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Abstract— Growing amounts of online user data motivate
the need for automated processing techniques. In case of user
ratings, one interesting option is to use neural networks for
learning to predict ratings given an item and a user. While
training for prediction, such an approach at the same time
learns to map each user to a vector, a so-called user embedding.
Such embeddings can for example be valuable for estimating
user similarity. However, there are various ways how item and
user information can be combined in neural networks, and
it is unclear how the way of combining affects the resulting
embeddings.

In this paper, we run an experiment on movie ratings data,
where we analyze the effect on embedding quality caused by
several fusion strategies in neural networks. For evaluating
embedding quality, we propose a novel measure, Pair-Distance
Correlation, which quantifies the condition that similar users
should have similar embedding vectors. We find that the fusion
strategy affects results in terms of both prediction performance
and embedding quality. Surprisingly, we find that prediction
performance not necessarily reflects embedding quality. This
suggests that if embeddings are of interest, the common ten-
dency to select models based on their prediction ability should
be reconsidered.

I. INTRODUCTION

The past two decades have seen an exponential prolifera-
tion of user-generated content across the Internet, including
social media posts, user activities and ratings. Such user data
has been used in a variety of ways. Examples include the
detection of users’ sentiment from product reviews [1], but
user data has also been used to train models for predicting
where users will click [2] or which items they will like
[3]. Such detection and prediction tasks typically have direct
practical motivations. It can, however, be important as well
to add an explanatory component to such detection and
prediction systems. In particular, this importance can be due
to legal reasons, since the European legislation (GDPR [4])
now grants users the right to ask for a simple explanation
of any automatic decisions that affect them. There are
several possibilities for combining analysis with detection or
prediction, in order to make Al systems more understandable.

One way, for example, is to build on understandable mid-
level concepts for detection, such that the trained model
automatically has an explanatory quality. This approach is
adopted in aspect-based sentiment detection (e.g., [5]), which
is commonly applied to user reviews to not only detect
the overall sentiment towards a product but simultaneously
describe which aspects of the product are responsible for
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Fig. 1: Illustration of the neural-network-based approach
adopted in this paper for learning user embeddings. A
neural network learns to fit the data while simultaneously
embedding the users, based on item ratings from different
users. Our main questions are: How to quantitatively evaluate
the learned embeddings? And what are the effects of fusing
item and user information in a particular way?

the user’s opinion. Another approach is to fit the given
data with a complex model (often a neural network) and
then derive explanations from the trained model by means
of sophisticated analysis techniques. This direction includes
recent efforts related to heatmapping techniques that are used
for explaining decisions of machine learning models (e.g.,
[6], [7]). For example, in the field of medicine, Sturm et
al. [8] show how to train a neural network on classifying
EEG data and then use a heatmapping technique to generate
explanations for the network’s classification decisions. Yet
another case of combining prediction with analysis would be
representation learning, where some concept of interest (such
as the user) is mapped to a vector as part of a larger model
that fits the given data. An example for such an approach
is proposed by Amir et al. [9]. In their paper, users are
embedded to a vector and then fused into a neural network
for predicting textual contents (twitter texts). In this regard,
neural networks represent an interesting choice as a model.
This is because, in the past few years, many techniques
have been proposed for analyzing them (such as the ones
mentioned above).

We see that most of the mentioned approaches involve
training a neural network on user data, which combines user
and item information for prediction. Several strategies exist
for such an information fusion, but so far the effect of this
choice has barely been analyzed.

Hence, in this work we explore the direction of using



neural networks for simultaneously fitting user data and
learning vector representations for users, and analyze the
effects of different fusion variants. As user data, we decide
to use movie ratings from different users, where we represent
movies as (dense) feature vectors based on tags. Our goal is
to fit this data with a neural network that takes user ID and
movie features as input, while predicting the corresponding
ratings and learning to embed the users into vectors. The
focus thereby lies on the representation learning component,
i.e., we want to find out how to learn “good” embeddings. To
this end, we mainly address these questions: Which way of
combining user and movie information is suitable for such
a task? What is the effect of embedding size? And how can
we define and quantify the quality of embeddings? In this
regard, the contributions of this work can be summed up as
following:

1) We propose a novel evaluation measure for quality of
user embeddings.

2) We analyze the effect of various fusion strategies and
embedding size on the resulting quality of learned
embeddings.

The rest of the paper is organized as follows. Section
summarizes the previous works that have been related to this
field of research. Section [[Ll| formalizes the task in a detailed
manner and introduces the proposed measure for embedding
quality. Section explains the relevant fusion strategies
for neural networks. Section [V] describes the experiment
performed. Section|[VI|summarizes our findings and mentions
some future directions.

II. RELATED WORK
A. Learning user embeddings

The main goal of this paper is to learn (meaningful) user
embeddings. In the literature, user information has been
used in various ways. For example, user information can
be exploited for adding cognitive information to the model.
This was done by Yamagashi et al. [10] who defined a
user embedding as context for learning different speaking
styles, such as reading, joyful, and sad. There, the user
information is defined in terms of two components: phonetic
and linguistic. Additionally, user information has been used
for detecting sarcasm and mental health conditions based
on social media data [11], [9]. In both of these scenarios,
neural networks based on Paragraph2Vec [12] are trained
on textual contents with the goal of learning user-dependent
word-usage patterns. In this process, the model automatically
learns user embeddings that are based on the relationship
between users and their texts.

Both of these papers analyze the learned user embeddings
in order to obtain insights about user behavior. The authors,
however, do not propose a formal measure for evaluating
embedding quality, and the fusion strategy in both cases is
simple concatenation. We will propose a novel measure for
quantitative evaluation of embedding quality in Section [[II-
Dl Also, whether concatenation is the most appropriate
fusion strategy for learning embeddings is far from obvious.

Indeed, we can find several other fusion strategies for neural
networks in different areas, which we shall briefly discuss
now.

B. Fusion strategies in neural networks

Fusion strategies have been applied to two or more
modalities for joining representations and predictions. One
possibility is to have a shared representation in the model
[13]. Furthermore, each modality is learned individually as
a first layer and then both components are joined into a
shared representation as a second layer. This can be seen as
a early fusion. Additionally, the fusion can also be presented
in the middle or at the end of the model. For example, a
common approach in Visual-Questioning Answering (VQA)
is to first obtain visual and text embeddings after applying a
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN), respectively [14]. Then, a simple Hadamard
product (i.e. element-wise multiplication) is used as a fusion
method in the model. The previous two approaches are
based on concatenation or multiplication operations. Another
approach is to apply tensor operations to the multimodal
embeddings. For example, the MUTAN model [15] factorizes
a multimodal tensor generated by the question and image em-
beddings. Similarly, tensor products are used for information
fusion in some works of distributional semantics (e.g., [16],
[17], [18]). Some of these works ([16], [18]) even include a
systematic comparison of fusion strategies in terms of effects
on embeddings of adjective-noun combinations. However,
for the case of user embeddings, no such comparative study
exists.

III. PRELIMINARIES
A. Problem statement

We assume that we are given data of the form
{(z1,u1,R1), .., (Tm, Um, Rm)}, where z; € R™ are input
items (such as movies), u; € U correspond to users with
U the space of user identifiers, and R; € R is the rating
which the user wu; assigned to item z;. The goal is to find
a mapping e : U — R? that assigns each user to a real-
valued vector, which we refer to as the user’s embedding.
For example, a user with ID user_1 could be mapped to
a 3-D vector e(user_1) = [0.2,0.1,0.7]7, where z = 3.
We require that these embeddings are “meaningful” in the
sense that similarity of embeddings should reflect similarity
between users. Intuitively, we want to represent the users
such that it is easy for us to see how similar they are in
terms of how they rate items. (This part will be formalized
as a novel measure in Section [[lI-D])

In this paper, we analyze how this goal can be achieved by
fitting the given data with a neural network that simultane-
ously learns embeddings for the users. The main questions
we address are: How does embedding size z relate to the
quality of the learned embeddings and the ability to fit the
data? And, since such a neural network needs to combine
input item and user information for predicting a rating, which
fusion strategy is most appropriate for this task?



B. Functional Data Analysis (FDA)

In order to foster a deeper understanding of the problem,
we describe its relation to a particular branch of mathematics,
namely Functional Data Analysis (FDA). This will show
how learning user embeddings can be understood as finding
vector representations for functions. This insight will then
be useful later for seeing how embeddings can be evaluated
quantitatively.

Mathematically, we can model the data generation process
analogously to the modeling in FDA (compare, e.g., with
the description in the survey of Jacques and Preda [19]): We
assume that there is a functional random variable

F:Q—={f:1—-R},

i.e., F' is a random variable which has functions (from I to
R) as values. Any such function f describes a particular
way of rating items, and corresponds to a single user.
Now, a set of observations {fi,...,fi} of F is referred
to as functional data. In practice, these rating functions
are not given directly, but instead, for each function f;
a set of samples {(zs1, fi(2i1)), -y (Timy, fi(@im,)) } 18
provided. We can put all this information together into
a set with elements of the form (i,x;,;, fi(xs;)), which
shows the equivalence to the rating data introduced in our
problem statement (Section [[II-A). So our goal of learning
user embeddings essentially means that we are trying to find
vector representations of functions based on lists of samples.
This corresponds to dimensionality reduction of functions,
which is a sub-task of FDA [20].

This view of the problem should make another thing clear:
User embeddings are representations of the users’ rating
functions. There is no a priori justification for assuming that
any other properties of the users (apart from their rating
behaviors) would be incorporated into user embeddings by
fitting such data. Hence, relations between user attributes
(such as gender or location) and embeddings can be useful
to analyze the role of such attributes for user behavior, but
are only suitable for evaluating the embeddings if there is
a known connection between rating behavior and the given
user attributes.

C. User similarity

In Section [[II-A] we formulated the goal that similarities of
embeddings should reflect similarities of the corresponding
users (or, to be more precise, their rating behaviors, as we
have just argued in the previous section). Before we can turn
this criterion into a quantitative measure, we need to quantify
similarity of users.

In the collaborative filtering literature, we find several
proposed methods for computing such similarities, including
Pearson correlation, Spearman correlation, cosine vector sim-
ilarity, adjusted cosine vector similarity, and mean-squared
difference [21]. Out of these common options we choose
to estimate similarity based on the mean-squared difference
of their ratings. Our choice has two main reasons: First,
mean-squared difference is most similar to the L2 distance
between functions, which is a common measure used in FDA

for computing distance between functions [19]. Second, the
mean-square difference of user ratings is interpretable as
expected value (assuming uniform prior over input items)
of the squared difference of their ratings for the same item.

D. Pair-Distance Correlation measure (PDC)

We are not aware of any existing measure for evaluating
embeddings based on function similarity. Thus, for measur-
ing the quality of learned embeddings, we introduce a novel
performance measure, which we call Pair-Distance Correla-
tion (PDC) measure. Two crucial elements of the presented
measure are the distance metric dg on the embedding space,
and the distance measure dyy on the user space.

The choice for these two elements should be informed by
the purpose of learning user embeddings. For interpretabil-
ity, it makes sense to consider intuitive distances on the
embedding space (dg) such as the Euclidean distance. As
mentioned above, we generally consider the mean-squared
difference to be an appropriate choice for dy, but in certain
scenarios one might want to deviate from that (e.g., mean-
absolute difference if more weight should be given to small
differences). Once dg and dy; are chosen, the PDC of an
embedding function is computed as follows:

Algorithm 1 Algorithm for computing Pair-Distance Corre-
lation

Input: set {(x1,u1,R1),...,(zn,un, Ry)} with input
items x; € R"”, user identifiers u; € U and ratings
R; € R; embedding function e : U — R?; distance
measures dg on R? and dy on U; threshold t € N+
Output: PDC score of e with respect to dg and dy
1 set lgp = list(), ly = list()
2: for all users u;,u; € U with at least ¢ items rated by
both do
3:  based on all items rated by both u; and wu;, compute
dy(u;,u;) and append it to Iy
4:  compute dg(e(u;),e(u;)) and append it to g
5: end for
6: return Pearson correlation coefficient between [z and

ly

Being based on Pearson correlation, the resulting score
takes values in [—1,1], where higher values are preferable
and 1 is the best possible outcome. Note that random embed-
dings can be expected to achieve a PDC score around 0. A
high PDC measure (close to 1) means, that in general if a user
embedding e(u;) is more similar to e(u;) than e(uy) with re-
spect to dg (i.e., dp(e(u;), e(u;)) < dg(e(u;), e(ux))), then
the rating behavior of user u; is more similar to the behavior
of u; than to that of uj (in terms of the similarity measure
explained in Section [lII-C] i.e., dy (u, u;) < dy (us, ux)). In
other words, PDC evaluates whether an embedding function
preserves distance relations.

IV. FUSION STRATEGIES

We would like to train a neural network that takes item
information z as input and user embedding e as additional



context signal for predicting the user’s rating. In general
we distinguish between three ways for incorporating such
context information into neural networks:

1) neuron-level fusion: based on context signal alter hid-
den states at some layer

2) weight-level fusion: based on context signal alter
weights of some layer

3) combinations of the former two

We outline three specific approaches that fall into the
first two of these categories, which we will also use in
our experiments later on. Then, we will also have a closer
look at Factorization Machines (FMs) [22], which have
shown top performance for various tasks involving user-
dependent prediction [23], [24], [25]. The paper that intro-
duces FMs [22] also explains how FMs can mimic many
other popular recommendation system methods, including
matrix factorization and specialized methods such as SVD++
[26] or PITF [27]. Note that even though FM is not a neural
network method per se, it can, after a small modification, be
understood as weight-level fusion approach.

A. Neuron-level fusion

We focus on mask-based methods for neuron-level fusion.
In mask-based methods, a mask of the same size as the hid-
den state at some level is computed from the context signal
and then combined with the hidden state in an element-wise
manner for an update. Two common fusion approaches are
considered:

o For using additive masks (Add) on any hidden state z,
we compute a mask of the shape of = by multiplying the
context vector with a weight matrix of suitable shape,
and then add this mask to the original state.

o Multiplicative masks (Mul) work analogously but com-
bine mask and hidden state by element-wise multipli-
cation (i.e., Hadamard product).

Note that additive masks are equivalent to concatenation
of input z € R™ and context signal e € R* one layer earlier,
since it holds that

y=W 2] = mwal [Z] = Wiz + Wae, (1)

where [%] stands for the concatenation of x and e and the
m X (n + z)-matrix W is split into the m x n-matrix W1
and the m x z matrix Ws.

B. Weight-level fusion

We describe tensor fusion as one way to make weights
context-dependent. We made this choice because tensor
fusion is a basic approach which we find very suitable
for illustrating the general principles of weight-level fusion.
Other approaches such as the one inspired by Singular Value
Decomposition (introduced for one-shot learning in [28]) can
typically be understood as a modification of tensor fusion.
Different from neuron-level fusion, which can normally be
applied in exactly the same way in linear layers and convo-
lutional layers, the details of weight-level fusion depend on
the type of layer.

We describe tensor fusion on a linear layer. So let us
assume that we have input z € R”, context e € R* and want
to map this to the output space R™. The standard output of
such a linear layer that ignores all context information is then

fe(z) :=b+ Wz, 2

where W € R™*™ is a weight matrix and b € R™ a bias
term. The basic idea of tensor fusion is to make the weight
matrix W dependent on the context e by adding a context-
dependent part to it. More precisely, we define W(e) :=
W +eT where T € R#**™X*" ig a third-order tensor, and eT’
is calculated as €T’ = ;| e;T}..... The final output of the
linear tensor fusion layer is then given by

tensor(z,e) :=b+W(e)r =b+ (W +eT)z  (3)
=b+Wzx+elx @)

C. Factorization Machines

Using a slightly different notation than in the original
paper [22], we can write the model equation of a FM (of
degree 2 and rank z) as follows:

n n
FM(z) i=b+Wa+ Y > aViViz;, (5
i=1 j=i+1
where x € R", W € R", V € R"*#. (Note that the output
dimension m is 1 for FMs.)

A modified version of FM turns out to be a special case
of tensor fusion, which we will now explain. By changing
the sum over j to go from 1 to n (instead of ¢ + 1 to n), we
get:

FMy () ::b+Wx+ZZmiVi;.Vf_xj (6)
i=1 j=1

=b+Wz+2VVTx (7

There are two ways how FMr can be understood as tensor
fusion: First, if we define T := VVT € R™"*"_ we see that

FMr(z) =b+ Wz + 2Tx )

becomes equivalent to tensor fusion that uses the same
vector as input and context, and factorizes the weight tensor.
Second, we can consider V' as embedding matrix, so that x
is used as input and its embedding V' as context:

FMz(z) = b+ Wa + (2V)V'a )

In this case, V7 takes the role of the tensor 7', and we have
tensor fusion that shares weights with the embeddings.

We would like to point out that by interpreting the mod-
ified FM (which can still capture higher-order dynamics)
in any of these two ways, it becomes simple to see how
structures similar to FM can be incorporated anywhere into
a (potentially large) neural network. In particular, these
interpretations as tensor fusion explain how the method can
be adapted for higher-dimensional output (where both of the
two interpretations we discussed lead to slightly different
adaptations).



V. EXPERIMENT

The experiment aims to evaluate the effects of embedding
size and fusion strategy on the quality of user embeddings.
Apart from the baselines, we also conduct similar exper-
iments with Factorization Machines as a benchmark. The
experiment uses the MovieLens-100k dataset [29], which
contains 100,000 movie ratings. The neural networks used
in this experiment are based on linear layers.

A. Task

We use the MovieLens-100k dataset, which consists of
100,000 movie ratings (1-5) from 943 users and of 1682
movies. Each movie in this dataset has a unique ID and meta-
information about title, year of appearance and genre(s).
None of these seem overly interesting to use as interpretation
input, hence we took the movie genome information from
the MovieLens-20M dataset [29] in order to obtain a 1128-

dimensional tag-based feature representation of the moviesﬂ

We train various neural networks on the task of movie
rating prediction, given the movie as tag feature vector and
the user ID as input. (See task illustration in Figure [2]) It

movie
features
user rating
NN —>{4]
A
1128 user
embedding
user ID

(1 out of
943) z

Fig. 2: Illustration of the MovieLens-100k task. A neural
network is trained to take movie features as input and user
ID as context signal for predicting user ratings. The particular
neural network architecture and embedding size are varied in
the experiment. Note that everything is trained end-to-end,
which includes learning the embeddings.

is important to recall that our main interest lies in learning
meaningful embeddings. Embedding quality is evaluated by
computing the PDC measure with respect to mean-square
difference on users (estimated based on the test data) and
Euclidean distance on the embeddings (as introduced in
Section [[II-D). Additionally, we evaluate prediction perfor-
mance, using the standard recommendation system measures
mean average error (MAE) and root mean squared error
(RMSE).

B. Architectures

The neural network architectures used for this experiment
are illustrated in Figure [3] All of these architectures are
based on one or two linear layers, and incorporate the user

'Note that for this we had to link the movie IDs between these two
datasets, which we did based on movie titles and years of appearance. We
dropped the (<200) movies for which no corresponding movie was found.

information by additive masks, multiplicative masks or tensor
fusion, respectively (see Section[[V]). We deploy all masking
mechanisms before applying the activation function. For each
of the four fusion methods, we vary the embedding size (2,
4, 8, 16, 32 and 64).

movie
linear layer predicted
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user ID scalar
54 z
. embed
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user ID scalar

74

. embed
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Fig. 3: Illustration of neural network architectures used for
the MovieLens-100k experiment. For additive and multi-
plicative fusion, the basic architecture can be understood
as multi-layer perceptron with one hidden layer of size z,
where the hidden activations are modified depending on the
user signal by means of element-wise addition/multiplication
(taking the place of “*”). As tensor fusion approach, we
choose a single linear tensor fusion layer, that uses the user
embeddings as context signal.

We compare these neural networks against a Factorization
Machine (FM). For each user, an embedding in case of FM
is obtained by appending the user bias (as learned by W)
to the row of the weight matrix V' which corresponds to the
user.

C. Results

Results can be found in Table [ As two baselines, we
include a model that outputs the average rating of the given
user and ignores the movie features (user-bias), and a model
that adjusts this score based on average user ratings by
adding a learned linear combination of the movie features
(linear). For the baselines, the (scalar) user-dependent biases
were used as embeddings. All reported results are averages
of 5-fold cross validation, using the official dataset split. In
Figure 4] we additionally show how embedding scores vary
across fusion strategies and embedding sizes, depending on
the threshold of common items that is used for computing the
PDC score. We optimized hyper-parameters (learning rate,
number of epochs, and in case of FM also the regulariza-
tion terms) based on a different split. We implemented all
baselines and neural network models in TensorFlow [30],
and used Sacred [31] for managing our experiments. FMs
were trained and evaluated in a separate script, using Bayer’s
fastFM implementation [25].
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Fig. 4: PDC scores for embeddings of different fusion strategies for various embedding sizes. The threshold that is varied
along the x-axis is a parameter of the PDC measure: For computing the PDC measure, only user pairs with this number of
common movies are considered. Mean values and standard deviation are calculated based on training and evaluation of 5
folds. Corresponding scores of the linear baseline are 0.12, 0.19, 0.29, 0.42 (thresholds 1, 2, 4, and 8§, respectively).

D. Analysis

In Table ] we see that fusion with multiplicative masks
of a moderate embedding size (around 16) works best
for prediction. Tensor fusion with similar embedding sizes
(16, 32) achieves comparable prediction results. Additive
masks yield comparatively poor prediction performances, but
achieve higher embedding scores. Both of these parts are
largely independent of the chosen embedding size in case of
addition, while we can observe a slight trend of increasing
embedding quality with growing embedding size. For tensor
fusion on the other hand, embedding quality is overall lower,
and heavily depends on the chosen embedding size, while
lower dimensions yield higher quality. Interestingly, tensor
fusion favors high embedding sizes for prediction, which
means that these two types of performances are found to be
anti-correlated. Multiplicative fusion shows similar trends to
those of tensor fusion, so it also prefers low embedding size
for learning embeddings, but this effect is somewhat less pro-
nounced. Factorization Machines are highly competitive for
prediction when using small embedding sizes, but at around
z = 16 start overfitting quite heavily. Embedding scores
are comparable to those of the multiplicative fusion model.
Again, optimal embedding size is different for prediction as
compared to embedding quality (8 vs 2 or 4). In general it
is surprising that there seems to be no clear relation between
prediction performance and embedding quality (compare,
e.g., addition with z = 32, multiplication with z = 4 and
tensor fusion with z = 64).

Results for PDC score in Table [l are all based on a
user threshold of 4, i.e., only pairs of users with at least 4
commonly-rated movies were considered for the calculation.
In Figure [ we can see how embedding scores change if we
vary this user threshold. Note that for lower thresholds we
have many more user pairs to consider but also much more
noise in the data, which explains why scores are generally
much lower for lower user thresholds. Most of the effects

we discussed above are insensitive to this user threshold we
chose for computing the PDC score. One exception to this
insensitivity is the observation that for low user thresholds,
addition is on par with some tensor fusion models, and even
slightly outperformed by certain variants of FM and mul-
tiplicative fusion (z = 8). Together with the corresponding
prediction performances, this suggests that additive fusion
generally focuses on less complex user-dependent effects (as
compared to FM and multiplicative fusion). Figure [] also
reveals a high standard deviation of the embedding quality
for multiplicative fusion. This is generally an undesired
property but could indicate that multiplicative fusion might
benefit from additional regularization techniques.

Overall, in this experiment additive fusion appears to be a
robust choice for learning high quality embeddings, as long
as prediction performance is not important.

E. Input sensitivities and user clustering

The model-based approach we adopted for fitting user
data while simultaneously learning to represent the users
as embedding vectors gives us one other interesting option,
which we have not yet mentioned: For any user embedding,
the trained model describes the associated rating behavior,
which we can analyze further. In particular, for a given
user, we can compute input sensitivities (partial derivatives
of rating score with respect to input features) in order to
find out, which features of a movie make the user more
likely to rate the movie higher, and which features the user
does not like. Of course, we should not assume that any
of our models perfectly fits the true rating behavior of any
user, especially in terms of more complex properties such
as input sensitivities. Still, if the models achieve reasonable
prediction performance, there is good reason to believe that at
least some properties are captured correctly. And choosing a
model with a simple structure furthermore reduces the chance
of ending up with complex statistical artifacts.

Among our neural network architectures, the structure



TABLE I: Prediction (MAE, RMSE) and embedding scores
(PDC) of the presented fusion strategies and baselines. PDC
scores are computed with respect to mean-square difference
between users and Euclidean distance on embeddings. For
calculating the PDC scores, only user pairs with at least 4
common ratings were considered (threshold 4). The +1 in
the z column represents the bias term.

Approach Prediction PDC

Fusion z MAE RMSE | (threshold 4) | Params
user-bias 0+1 0.87 1.06 0.26 946
linear 0+1 0.76 0.95 0.29 3015
2+1 0.71 0.91 0.26 6214

4+1 0.71 0.91 0.29 10356

FM 8+1 0.72 0.92 0.31 18640
16+1 0.75 0.96 0.29 35208

32+1 0.80 1.03 0.28 68344

64+1 0.83 1.07 0.24 134616

2 0.74 0.94 0.32 4147

4 0.74 0.93 0.33 8293

add 8 0.73 0.93 0.33 16585
16 0.73 0.93 0.33 33169

32 0.74 0.93 0.34 66337

64 0.74 0.94 0.34 132673

2 0.73 0.92 0.31 4147

4 0.71 0.91 0.27 8293

mul 8 0.70 0.90 0.31 16585
16 0.70 0.90 0.28 33169

32 0.70 0.90 0.27 66337

64 0.71 0.90 0.23 132673

2 0.73 0.92 0.31 5273

4 0.72 091 0.30 9417

tensor 8 0.71 0.91 0.26 17705
16 0.71 0.90 0.21 34281

32 0.71 0.90 0.20 67433

64 0.71 0.91 0.18 133737

of the tensor fusion model is particularly simple, which
even allows for direct interpretation of the learned weights
(see Figure [3). The model has a user-independent rating
prediction y, based on the movie features alone. To this
baseline prediction, two numbers are added that both depend
on the user. The first number is a general user bias y,,
computed from the user embedding. For the second number
Yp, the user embedding is mapped to a vector which then
serves as weights to compute another linear combination
of the movie features. This second weight vector directly
describes user-dependent changes in input sensitivity, since
there is no non-linearity in the model. Hence, for any user
embedding we obtain a corresponding bias term and changes
in input sensitivities without having to put any item data
through the model.

This looks very different for multiplicative or additive
fusion, where user-dependent effects on input sensitivities
can vary across items. Input sensitivities (or relevancies)
can still be analyzed in this case by using heatmapping
techniques (e.g., [6], [7]), but here the risk of observing
statistical artifacts becomes higher (since the possibility that
input sensitivities can differ across items drastically increases
the number of effects to analyze).

To at least get an intuition of how helpful such input
sensitivities might be in practice, we run another experiment

as preliminary analysis. In this experiment, we select the
tensor fusion model with embedding size 4 (of best per-
forming training fold) and have a closer look at what the
model has learned. To this end, we run k-means clustering
with 20 clusters on the learned user embeddings. For 3
random clusters, we pick the centroid embedding and read
the associated biases and changes in input sensitivities from
the model. We also include the highest- and lowest-ranked
movies based on these values. The results can be found in
Table [l The constellation of features and movies in these
results seems coherent and suggests that this is a promising
direction for further investigation.

VI. CONCLUSION

In this paper, we introduced the PDC measure for evalu-
ating user embeddings based on similarities of their rating
behavior. This novel measure formalizes the intuitive require-
ment that similar users should be mapped to similar vectors.

We conducted an experiment on movie rating data, where
we compared additive, multiplicative, and tensor fusion in
neural networks that learn to fit this data while forming
vector representations of all the users. In our experiment
we found that the fusion strategy has a significant effect on
prediction as well as the quality of the learned embeddings.
The effect of embedding size on prediction performance
and embedding quality seems to largely depend on the
chosen fusion strategy. Additive conditioning was mostly
unaffected by changes in embedding size and other methods
generally favored small embedding sizes for high embedding
quality. Surprisingly, good prediction performance does not
necessarily reflect the quality of the learned embeddings. In
case of tensor fusion, we even observed these two aspects to
be anti-correlated.

This is an important finding since one tends to select
models based on their prediction ability, but apparently it is
not at all clear how well this measure correlates with other
aspects of interest, such as “meaningfulness” of embeddings
or learned input sensitivities. In our opinion, this finding sug-
gests that much more work is necessary to better understand
the internal dynamics of neural networks, especially when
fusion of different information is involved and the models
are to be used for data analysis.

Finally, it shall be mentioned that, although we formulated
the problem in terms of user ratings, the same modeling can
directly be applied to other data such as dialogues. In fact,
our chosen approach for learning user embeddings fits the
theoretical framework of interpretation analysis proposed by
[32], and can be seen as a case of model-based interpretation
analysis.
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TABLE II: Biases, favorite and least liked movie features and movies associated with centroids of 3 random user clusters.
Clustering was done on user embeddings learned by the tensor fusion model with embedding size 4. The biases and scores
of movie features were read from the same model, which was also used for ranking the movies. The table contains the 5
highest/lowest ranked features and 3 highest/lowest ranked movies, respectively.

Cluster | General Highest ranked Lowest ranked
No. bias Movie features Movies Movie features Movies
1 -0.019 italy, unlikeable characters, | Pulp Fiction (1994), A Clock- | women, nudity, history, | Between the Folds (2008),
road trip, character study, | work Orange (1971), The Big | marx brothers, great Duma (2005), McFarland USA
parody Lebowski (1998) (2015)
2 -0.033 visuals, dark humor, classic, | Pulp Fiction (1994), Reser- | predictable, childhood, be- | You’ve Got Mail (1998), Ghost
non-linear, sarcasm voir Dogs (1992), Taxi Driver | trayal, cheating, bad acting (1990), Runaway Bride (1999)
(1976)
3 0.017 intimate, visually appealing, | Cries and Whispers (1972), | chase, 70mm, snakes, tele- | Independence Day (1996),
costume drama, women, | Last Life in the Universe | portation, chris tucker Transformers (2007), Men in
whimsical (2003), Submarino (2010) Black (1997)
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