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Abstract—This work develops a novel end-to-end deep unsu-
pervised learning method based on convolutional neural network
(CNN) with pseudo-classes for remote sensing scene representa-
tion. First, we introduce center points as the centers of the pseudo
classes and the training samples can be allocated with pseudo
labels based on the center points. Therefore, the CNN model,
which is used to extract features from the scenes, can be trained
supervised with the pseudo labels. Moreover, a pseudo-center
loss is developed to decrease the variance between the samples
and the corresponding pseudo center point. The pseudo-center
loss is important since it can update both the center points with
the training samples and the CNN model with the center points
in the training process simultaneously. Finally, joint learning of
the pseudo-center loss and the pseudo softmax loss which is
formulated with the samples and the pseudo labels is developed
for unsupervised remote sensing scene representation to obtain
discriminative representations from the scenes. Experiments are
conducted over two commonly used remote sensing scene datasets
to validate the effectiveness of the proposed method and the
experimental results show the superiority of the proposed method
when compared with other state-of-the-art methods.

Index Terms—Unsupervised Learning, Pseudo-Class, End-to-
End Learning, Convolutional Neural Network (CNN), Remote
Sensing Scene Representation

I. INTRODUCTION

Nowadays, high resolution images from the new and the
advanced space-borne or aerial-borne sensors contain abun-
dant spatial and spectral information, which could provide
helpful information for many military or civilian applications.
However, efficient representation and recognition of the remote
sensing scenes tend to be a challenging problem since labelling
is generally time-consuming and sometimes infeasible [1].
Therefore, unsupervised learning methods tend to be a hot
topic to extract discriminative features without the labels
of the scenes. The general unsupervised learning methods,
such as SIFT [2] and LBP [3], captures the geometrical
information, salient points or the textural information from the
scenes. However, the complex arrangements in the scenes, the
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large inner-class variance and low inter-class variance between
different scenes make it difficult to discriminate the scenes
from overlapping classes with these low-level features.

In recent years, deep learning methods have shown powerful
ability to extract high-level features from the objects. Many
deep learning-based unsupervised representations have been
developed. It can be divided into four categories: the self-
supervised learning approaches which tries to implement a
supervised learning with pseudo labels which is created in
an unsupervised way, the reconstruction-based methods, the
generative adversarial network(GAN)-based methods, and the
natural rule motivated loss-function methods [1]. In the first
one, the way to construct the pseudo classes plays an important
role since they directly affect the training efficiency for the
remote sensing scenes. This work will focus on developing
an efficient end-to-end unsupervised learning from the self-
supervised learning way.

Prior works mainly construct the pseudo classes from three
aspects. The first one is to extract the image patches from
the scenes and further construct the pseudo classes together
with the transformations of the image patches [4]. Some
other works take advantage of the selective search method
to extract patches with multi-scale information from the scene
to form the pseudo classes [5]. Another work makes use of
the inner-correlation between the image patches in a scene
image to form the pseudo classes [6]. These pseudo classes
are generated according to the special requirements of different
tasks and the pseudo classes are usually fixed in the training
process. However, these prior works mainly take advantage of
image patches extracted from the scenes to form the pseudo
classes which ignores some important information in the scene
image. This would limit the performance of the learned model
to extract discriminative features from the scenes.

To overcome this problem, this work denotes the center
points to represent the pseudo classes. Based on the cen-
ter points, we allocate the training samples to the nearest
pseudo class. Motivated by the prior work [7], a novel pseudo
center loss is formulated with the training samples and the
corresponding center point the samples belong to. The center
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Fig. 1. Flowchart of the proposed method for unsupervised learning of remote sensing scenes. The CNN model is used to extract deep features from the
remote sensing scenes. The joint learning loss tries to update both the center points and the CNN model simultaneously. Therefore, the pseudo classes are
updated with the update of the center points and the center points tend to describe the centers of different classes. Then, the learned model can be better fit
for the remote sensing scenes and can discriminate scenes from different classes.

points would be updated with the pseudo center loss in the
training process and the pseudo label of each training sample
would also be changed with the updated center points in the
unsupervised training process.

To take advantage of both the deep representation and the
pseudo center loss, this work develops a novel end-to-end joint
unsupervised learning of deep model and pseudo classes for
the remote sensing scenes, which jointly learns the pseudo
center loss and the pseudo softmax loss. The pseudo softmax
loss which is formulated with the pseudo labels is used to
update the deep model. Through updating the deep CNN
model and the center points which represent the pseudo classes
simultaneously, the pseudo classes would be close to the real
classes and the learned features from the deep model would
be more discriminative.

The rest of the paper is arranged as follows. In section II,
we briefly introduce the general convolutional neural network,
develop the end-to-end deep unsupervised learning method
with pseudo-classes for remote sensing scene representation,
and introduces the implementation of the proposed method in
detail. Details of our experiments and results are presented
in Section III. Section IV concludes the paper with some
discussions.

II. PROPOSED METHOD

In this section, we first briefly introduce the general convo-
lutional neural network (CNN), and then develops the pseudo
center loss with the pseudo-classes for unsupervised learning
of remote sensing scenes, and then the joint learning method
for unsupervised learning is developed, and finally we present
the implementation of the proposed method for remote sensing
scene representation.

Let us denote xi(i = 1, 2, · · · , N) as the samples from the
remote sensing scenes and N is the number of the unlabelled
scenes.

A. General Convolutional Neural Network (CNN)

Deep learning-based method, such as Convolutional Neural
Network (CNN), Deep Belief Network (DBN), have shown
their impressive performance for remote sensing scene repre-
sentation [8]. Among these methods, CNNs which can extract
both the local and global features from the scenes have been
widely used in the literature of remote sensing [8], [9]. As
Fig. 1 shows, this work chooses the CNN model to extract
features from the scenes.

The general CNNs consist of layers of many types, such as
the convolutional layer, fully connected layer, pooling layer,
ReLU layer, loss layer. It can be looked as the parallel of these
layers where the output of the former layer is performed as the
input of the current layer. Denote sk as the features learned
from the kth layer, and then the features sk+1 that obtained
from the k + 1th layer can be calculated by

sk+1 = f(Wks
k + bk) (1)

where Wk and bk represent the parameters and the bias in the
kth layer. f(·) denotes the nonlinear activation function.

To accurately train the deep model, the training batch,
which denotes a set of samples that train the deep model
simultaneously, is usually used in the training process. In
addition, the softmax loss, which consists of softmax layer
and cross entropy loss, is generally used for the training of
the CNN model.

B. Pseudo Center Loss with Pseudo-Classes

Denote ci(i = 1, 2, · · · ,Λ) as the center point where each
center point represents a pseudo class and Λ represents the
number of the pseudo classes. To provide the pseudo labels
to the unlabelled samples, the key process is to formulate the
variance between the samples and different pseudo classes.

Given a training batch B. For each sample xi ∈ B, denote
ϕ(xi) as the features extracted from the CNN model. Since the
center points ci(i = 1, 2, · · · ,Λ) are constructed to represent
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Fig. 2. The process of formulating the pseudo classes with the training
samples in the training batch based on the center points. The sample is
allocated with the pseudo label from the nearest center point. It should be
noted that the pseudo classes would be dynamic changed with the update of
the center points and the CNN model.

different classes, the pseudo class each sample in the training
batch B belongs to can be calculated by

zi = arg min
l
‖cl − ϕ(xi)‖, (l ∈ {1, 2, · · · ,Λ}), (2)

The process for allocating pseudo labels to the training sam-
ples in the batch is shown in Fig. 2. Since the pseudo classes
and the CNN model are dynamic changed, the pseudo label
of each sample is changed in the training process.

Since the construction of the pseudo classes is related to the
center points, the update of the center points can significantly
affect the effectiveness of the training process as well as the
performance of the representation for the scenes. Motivated
by [7], this work formulates the pseudo center loss with the
samples in the batch to update the center points. The pseudo
center loss tries to encourage the center points to approach the
training samples in the pseudo class and it can be formulated
as

Lc =

|B|∑
i=1

‖czi − ϕ(xi)‖2 (3)

where zi is the pseudo label of xi calculated from Eq. 2. In the
training process, the Lc is used to update both the parameters
in the CNN model and the center points.

C. Joint Learning Loss for Unsupervised Learning of Remote
Sensing Scene Representation

As general self-supervised learning approaches, this work
uses the softmax loss to supervised learn the CNN model with
the pseudo classes. The pseudo softmax loss formulated by the
samples in different pseudo classes can be calculated by

Ls = −
|B|∑
i=1

log
eW

T
0,zi

ϕ(xi)+b0,zi∑Λ
j=1 e

WT
0,jϕ(xi)+b0,j

(4)

where W0 = [W0,1,W0,2, · · · ,W0,Λ], b0 =
[b0,1, b0,2, · · · , b0,Λ] represent the parameters and the
bias term in Softmax layer, respectively. The Ls is used to
calculate the penalization between the predicted scores over
the pseudo classes with the pseudo labels by Eq. 2.

Considering the merits of the CNN model and the center
points which are used to formulate the pseudo classes, this

work develops a novel joint learning loss of the pseudo classes
and the deep model. It can be formulated as

L =Ls + λLc

=−
|B|∑
i=1

log
eW

T
0,zi

ϕ(xi)+b0,zi∑Λ
j=1 e

WT
0,jϕ(xi)+b0,j

+ λ

|B|∑
i=1

‖czi − ϕ(xi)‖2

(5)
where λ is a positive value which denotes the tradeoff between
the pseudo softmax loss and the pseudo center loss. The
developed pseudo classes-based loss can jointly learns the
deep model and the pseudo classes simultaneously. Therefore,
the learned model can be more fit for the remote sensing
scenes and could discriminate scenes with great similarity
from different classes.

D. Implementation of the Proposed Method

The proposed unsupervised learning process can be trained
end-to-end by the stochastic gradient descent (SGD). Accord-
ing to the characteristics of the back propagation of the deep
model [11], the main problem is to calculate the partial of the
joint learning loss w.r.t. xi. More importantly, in this work,
the update of the pseudo classes should also be implemented
by calculating the partial of the joint learning loss w.r.t. the
center points.

The partial of the pseudo softmax loss Ls w.r.t. xi can be
calculated as Caffe which is the deep learning framework used
in the experiments [10]. The partial of the pseudo center loss
can be calculated as [7] shows. Therefore, the partial of the
proposed joint learning loss w.r.t. xi can be calculated by

∂L

∂ϕ(xi)
=

∂Ls

∂ϕ(xi)
+ 2λ(ϕ(xi)− czi), (6)

where zi is the pseudo label of xi. This is used for the update
of the parameters in the CNN model.

In addition, the partial of the proposed joint learning loss
w.r.t. cj can be calculated as

∂L

∂cj
= 2λ

∑
xi∈B

I(zi = j)(cj − ϕ(xi)). (7)

where I(·) represents the indicative function.
∂L

∂cj
, which

is used to update the center points in the training process,
can adjust the pseudo classes to the real one and make the
learned features from the scenes be discriminative. The overall
unsupervised learning framework is given in Algorithm 1.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

To further validate the effectiveness of the proposed method,
we conduct experiments over the Ucmerced Land Use dataset
[13] and the Brazilian Coffee Scene dataset [8]. The Ucmerced
Land Use dataset consists of 2100 high resolution aerial scenes
(1 foot per pixel) with 256× 256 pixels which can be divided
into 21 classes. The Brailian Coffee Scene dataset contains
2876 multi-spectral scenes with 64× 64 pixels which can be
divided into 2 classes. Fig. 3 and 4 show the samples from the



Algorithm 1 Implementation of the unsupervised learning
method
Require: xi(i = 1, 2, · · · , N), θk = {Wk,bk} as the param-

eter of the kth convolutional layer, W0 as the parameters
and b0 is the bias term in Softmax layer, hyperparameter
λ, learning rate lr, the number of pseudo classes Λ.

Ensure: θk
1: Initialize θk in kth convolution layer where Wk is initial-

ized from Gaussian distribution with standard deviation
of 0.01 and bk is set to 0. Initialize the center point
ci(i = 1, 2, · · · ,Λ) where ci is filled with 0.

2: while not converge do
3: t← t+ 1.
4: Construct the training batch Bt.
5: Obtain the features ϕ(xt

i) of xt
i ∈ Bt from CNN model

with θtk.
6: Obtain the pseudo label zti of xt

i ∈ Bt as Eq. 2 shows.

7: Compute the pseudo center loss with the pseudo labels
of samples by Lt

c =
∑|Bt|

i=1 ‖ctzt
i
− ϕ(xt

i)‖2.
8: Compute the joint learning loss by Lt = Lt

s + λLt
c

where Lt
s is calculated as Eq. 4.

9: Compute the deviation Lt w.r.t. ϕ(xt
i) in Bt by

∂Lt

∂ϕ(xt
i)

=
∂Lt

s

∂ϕ(xt
i)

+ 2λ(ϕ(xt
i)− ctzt

i
).

10: Compute the deviation Lt w.r.t ctj by
∂Lt

∂ctj
=

2λ
∑

xt
i∈Bt

I(zti = j)(ctj − ϕ(xt
i)).

11: Update the parameters W by W t+1 =

W t − lr × ∂Lt

∂W t
= W t − lr × ∂Lt

s

∂W t
.

12: Update the parameters θk of kth layer by θt+1
k =

θtk − lr ×
∂Lt

∂θtk
= θtk − lr ×

|B|∑
i=1

∂Lt

∂ϕ(xt
i)
× ∂ϕ(xt

i)

∂θtk
.

13: Update the center points cj by ct+1
j = ctj − lr ×

∂Lt
c

∂ctj
.

14: end while
15: return θk

Ucmerced Land Use dataset and the Brazilian Coffee Scene
dataset, respectively.

The deep model is implemented on Caffe which is a
commonly used deep learning framework (see [10] for details).
CaffeNet is chosen as the deep CNN model to extract unsu-
pervised features from the remote sensing scenes. It should
be noted that in the experiments, the dimension of the last
fully-connected layer is set to 512 to decrease the parameters
in the model and accelerate the training process. In addition,
the learning rate, the training epoch are set to 0.00001, 10000,
respectively.

With the proposed method, feature vectors of the scene
images are obtained. To evaluate the performance of the
obtained features, we choose SVM classifier to predict scene

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Fig. 3. Scene samples from Ucmerced Land Use dataset. (a) agricultural;
(b) airplane; (c) baseball diamond; (d) beach; (e) buildings; (f) chaparral;
(g) dense residential; (h) forest; (i) freeway; (j) golf course; (k) harbor;
(l) intersection; (m) medium density residential; (n) mobile home park; (o)
overpass; (p) parking lot; (q) river; (r) runway; (s) sparse residential; (t) storage
tanks; (u) tennis court.

(a) coffee

(b) noncoffee

Fig. 4. Samples of different classes from Brazilian Coffee Scene dataset.

labels with the obtained features, and LSSVM is adopted [12].
In the experiments, both the datasets have been equally divided
into five folds. To accurately validate the performance of the
proposed method, all the results are obtained from the average
and the standard deviation of the five-fold cross-validation.

B. Results Over the Ucmerced Land Use dataset

Through experiments over the Ucmerced Land Use dataset,
the classification accuracy can achieve 94.33% with the pro-
posed method. The confusion matrix can be seen in Fig.
5. From the confusion matrix, we can find that only some
classes with great similarity could not be separated with the
proposed method, such as the denseresidential and the medi-
umresidential, the mediumresidential and the sparseresidential.
The classification errors of denseresidential/mediumresidential
and mediumresidential/denseresidential can be 10% and the
error of sparseresidential/mediumresidential is 5%. Most of the
classes can be discriminated. The results show the effective-
ness of the proposed method for unsupervised learning of re-
mote sensing scenes. However, the classification performance
of the proposed method can be affected by the hyper-parameter
λ and the number of pseudo classes.

1) Classification Performance with Different Hyper-
parameter λ: As subsection II-C shows, the λ denotes the
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Fig. 5. Confusion matrix of the proposed method over the Ucmerced Land
Use dataset.

tradeoff between the pseudo softmax loss and the pseudo
center loss. The pseudo center loss have significant effects
on the update of the center point of each pseudo class and
therefore the classification performance can be significantly
affected by the hyper-parameter λ.

Fig. 6 presents the classification performance of the pro-
posed method with different λ over Ucmerced Land Use. The
results are obtained when the pseudo classes is set to 10.
We can find from the tendency of accuracies with different
λ in Fig. 6 that with the increase of the value of λ, the
center points of the pseudo classes can be fully learned and
be more accurate to describe the unlabelled data. Therefore,
the classification performance is improved. However, when
the lambda is extensively large, the training process focuses
too much attention on the update of the center points which
may cause the decrease of the classification performance. In
addition, from Fig. 6, we can find that the performance can
obtain 94.33%± 1.06% which ranks the best when λ is set to
10−5.

1 E - 4 5 E - 4 1 E - 3 0 . 0 0 5 0 . 0 1 0 . 0 2 0 . 1
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T r a d e o f f  P a r a m e t e r  λ (×10−3)

Fig. 6. Classification accuracy obtained by the proposed method with different
tradeoff parameter λ over Ucmerced Land Use dataset.

2) Classification Performance with Different Number of
Pseudo-Classes: In the experiments, we choose 2, 5, 10, 15,
21 as the number of pseudo-classes for the proposed method

over the Ucmerced Land Use dataset, respectively. The number
of pseudo classes has obviously effects on the classification
performance of the proposed method.

Fig. 7 shows the classification accuracies of the pro-
posed method with different number of pseudo classes over
Ucmerced Land Use dataset. In the experiments, the hyper-
parameter λ is set to 10−4. We can find that with the
increase of the pseudo classes, the classification performance
is improved and too many pseudo classes would decrease the
performance. Too small pseudo classes would make samples
from different classes be assigned to the same class, and there-
fore the learned model could not separate different samples. In
contrast, too many pseudo classes would make samples from
the same class be assigned to different pseudo classes, which
would also decrease the classification performance. From Fig.
7, it can be noted that the classification performance can
achieve 94.33% when the number of pseudo-classes is set to
10.
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Fig. 7. Effects of the number of pseudo-classes on the performance of the
proposed method over Ucmerced Land Use dataset.

3) Comparisons with the Most Recent Methods: To com-
prehensively validate the effectiveness of the proposed method
for unsupervised learning of remote sensing scene represen-
tation, we compare the proposed method with other state-
of-the-art methods. Table I lists the classification accuracies
of several state-of-the-art unsupervised learning methods over
Ucmerced Land Use dataset. From the table, we can find
that the proposed method which can obtain 94.33% out-
performs other hand-crafted features, such as Dense SIFT
(81.67%) [14], SPCK++ (76.05%) [15], UFL-SC (90.26%)
[16], and COPD (91.33%) [17]. In addition, when compared
with other deep models, such as MARTA GANs without data
augmentation (85.37%) [1], [18], CNN-1 (84.53%) [19] and
UCFFN (88.57%) [1], the proposed method can also obtain
better performance. Therefore, the proposed method can obtain
comparable or even better performance over the Ucmerced
Land Use dataset when compared with other state-of-the-art
methods, including the hand-crafted feature-based methods,
and deep methods.



TABLE I
COMPARISONS WITH OTHER RECENT METHODS FOR UNSUPERVISED

LEARNING OVER UCMERCED LAND USE DATASET.

Methods Accuracy(%)
Dense SIFT [14] 81.67± 1.23

SPCK++ [15] 76.05
UFL-SC [16] 90.26± 1.51
COPD [17] 91.33± 1.11

MARTA GANs (without data augmentation) [1], [18] 85.37
CNN-1 [19] 84.53
UCFFN [1] 88.57

Proposed Method 94.33± 1.06

C. Results Over the Brazilian Coffee Scene dataset

The proposed method can obtain 87.74% + 1.59% over
Brazilian Coffee Scene dataset. The corresponding confusion
matrix is shown in Fig. 8. From the confusion matrix, we
can find that the classification errors of coffee/noncoffee, and
noncoffee/coffee are 9% and 11%, respectively. Obviously,
the classification performance of the proposed method can be
significantly affected by λ and the number of pseudo classes.

0.91
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Fig. 8. Confusion matrix of the proposed method over the Brazilian Coffee
Scene dataset.

1) Classification Performance with Different Hyper-
parameter λ: Over Brazilian Scene dataset, we
also investigate the results with the sets of λ as
{10−7, 5× 10−7, 10−6, 5× 10−6, 10−5, 2× 10−5, 1× 10−4}.
The classification results with different λ are shown in Fig. 9.
From the tendency, we can find that it is important to choose
a proper λ for the proposed method and the proposed method
achieves 87.74% which ranks the best when λ is set to 10−5.
It should also be noted that when λ is extensively large, the
training process may not be converged.

2) Classification Performance with Different Number of
Pseudo-Classes: Just as the Ucmerced Land Use dataset, the
number of the pseudo classes can affect the classification per-
formance. Since the Brazilian Coffee Scene dataset contains
two classes, this work conducts experiments over the Brazilian
Coffee Scene dataset where the number of pseudo-classes is
chosen from {2,3,4,5,6,7,8}.

Fig. 10 shows the classification performance of the proposed
method with different number of pseudo-classes with the
hyper-parameter λ = 1 × 10−5. We can find from the figure
that the proposed method achieves 87.74% which ranks the
best when the number of pseudo classes is set to 5.
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Fig. 9. Classification accuracy obtained by the proposed method with different
tradeoff parameter λ over Brazilian Coffee Scene dataset.
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Fig. 10. Effects of the number of pseudo-classes on the performance of the
proposed method over Brazilian Coffee Scene dataset.

3) Comparisons with the Most Recent Methods: Table II
lists the classification accuracies of several state-of-the-art
methods over the Brazilian Coffee Scene dataset. The proposed
method which can obtain 87.74% outperforms other shallow
methods, such as SIFT (82.83%) [9], BIC (87.03%) [8],
BOVW (80.50%) [8], and OverFeatL+OverFeatS (83.04%)
[8]. When compared with other deep models, the proposed
method can obtain comparable results. The proposed method
can obtain 87.74% which is better than 86% obtained by
CNN-1 [19] and 87.69% by MARTA GANs without data
augmentation [1], [18]. It can obtain comparable results when
compared with UCFFN (87.83%). The comparisons show the
superiority of the proposed method on unsupervised learning
of the remote sensing scenes.

IV. CONCLUSIONS

This work proposes a novel end-to-end unsupervised learn-
ing method for the representation of remote sensing scenes.
First, the proposed method chooses the CNN model to extract



TABLE II
COMPARISONS WITH OTHER RECENT METHODS FOR UNSUPERVISED

LEARNING OVER BRAZILIAN COFFEE DATASET.

Methods Accuracy(%)
SIFT [9] 82.83
BIC [8] 87.03± 1.07

BOVW [8] 80.50
OverFeatL+OverFeatS [8] 83.04± 2.00

CNN-1 [19] 86.00
MARTA GANs (without data augmentation) [1], [18] 87.69

UCFFN [1] 87.83
Proposed Method 87.74± 1.59

features from the scenes. Then, center points are introduced
in the training process to formulate the pseudo classes. By
allocating pseudo labels to different samples based on the
center points and formulating the pseudo center loss to de-
crease the variance between the samples and the corresponding
center point, different samples can be clustered with the center
points. In addition, through joint learning of the pseudo center
loss and the pseudo softmax loss, the center points and the
parameters in CNN model are both updated. Experimental re-
sults show that the proposed end-to-end unsupervised learning
process can extract discriminative features from the scenes.
In addition, the proposed method can obtain comparable or
even better results when compared with other state-of-the-art
methods.

In future work, we intend to apply the proposed unsu-
pervised learning methods on other computer vision tasks,
such as visual representation. In addition, we also would like
to evaluate the performance of the proposed method with
other CNN model, such as GoogLeNet, ResNet. Moreover,
other technologies, which can improve the performance of the
unsupervised learning methods, would be another interesting
topic.
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