery view are mapped to probe
view and then conduction distance measurement, we perform
cross-gait recognition the same way, i.e., we first conduct
view transformation by the proposed VT-GAN and then
distance measurement. In our experiment, we first perform
linear discriminative analysis [38] to reduce dimension and
then compute Euclidean distance. Identification performance
measured by nearest neighbour classifier is reported.

B. Implementation Details.

Network Architecture. There are three modules in the
proposed VI-GAN, generator G, discriminator D and iden-
tity preserver ®. Adapted from [4], G includes two Conv-
InstanceNorm-ReLU blocks for down-sampling, three resid-
ual blocks [8], and two TransposeConv-InstanceNorm-ReLu
blocks for up-sampling. D follows theory of PtachGAN [13]

to discriminate real/fake on local patches which is benefit
to sharp the synthesized image. It consists of four Conv-
LeakyReLu blocks and another two convolution layers with the
stride of in parallel, where one is for real/fake discrimination
and the other is for view classification. ® is adapted from [33]
which includes three convolution layers together with max-
pooling with 2 x 2 kernels and a stride of 2. In addition,
4 x 4 filters with stride 2 are involved in all convolution and
transposed convolution layers above except residual blocks.

Training Details. The model is trained using Adam [14]
with 87 = 0.5, B2 = 0.999 and an initial learning rate
of 0.0001. We train the model for 20k iterations which the
learning rate keeps fixed during first 10k iterations and then
linearly decay to 0. Considering the GPU resources, the batch
size is set to 100. In our experiments, we empirically set trade-
off parameters in objective Eq. (6) as A\; = 1, Ay = 10 and
A3 = 10. When training the model, we alternatively optimize
generator (=, discriminator D and identity preserver ®. In
specific, we perform a single optimisation of generator G after
every five optimisations of discriminator D and ®.

C. Quantitative Analysis

In this section, we evaluate the proposed VI-GAN on cross-
view gait recognition task and analyse the effect of identity
preserving loss to recognition accuracy.

Effect of View Changes. In order to analyse how view
variation affects the performance of gait recognition, we
evaluate the proposed VI-GAN on three challenging probe
sets, i.e., ProbeNM, ProbeBG and ProbeCL, and report the
result between any two views. Fig. 4 shows results on each
probe view versus all views except the identical one. From the
figure, it is easy to observe that view variation significantly
affects the performance of gait recognition. In specific, 1)
view difference degrades the identification accuracy and larger
one causes worse performance, 2) performance would improve
near the symmetric view in terms of centre view 90° when the
probe view is fixed, 3) carrying a bag or wearing a coat also
lower the recognition accuracy and wearing a coat results in
worst performances.

It is reasonable for above conclusions. This is because 1)
view difference incurs heterogeneous data distribution and un-
aligned information structure, 2) gaits from symmetric views
can be mutually mirror-reflected, and 3) carrying a bag or
wearing a coat severely change silhouette shape of human
body and occlude the walking traits. Though the proposed VT-
GAN weakens the effect of these factors, they still degrade the
identification accuracy.

Performance Comparison. As in [33], we select three probe
view 54°, 90° and 126° which are identical for cross-view gait
recognition to compare performances with the state-of-the-art
methods. In this section, we compared some representative
approaches such as PCA [7], FD-VTM [19], TSVD-VTM [15],
R-VTM [17], C3A [31], SPAE [34], ViDP [10], GaitGAN
[33], gaitGANv2 [35] and MGAN [9]. Fig. 5 compares across-
view gait recognition performances between each probe view
and other rest views. From the figure, it is clear that the results
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Fig. 4. Comparison of accuracies on the three probe subsets at the 11 probe
views. For each probe view, accuracies of the rest views are excluded. (Best
view in Acrobat PDF.)

support conclusions in Effect of View Changes. Moreover, we
can observe the proposed VI-GAN improves the matching
performance to some extent. Table I reports the average
identification accuracies of the three probe views against the
rest views. From the table, it is easy to see that the proposed
VT-GAN outperforms other recent GAN-based works, i.e., we
improve 12%, 10% and 10% in terms of the three probe views
compared with GaitGAN. Along with Fig. 5, the proposed VT-
GAN achieves promising performances.

Effect of Identity-preserving Loss. In this part, we train the
vanilla VT-GAN and pruned VT-GAN, respectively. Compared
vanilla VI-GAN, the pruned VT-GAN does not include the
identity preserver ® which is denoted as VI-GAN (w/o ®).
Table II reports results of the two models. It is easy to observe
that the identity preserver does benefit to cross-view gait
recognition. In addition, the VI-GAN can achieve equivalent
performances even without this module, because the recon-
struction loss keeps appearance similarity while performing
view translation.
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TABLE I
COMPARISON WITH RECENT WORKS ON CROSS-VIEW GAIT RECOGNITION
ON PROBENM. AVERAGE IDENTIFICATION ACCURACIES EXCEPT THE
CORRESPONDING VIEW ARE REPORTED.

Probe View
Method I 00°  126°  Average
ViDP [10] 0.64 0.60 0.65 0.63
SPAE [34] 0.63 0.62 0.66 0.64
GaitGAN [33] 0.65 0.58 0.66 0.63
MGAN [9] 077 0.67 0.79 0.74
GaitGANvV2 [35] 0.72 065 0.73 0.70
Proposed 0.77 0.68 0.76 0.74
TABLE II
EVALUATION OF EFFECTIVENESS OF THE IDENTITY PRESERVER IN
VT-GAN.
Probe View
Method 54°  90° 126°  Average
GaitGAN [33] 0.65 0.58 0.66 0.63
VT-GAN (w/o ®) 0.75 0.64 0.73 0.71
VT-GAN 0.77 0.68 0.76 0.74
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image and view indicator.
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Fig. 7. Visualization of synthesized gaits of three different subject. Each row

includes gaits from the same subject. And, the first column is reference gaits
in 90°, the rest rows are synthesized gaits from input gaits in 0° to 180°.
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Fig. 8. Visualization of synthesized gaits of the same subject in three
distinct conditions, i.e., normal walking, carrying a bag and wearing a coat
corresponding to three rows, respectively. The first column includes reference
gaits of the same subject in 90° and the rest columns consist of synthesized
gaits from various views.

D. Qualitative Analysis

As analysed, one benefit of the proposed VI-GAN is that it
provides visual interpretation for cross-view gait recognition.
As in Fig. 6, we visualize synthesized gaits between any
two views. From the figure, we can see that 1) the VI-GAN
synthesizes visually promising images which is hard to distin-
guish from real images, 2) The VI-GAN successfully achieves
view transformation between any two views, 2) The generated
images are appearance similar to the target gaits in gallery set.
Fig. 7 shows the synthesized gaits in 90° from various views
of three different subjects in normal walking condition. It is
easy to observe that smaller view difference results in more
similar artifact, i.e., it is easy to generate appearance similar
results when the view of probe gaits is near 90° in the figure.
Fig. 8 shows the synthesized gaits 90° from various views
of the same subject different walking conditions. It is obvious
that carrying a bag or wearing a coat cause poorer synthesized
gaits. In Fig. 9, we also lists some bad samples caused by poor

Fig. 9. An example of some bad samples and their corresponding translated
gaits. For each pair, the left is the input gaits and the right is the synthesized
gaits.

segmentation or limited silhouettes and their corresponding
synthesized artifacts by VI-GAN. These samples undoubtedly
degrade the identification accuracy. However, the proposed
VT-GAN also tries to translate them and makes the generated
gaits look normally. This hints that the VI-GAN can correct
minor GEI faults caused by poor segmentation and incomplete
walking cycle. We suggest that this is consistent to the cases
such as carrying a bag or wearing a coat.

E. Further Analysis

Relation to GaitGAN. As in Fig. 1, GaitGAN aims to
normalize gaits in various views to a reference one, i.e., 90°.
Thus, only gaits from 90° are used to train the discriminator.
If we want to map gaits in the identical view to arbitrary
views, multiple models should be built. Different from Gait-
GAN, the proposed VIT-GAN could translate gaits to arbitrary
view using only one single model benefiting from the view
indicator input. This means that view indicator constrains the
generation process and force the generator to synthesize gaits
in view corresponding to the specific indicator. Considering
this, GaitGAN is a special case of the proposed VT-GAN,
i.e., we set the view indicator to 90°. In another aspect, the
proposed VI-GAN adopts distinct framework with GaitGAN
because of their different goal. GaitGAN is adapted from
classical GAN model while the proposed VT-GAN is derived
from conditional GAN which takes view indicator as the
condition. This brings out different discriminator design, i.e.,
GaitGAN adopts traditional real/fake discriminator while the
proposed VI-GAN adapts the discriminator and makes it not
only distinguish the artifacts but also discriminate view of
input gaits.

We also studied the influences of reference view, i.e., we
changed the view indicator and translated gaits of arbitrary
views to each reference view. Fig. 6 compares average ac-
curacies of all the 121 view pairs with respect to different
reference views. From the figure, we can observe that side
view 90° adopted in GaitGAN does not achieve the highest
performance. In contrast, two peak identification accuracies
appear at 54° and 126°. The result verifies the view symmetry
theory in Sec. IV-C because 54° and 126° are the center of
two half sphere separated by 90°.

Potential Benefits of VI-GAN. In addition to above benefits,
the proposed VI-GAN brings other applications such as data
augmentation and unseen view prediction. As we know, lack
of data restricts the performance of CNN models. In gait
recognition, most of existing datasets only contains limited
samples with minor view variation. It is insufficient to train
large-scale models for complicated scenarios. The proposed
VT-GAN provides a solution to the problem because it can



synthesize gaits of arbitrary views from one specific view.
Moreover, it can synthesize gaits of arbitrary views from other
existing datasets which only contain minor view variation. This
significantly enlarges the volume of data. In another aspect, the
proposed VI-GAN can synthesize gaits of one specific subject
in unseen views. It is beneficial to predict subject’s identity
appearing in the view at the first time.

V. CONCLUSION

This paper studies view transformation problem in gait
recognition and propose to achieve view-to-view transforma-
tion via a single model, i.e., the proposed VI-GAN. Instead
of normalizing to one unified view as previous GAN-based
works, VI-GAN achieves to translate gaits between any two
views only using a single model. In specific, the proposed
VT-GAN includes three modules, a generator, a discriminator
and a similarity preserver. The generator attempts to generate
gaits in reference view from source view conditioned on a
view indicator and fool the real/fake discriminator while the
discriminator tires to distinguish whether its input is artificial
and meanwhile constrain it to its corresponding view. The
similarity preserver supervises the generation process which
forces to synthesize gaits sharing same identity with its posi-
tive sample in the reference view. Both qualitative and quan-
titative analysis are conducted on cross-view gait recognition
task, the experiment results show promising performances of
the proposed VT-GAN. Furthermore, the proposed VI-GAN
brings other usages such as data augmentation [12] and unseen
view prediction which will be researched in further study.
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