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Abstract—Deep spiking neural networks (SNNs) support asyn-
chronous event-driven computation, massive parallelism and
demonstrate great potential to improve the energy efficiency
of its synchronous analog counterpart. However, insufficient
attention has been paid to neural encoding when designing
SNN learning rules. Remarkably, the temporal credit assignment
has been performed on rate-coded spiking inputs, leading to
poor learning efficiency. In this paper, we introduce a novel
spike-based learning rule for rate-coded deep SNNs, whereby
the spike count of each neuron is used as a surrogate for
gradient backpropagation. We evaluate the proposed learning
rule by training deep spiking multi-layer perceptron (MLP) and
spiking convolutional neural network (CNN) on the UCI machine
learning and MNIST handwritten digit datasets. We show that
the proposed learning rule achieves state-of-the-art accuracies
on all benchmark datasets. The proposed learning rule allows
introducing latency, spike rate and hardware constraints into
the SNN learning, which is superior to the indirect approach
in which conventional artificial neural networks are first trained
and then converted to SNNs. Hence, it allows direct deployment
to the neuromorphic hardware and supports efficient inference.
Notably, a test accuracy of 98.40% was achieved on the MNIST
dataset in our experiments with only 10 simulation time steps,
when the same latency constraint is imposed during training.

I. INTRODUCTION

Deep learning has made remarkable progress in recent

years, with huge impacts on many aspects of our daily lives

[20]. While being brain-inspired, deep learning models differ

significantly from the biological brain in many ways. In

human brain, the information is represented and communicated

through asynchronous action potentials or spikes. To faithfully

describe the dynamics of biological neural networks, several

spiking neuron models have been proposed with different

degree of biological realism [2]. Although, how information

is encoded and exchanged within networks of spiking neurons

remain largely unknown, the inherent properties of spiking

neural networks (e.g., low power event-driven computation

and massive parallelism) have motivated a growing body of

research works in the energy efficient neuromorphic hardware

as well as compatible spike-based learning rules [3], [4].

Early studies of SNNs were focused mostly on a single layer

of neurons, which establish a strong theoretical foundation in
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the neural coding and synaptic plasticity [2], [5], [6]. Moti-

vated by the recent success in deep learning, research attention

in SNNs has been shifted towards networks with multiple

hidden layers [3], [7]. However, training deep SNNs remains

a challenging task due to the non-differentiability of spike

generation. To overcome this, differentiable proxies have been

employed to enable the powerful gradient backpropagation

algorithm, examples include the membrane potential [8]–[10],

spike timing of first spike [11] and spike statistics [12], [13].

While much progress has been made on spike-based learn-

ing rules in recent years, we observe that comparatively

less attention has been paid to how information is repre-

sented in the network (i.e., neural encoding) while developing

these learning rules. Specifically, we argue that the temporal

credit assignment is unnecessary when sensory inputs are

rate encoded [14], whereby spike timing carries no additional

information. The problem is amplified when using traditional

computer vision datasets or their neuromorphic versions to

benchmark novel spike-based learning rules, wherein negligi-

ble time information exists [15].

Another line of research in deep SNN involves the con-

version of pre-trained ANNs to SNNs of the same network

architecture [16]–[20]. This indirect training approach assumes

the graded activation of analog neurons is equivalent to the

average firing rate of spiking neurons, and simply requires

parsing and normalizing the weights after training the ANNs.

Notably, Rueckauer et al. provide a theoretical analysis of the

performance deviation of such approach as well as a system-

atic study of frequently used layers in the CNN [18]–[20].

This conversion approach achieves the best-reported results for

SNNs on many benchmark datasets including the challenging

ImageNet dataset [21]. Nevertheless, the latency and accuracy

trade-off has been identified as the main shortcoming of such

an approach [17], requiring additional techniques to improve

the latency and power efficiency [22].

In this paper, to effectively process the rate-coded sensory

inputs and feature vectors with a deep SNN, we propose

a novel spike-based learning rule based on the non-leaky

integrate-and-fire (IF) neuron. The temporal information as-

sociated with spikes is ignored in such a neuron model.

Moreover, the non-differentiability of spike generation is

circumvented by the use of spike count as a surrogate for
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gradient backpropagation. In contrast to the indirect conversion

approach, the proposed rule uses the spike count information

that can be directly obtained from spiking neurons. In addition,

the latency, spike rate and other hardware constraints can be

incorporated during the training phase, allowing direct deploy-

ment and efficient inference on the neuromorphic hardware.

The rest of this paper is organized as follows: in Section II,

we present the proposed spike-based learning rule. In Section

III, we evaluate the proposed learning rule on the UCI machine

learning and MNIST benchmark datasets. Finally, we conclude

with a further discussion in Section IV.

II. METHODS

A. Neuron Model

In this work, we use the integrate-and-fire (IF) neuron

model. This model faithfully retains the number of input

spikes it receives (until reset) and its output spike count

is independent of the spike timing of its inputs. While the

IF neuron does not emulate the rich temporal dynamics of

biological neurons, it is however ideal for working with rate-

coded sensory input where spike timings don’t play a role.

At each time step t, the input spikes to neuron j at layer l
are integrated as follows

zlj(t) = ϑ ·
∑

i
wl−1

ji · θl−1

i (t) (1)

where ϑ is the neuron firing threshold and θl−1

i (t) indicates the

occurrence of an input spike from afferent neuron i at time

step t. The wl−1

ji denotes the synaptic weight that connects

afferent neuron i from layer l − 1.

Neuron j then integrates the input current zlj(t) into its

membrane potential V l
j (t) as per Eq. 2. V l

j (t) is initialized

with a learnable parameter bj (Eq. 3), and an output spike is

generated whenever V l
j (t) crosses the firing threshold ϑ (Eq.

4).

V l
j (t) = V l

j (t− 1) + zlj(t)− ϑ · θlj(t− 1) (2)

V l
j (0) = bj (3)

θlj(t) = Θ(V l
j (t)− ϑ) with Θ(x) =

{
1, if x ≥ 0
0, otherwise

(4)

The total number of spikes (i.e., spike count) generated by

neuron i at the input layer can be determined by summing all

incoming spikes over the simulation period T as per Eq. 5.

For static image inputs, both raw intensity values or aggregate

spike counts from a Poisson generator can be used as the input.

a0i =
∑T

t
θ0i (t) (5)

According to Eq. 1, the aggregated input current of neuron

j in layer l can be expressed as

zlj = ϑ ·
∑

i
wl−1

ji · al−1

i + blj (6)
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Fig. 1: Illustration of the transfer function for the spike count

alj . The alj is determined by rounding zlj/ϑ towards nearest

integer and also upper bounded by the maximum firing rate

rmax.

where al−1

i is the input spike count from pre-synaptic neuron

i at layer l − 1 and blj is the initial membrane potential of

post-synaptic neuron j at layer l.

Different from the continuous neuron activation function

that used in the traditional ANNs, output spike counts are only

non-negative integers (enforced by the term zlj > 0 in Eq. 7).

The surplus membrane potential that insufficient to induce an

additional spike is ignored for the next sample as shown in

Fig. 1 and Eq. 7. Such rounding effort leads to a quantization

error, which can be compensated by normalizing the synaptic

weights with zero mean in the subsequent layer. Moreover, the

output spike counts are upper bounded by the maximum time

steps rmax := T/dt, such constraint can be alleviated using a

higher time resolution dt. In practice, we have not noticed any

performance drop due to rmax from our experimental results

on the UCI and MNIST datasets.

alj = f(zlj)

= clamp

(⌊

zlj
ϑ

⌋

·
(
zlj > 0

)
, rmax

)

= min

(⌊

zlj
ϑ

⌋

·
(
zlj > 0

)
, rmax

)
(7)

where the output spike count will be clipped at a value of zero

for negative aggregated input current zlj .

B. Back-propagation in Rate-coded Deep SNNs

Here, we derive the backpropagation algorithm using the

spike count as a surrogate for gradient propagation.

1) Loss Function: In this work, the Cross-Entropy loss

function that is commonly used for classification tasks is

employed as per Eq. 8, which transforms the real-valued



outputs to a normalized probability distribution. Other loss

functions used in the ANNs may also be applied.

E(anl

j , yj) = − log

(

exp
(
anl

j

)

∑

k exp (a
nl

k )

)

= log
(∑

k
exp(anl

k )
)

− anl

j

(8)

where k refers to neurons at the output layer.

The partial derivative of Cross-Entropy loss with respect to

the output spike count can be determined as

∂E

∂anl

j

=
exp

(
anl

j

)

∑

k exp (a
nl

k )
− yj (9)

where anl

j is the output spike count and yj is the desired one-

hot label for neuron j at output layer nl.

2) Output Layer: Following Eqs. 6, 7 and 9, the partial

derivatives of the loss function with respect to the synaptic

weight wnl−1

ji and bias term bnl

j can be expressed in Eqs. 10

and 11, respectively. As per common practice, we denote the

term ∂E/∂znl

j = δnl

j .

∂E

∂wnl−1

ji

=
∂E

∂znl

j

∂znl

j

∂wnl−1

ji

=
∂E

∂anl

j

∂anl

j

∂znl

j

∂znl

j

∂wnl−1

ji

=

(

exp
(
anl

j

)

∑

k exp (a
nl

k )
− yj

)(
1

ϑ
·
(
znl

j > 0
)
)

︸ ︷︷ ︸

δ
nl
j

·
(
ϑ · anl−1

i

)

(10)

∂E

∂bnl

j

=
∂E

∂znl

j

∂znl

j

∂bnl

j

= δnl

j (11)

3) Hidden Layers: Similar to Eqs. 10 and 11, the partial

derivatives of the loss function with respect to the synaptic

weight wl−1

ji and bias term blj for hidden layer l can be

expressed in Eqs. 12 and 13 below.

∂E

∂wl−1

ji

=
∂E

∂zlj

∂zlj

∂wl−1

ji

= δlj ·
(
ϑ · al−1

i

)
(12)

∂E

∂blj
=

∂E

∂zlj

∂zlj

∂blj
= δlj (13)

where

δlj =
∂E

∂zlj

=
∑

k

∂E

∂zl+1

k

∂zl+1

k

∂zlj

=
∑

k
δl+1

k

∂zl+1

k

∂alj

∂alj
∂zlj

=
∑

k
δl+1

k

(
ϑ · wl

kj

)
(
1

ϑ
·
(
zlj > 0

)
)

(14)

Such a direct training approach allows easy integration

of hardware constraints into the loss function and optimized

jointly during training, including spike rate, inference latency

and limited synaptic weight precision etc. Hence, facilitating

more convenient deployment and better inference performance

on the real neuromorphic hardware.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed spike count based

learning rule on the traditional machine learning and image

classification tasks.

A. UCI Classification Tasks

To evaluate rate-coded SNN models, we use datasets from

the UCI machine learning repository that have been widely

used for benchmarking machine learning and neural network

models [24]. The following four datasets are used: 1) Iris; 2)

Wisconsin Breast Cancer (WBC); 3) Abalone; 4) Yeast. For

a fair comparison, the experimental setups follow those from

recent work on the rank-order learning for SNN [23]. Table I

summarizes the experimental setups and classification results

for each dataset: 1) the splitting of training (Tr) and testing

(Te) samples; 2) the number of features; 3) the number of

output classes; 4) the network structure used for each dataset,

and 5) classification accuracies for train and test set.

The input feature vectors are normalized within [0,1],

thereafter Poisson spike trains are generated for each feature

dimension with firing rates proportional to the normalized

feature value. The simulation period of T = 20 ms with

a simulation time step of 1 ms (i.e., rmax = 20 Hz) is

used. We initialize the SNN by setting firing threshold ϑ and

learning rate λ to 1.0 and 5 ∗ 10−4, respectively. The weights

for the SNN classifier are drawn randomly from a Gaussian

distribution with a mean of 0 and standard deviation of 0.05.

Adam optimizer [25] is used for parameter update. For each

network structure, 5 SNNs with random weight initialization

are trained and the average classification results are reported.

As shown in Table I, the deep SNN trained with the

proposed learning rule achieves 100% accuracies consistently

for all four benchmark datasets. In contrast, the SNN trained

with rank-order learning [23] achieves only competitive results

for the easier Iris and WBC datasets, while the test accuracies

degrade significantly to less than 50% for the more challenging

Abalone and Yeast datasets. Although rank-order learning



TABLE I: Details of experimental setup and classification accuracy of selected benchmark datasets from UCI machine learning

repository. The results are averaged over 5 experimental runs with random weight initialization.

Dataset Tr Ts Features Classes Network Structure
Accuracy (Tr/Te)
in this work (%)

Accuracy (Tr/Te)
in [23] (%)

Iris 90 60 4 3 4-20-3 100/100 100/96.7
WBC 455 228 9 2 9-20-2 100/100 99.1/98.3
Abalone 2000 2177 7 3 8-50-2 100/100 45.7/47.8
Yeast 990 494 8 10 8-50-10 100/100 56.7/31.6

generally implies low latency and low spike rates, it is worth

noting that it only applies to single-layer networks, whereby

the input encoding layer is directly connected to the output

layer. Therefore, the representation powers of these SNN

models are greatly limited. In contrast, the proposed learning

rule overcomes this limitation and can scale well with multiple

hidden layers.

B. MNIST Classification Task

We further evaluate our proposed learning rule using the

standard MNIST dataset of handwritten digits that is widely

used for benchmarking multi-layer SNN learning rules [7]. The

training and testing sets consist of 60,000 and 10,000 grayscale

images of 28 × 28 pixels. Similar to the experimental setup

used for UCI datasets, the input spike trains are generated from

a Poisson generator, whereby firing rates are proportional to

the normalized pixel intensity. The simulation period of T =

50 ms with a simulation time step of 1 ms (i.e., rmax = 50 )

is used. We initialize the SNN by setting the firing threshold ϑ
and learning rate λ to 1.0 and 10−3, respectively. We perform

all the experiments using the Pytorch library, whereby the

dynamics of the IF neuron as mentioned in Section. II are

explicitly modeled during training and testing. The weights are

initialized with default values in Pytorch, and we use the Adam

optimizer for parameter update. For each network structure, 5

SNNs with random weight initialization are trained and the

average classification results are reported.

We perform experiments using two common feedforward

neural network architectures: the multi-layer perceptron (MLP)

and convolutional neural network (CNN). For the MLP, we

explore the use of two network structures (describe in terms

of the number of neurons in each layer): 784-800-10 and

784-800-800-10. As shown in Table II, the SNN models

trained with the proposed learning rule achieves classification

accuracies of 98.64% and 98.66% for one and two hidden

layers, respectively. These accuracies are competitive with

both spike-based learning rules [8], [11], [12], [26], [27] and

ANN conversion approaches [17], [22] as summarized in Table

II.

CNNs are currently the default choice for many computer

vision tasks, including image classification [28], detection [29]

and segmentation [30]. For SNNs, the best reported result for

the MNIST dataset also employs a CNN architecture [18].

Here, we apply the proposed learning rule to train a spiking-

CNN with the CNN architecture of 28×28-12c5-2a-64c5-2a-

10. The notation ‘12c5’ denotes 12 convolution kernel of size

5 × 5 and ‘2a’ denotes average pooling of size 2 × 2. The

outputs from the final average pooling layer are vectorized

and fully connected to the output layer. As shown in Table II,

the spiking-CNN model trained with the proposed rule offers

a promising classification accuracy of 99.26%. It also worth

mentioning that neither additional data augmentation nor ad-

vanced techniques such as batch normalization or dropout are

applied in this work; we expect the accuracies to be further

improved when these techniques are applied.

We note that many existing spike-based learning rules for

deep SNN consider the spike timing as useful information.

Despite promising results achieved with these rules on stan-

dard benchmark datasets such as MNIST and CIFAR-10, we

expect longer training time and more memory to compute and

store the dynamics of neuron than the proposed learning rule.

The latency and accuracy trade-off have been identified for

the indirect ANN conversion approach, whereby classification

accuracy improves over time when more evidence is accu-

mulated [17]. Although techniques [22] have been proposed

to effectively improve the latency and power efficiency, they

generally require more training time and hyperparameter tun-

ing. In our approach, however, the latency and other hardware

constraints are integrated during the training phase of the

proposed learning rule, allowing direct deployment to the neu-

romorphic hardware for efficient inference without additional

work as proposed for the indirect conversion approach [22].

For instance, to reduce the inference time, we can explicitly

constraint the simulation period with T = 10 ms for both

training and testing. Notably, the MLP model (784-800-10)

is able to achieve a classification accuracy of 98.40%, which

is quite close to the accuracy when trained with T = 50 ms

for the MNIST dataset.

IV. DISCUSSION AND CONCLUSION

Motivated by the fact that no useful temporal information

is encoded in spike timing for rate-code spiking inputs, we

introduce a novel spike-based learning rule to train deep

SNNs, whereby the spike count of each neuron is used as

the surrogate for gradient backpropagation. Differing from

other spike-based learning rules, which consider the spike

timing during error backpropagation [8], [9], the proposed

learning rule requires much lesser computation and memory.

Moreover, the proposed learning rule demonstrates competitive

classification accuracies on both UCI machine learning and

MNIST datasets.



TABLE II: Comparison of classification accuracies of deep SNNs trained with the proposed and other supervised learning

rules on the MNIST dataset (For more details, refer to the review paper [7]).

Model Network Architecture Method Test Accuracy (%)

O’Connor (2016) [12] MLP Fractional stochastic gradient descent 97.93

Lee (2017) [8] MLP Backpropagation 98.88

Neftci (2017) [26] MLP Event-driven random backpropagation 97.98

Mostafa (2017) [11] MLP Backpropagation with temporal coding 98.00

Wu (2018) [27] MLP Spatio-Temporal Backpropagation 98.48

Diehl (2015) [17] MLP Conversion of ANNs 98.60

Neil (2016) [22] MLP Conversion of ANNs 98.00

This work MLP (784-800-10) Backpropagation with rate-coded SNN 98.64

This work MLP (784-800-800-10) Backpropagation with rate-coded SNN 98.66

Lee (2017) [8] CNN Backpropagation 99.31

Shrestha (2018) [9] CNN Backpropagation 99.36

Diehl (2015) [17] CNN Conversion of ANNs 99.10

Rueckauer (2017) [18] CNN Conversion of ANNs 99.44

Kheradpisheh (2018) [31] CNN Layerwise STDP + SVM 98.40

This work CNN Backpropagation with rate-coded SNN 99.26

In contrast to the indirect ANN to SNN conversion ap-

proach, the proposed learning rule can integrate the inference

latency, spike rate and hardware constraints more effectively

during the training. Hence, it allows direct deployment to neu-

romorphic hardware for efficient inference. Despite promising

results are achieved on the MNIST dataset, the quantization

error as shown in the surplus membrane potential of spiking

neurons may become severe when these errors are accumu-

lated over many layers. In future work, we will investigate

how to scale up the learning rule to deeper neural network

architectures, such as VGGNet and ResNet, so as to solve

more challenging tasks.
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