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Abstract—In the early stages of infant development, gestures
and speech are integrated during language acquisition. Such a
natural combination is therefore a desirable, yet challenging, goal
for fluid human-robot interaction. To achieve this, we propose
a multimodal deep learning architecture, for comprehension of
complementary gesture-word combinations, implemented on an
iCub humanoid robot. This enables human-assisted language
learning, with interactions like pointing at a cup and labelling it
with a vocal utterance. We evaluate various depths of the Mask
Regional Convolutional Neural Network (for object and wrist
detection) and the Residual Network (for gesture classification).
Validation is carried out with two deictic gestures across ten
real-world objects on frames recorded directly from the iCub’s
cameras. Results further strengthen the potential of gesture-word
combinations for robot language acquisition.

Index Terms—cognitive developmental robotics, embodied lan-
guage acquisition

I. INTRODUCTION

Humans have the inherent ability to acquire language skills
during interaction, and gestures have an important role in this
task [1]. Research has shown that gestures are the harbinger
of language and fulfil a key role in language acquisition, by
serving as predictors for verbal and sentence complexity [2].
Additionally, human interactions also benefit greatly from non-
verbal cues, as these complement or supplement vocal utter-
ances. However, natural language interaction, comprehension
and acquisition in robots is still an open problem [3].

The motivation behind this work is two-fold. First, it opens a
window of possibilities in engaging humans to act as teachers
when vocally labelling objects referred to by gestures, and sec-
ondly, using deictic gestures adds a more natural component to
any interaction. Deictic gestures are used for making reference,
and comprise the four gestures of requesting, showing, giving,
and pointing [2]. A complete integrated system would allow
the robot to understand and generate more complex language.

Indeed, numerous methods have been proposed for language
acquisition [4], [5] and vision-language integration [6] in
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Fig. 1: The iCub learns new vocabulary through the use of
complementary gesture-speech combinations.

robots; yet, none seem to include gestures in this process.
Recent Deep Learning (DL) methods have shown promising
results in bringing this to fruition. This technique has shown
unparalleled achievements in research areas such as object
detection and language generation [7]. However, results ob-
tained from such methods rely heavily on the quality and
quantity of the training data. Also, most datasets are made
up of objects and people, and lack the integration of gestures
and objects. When it comes to gesture datasets, most of these
are recorded in isolation. This is quite unnatural in human
interaction, as humans carry out deictic gestures with respect
to a reference. Another reason for the lack of datasets could
be that image annotation is a tedious task as it requires object
segmentation and labelling. Our approach not only deals with
images recorded directly from the robot’s cameras, including
both gestures and objects, but the dataset is also annotated in
the JavaScript Object Notation (JSON) format that is widely
used in DL architectures. Hence, other architectures can easily
replace the Regional-Convolutional Neural Network (R-CNN)
used.

This paper aims at addressing the implementation of R-
CNNs, specifically by leveraging Mask R-CNNs, for gesture-



speech comprehension. Here, our objective is to ground ad-
vancements in machine learning in a real-world application,
i.e to enhance iCub’s language acquisition skills, which is
illustrated in Fig. 1. The main technical contributions of this
paper are: (i) the application of Mask R-CNN for localising the
hand and subsequently classifying the deictic gesture used (ii)
the use of Mask R-CNNs for gesture and object recognition
in the same scene and (iii) the use of an integrated system for
comprehension of complementary gesture-word combinations
on a real robot. Our architecture demonstrates a solution for
using deictic gestures to obtain a mask around the object of
interest. To the best of our knowledge, no previous system has
been implemented in this manner.

The rest of the paper is structured as follows: Section II
gives a review of related work on complementary gesture-
speech combinations in language acquisition, object detection
and gesture recognition, and Section III reports the architecture
used together with the integration framework for implementing
the latter on the iCub. Section IV details the experimental
evaluation carried out, including the results obtained. Finally,
Section V provides a discussion on the aforementioned results,
draws conclusions and gives direction for future work.

II. RELATED WORK

Our focus here is on related work in developmental language
acquisition, where we look into the importance of comple-
mentary gesture-speech combinations for language acquisition
in infants. Subsequently, we illustrate methods that have
been used in the scenarios of object detection and gesture
recognition. Here, the body of literature on computer vision
techniques is vast; however, we will look primarily at deep
learning methods. In all subsections, we relate our approach to
other research endeavours and provide the motivation behind
our chosen direction.

A. Complementary Gesture-Speech Combinations in Child
Language Acquisition

Prior to the onset of speech, infants produce gesture-speech
combinations which predict vocabulary spurt during language
development [2]. Here, the primary focus has been on two
types of gesture-speech combinations: complementary and
supplementary. Complementary combinations occur when the
gesture does not provide additional knowledge to the vocal
utterance, whereas in the supplementary modality, the gesture
adds semantic information to the speech [8]. Research in
this domain has shown that complementary gesture-speech
combinations have a positive correlation with the verbal com-
plexity and vocabulary size at later stages. In another study,
researchers also found that using complementary combinations
at the age of 18 months predicted vocabulary size and mean
length of utterance at 24 months [9]. Additionally, it has
been shown that children used deictic gestures in combination
with speech during the babbling and one-word stage [10].
Furthermore, studies have illustrated that when complementary
combinations are used to modify nouns, for example point

+ cup resulting in ”the cup”, they provide insight into the
learning process of new constructions in speech [11].

In general, it is believed that the complementary gesture-
speech combinations appear at around the age of 12 months,
prior to the transition to the two-word stage. Although it is the
supplementary combinations which predict this transition, the
complementary combination symbolise a number of important
milestones in early language development [12]. Moreover,
as the complementary modality precede other gesture-speech
combinations we believe this is an important starting point
for robot language acquisition that is influenced by infant
development. Hence, this fuelled our research work in this
direction.

B. Methods for Object Detection

Object detection is a challenging problem, consisting of
classification and localisation of objects, humans and animals,
amongst other classes. The current state-of-the-art in this
field is the use of DL architectures [13] - [16]. CNNs have
been applied with great success for detection, segmentation
and recognition of objects and regions in images [7]. As
conventional CNNs are relatively slow, these were succeeded
by a new method that applied sliding window detectors, known
as R-CNNs [17]. These high-capacity CNNs make use of a se-
lective search algorithm to generate region proposals, compute
CNN features and use Support Vector Machines (SVMs) for
classification [18]. The bottleneck of the training is leveraged
through the introduction of Fast R-CNN [19]. This method
applies the CNN to the full image and consecutively uses
Region of Interest (RoI) pooling on the feature map. Faster R-
CNN followed this method, where the selective search method
was replaced with Region Proposal Networks (RPNs) [20].

The method of Faster R-CNN is extended by adding an ob-
ject mask detector in parallel, that is used for pixel-level image
segmentation; this architecture is known as the Mask R-CNN
[21]. Here, the parallel branch predicts the object segmentation
mask. This network takes advantage of the Feature Pyramid
Network (FPN) to improve its feature representation capability
and eases the challenge of small object detection [22]. Given
the effectiveness of Mask R-CNN, we opted for this network
here since it has shown remarkable results at general-purpose
object instance segmentation and is the current state-of-the-art
in this field.

C. Gesture Recognition

The core of a gesture recognition system is in segmenting
body parts (mainly hands), extracting features from the seg-
mented region and labelling the gesture through a recognition
algorithm [23]. Traditionally, feature extraction methods re-
lied on the use of histogram of oriented gradients features;
nevertheless, similarly to object detection, DL is currently
also considered the state-of-the-art in gesture recognition [24].
Another element of such a system is classification, where
SVMs and Recurrent Neural Networks (RNNs) are some of
the methods that have been used. One of the more recent works



combines the use of CNNs with the Long Short-Term Memory
(LSTM) for classifying gesture frame sequences [25] .

As we are currently not focusing on sequences of gestures,
but more so in isolating the gesture-object interaction from
the rest of the scene, the choice of re-using the Mask R-
CNN architecture for hand isolation and combining it with a
classical CNN to classify the gesture seemed a good approach.

In the robotics domain, gesture understanding has mostly
pivoted around Human-Robot Interaction (HRI) scenarios [26].
The majority of these projects focused on using representa-
tional gestures, whilst others used pointing as a form of deictic
gesture. Since we are more concerned with using deictic
gestures for comprehension of complementary gesture-speech
combinations, this will be our primary focus; yet we will not
limit our work here to merely pointing.

III. METHODS

Our system is composed of a two step cascade. The first
stage is a Mask R-CNN for wrist keypoint detection; its
function is to focus on the area close to the gesture. Our second
stage performs classification and consists of two parallel
branches. Here, the cropped image is fed into another Mask R-
CNN which performs recognition on the object closest to the
wrist, whilst a Residual Network (ResNet) labels the deictic
hand gesture. This system was trained on a dataset recorded
directly from the iCub’s cameras described in Section III-A.
An in depth overview of the complete architecture is given
in Section III-B; however a more comprehensive analysis of
the performance of each part is outlined in Section IV. Since
the latter is deployed on the iCub humanoid robot, the fully
integrated system outlining how this is achieved is described
in Section III-C.

A. iCub’s Gesture-Object Dataset

To train and evaluate the system, a dataset comprising
participants carrying out deictic gestures in front of a table of
objects, was recorded through the iCub’s cameras. A subset
of this dataset was used for this work. This consisted of 1,200
frames for training, 400 frames for validation and 400 frames
for testing. These frames were labelled in JSON format using
a modified Common Objects in Context (COCO) style dataset
generator graphical user interface [27].

The full dataset consists of 20 participants (13 females, 7
males) performing three of the four deictic gestures (showing,
requesting and pointing) with respect to each of the ten
different objects, that are commonly used when infants are
learning new vocabulary, such as cup, ball and car. However,
for this work, only the frames concerned with the gestures
of requesting and pointing were included as the frames that
illustrate the showing gesture did not fully isolate the gesture
from the object. The Yet Another Robot Program (YARP)
framework [28] was used to record videos at 30 frames per
second. The iCub was placed in an empty room with a black
background behind the participant. The robot stood in front
of the human with a table where the objects were placed in
between. A sample from this dataset is illustrated in Fig. 2.

(a) The participant is carrying
out the deictic gesture of
pointing.

(b) The participant is carrying
out the deictic gesture of re-
questing.

Fig. 2: Frames extracted from the gesture-object dataset
recorded by the iCub humanoid robot. The dataset comprises
3 deictic gestures (only 2 are shown here since these were the
ones used in this research work) and 10 objects.

B. The Gesture-Object Detection System

The Mask R-CNN was chosen as the core of our system
since compared to other methods, it has shown remarkable per-
formance in object and keypoint detection [21]. The strengths
of this approach lie in its ability to adopt RPNs resulting in
suitable inference times for HRI, and provides an attractive
solution to get the centre of the object from the mask as a
coordinate that can be given to the robot’s motor system for
gaze control or motor feedback.

The input to the system is an image captured directly
from the iCub’s left camera, fed into the first Mask R-CNN
network for extracting the wrist keypoint. This is an end-to-end
trained keypoint-only Mask R-CNN with initial weights taken
from the 2014 COCO dataset [29]. Here, the backbone is the
ResNet with a FPN. The output from this network is the main
keypoints that represent the skeleton of the body; nonetheless,
since we are focusing on gesture recognition we were only
interested in the wrist keypoint. Therefore, the image was
cropped around this point in preparation for the next stage
of the network. The size of the cropped image was chosen in
such a manner that for the tested scenarios the object referred
to by the gesture was sufficiently captured.

The cropped image is fed into two different networks for
object detection and gesture recognition respectively. With
regards to object detection, a Mask R-CNN with the ResNet-
50 backbone and initial weights trained on the 2017 COCO
dataset was used. COCO has 91 different classes and only
the ball and cup categories from both datasets are shared.
Regarding the rest of the objects, these were not classified
using off-the-shelf pre-trained networks. Hence, this network
was fine-tuned on the dataset that was collected in Section
III-A.

The training process consisted of freezing the shared layers
from the COCO pre-trained model and training the other layers
using the features from the acquired iCub Gesture-Object
dataset. One of the strengths of this finetuning process is that
it alters the parameters of the network’s layers with respect
to the new dataset. For this reason, it adapts better to the low



resolution images obtained directly from the robot when it
comes to the inference stage. In the end, the mask obtained
as an output from this network is stored.

For the gesture recognition system, the cropped image is
fed into another ResNet-50 for classifying the gesture into
one of the two deictic gestures of pointing or requesting.
A comprehensive block diagram illustrating the proposed
architecture is depicted in Fig. 3.

Fig. 3: An overview of the gesture-object detection architecture
(a more detailed description can be found in Section III-B).

In this scenario, the Mask R-CNNs used for object detection
and wrist key-point detection are both powered by Detectron
for PyTorch [30], whilst the ResNet model for gesture recog-
nition is also implemented in PyTorch. Training and inference
were carried out using a machine equipped with an AMD
Ryzen Threadripper 1950X 16 Core CPU @3.4GHz and a
single NVIDIA TITAN Xp Graphical Processing Unit (GPU).

C. Implementation on the iCub

The architecture presented in the previous section was de-
signed with respect to the realistic scenario where a humanoid
robot is taught new vocabulary aided by deictic gestures. Natu-
rally, this can only be realised by adding speech understanding

and motor control functions to the gesture-object detector.
This gesture-language integration is achieved as a result of
implementing the system illustrated in Fig. 4. The computer
running the trained model communicates with the robot’s main
control unit through the open source software package of
YARP. In this manner, the online inference of the mask is
done on this computer and the results are fed to the motor
control module of the robot. The human-robot interaction
experiments are carried out using the iCub robot, which is
an open source platform designed for developmental robotics
research. Its frame is based on a child-like morphology and it
comprises 53 degrees of freedom [31].

The system runs in two modes of operation: LEARN and
RECALL. The goal of the LEARN scenario is for the human to
teach a new object to the robot. This can be realised by having
the human vocally uttering the name of the object whilst
performing a deictic gesture relative to it. Here, the function
of the vision system is to isolate the mask of the object
and simultaneously classify the gesture correctly. Additionally,
the language module is responsible for transcribing the vocal
utterance into its textual representation. As a result, the system
stores the object, labelled by the vocal utterance and the label
of the recognised gesture. On the other hand, in the RECALL
stage, the human will ask the robot to show the learned object,
and the objective of this framework is to understand whether
that object has been previously learned and if this is the case,
it will look at the correct object, signifying the comprehension
task has been fulfilled. In this scenario, the language system
once again converts the vocal utterance into its textual format,
so that the latter can be used to search the stored database
of learned words. In case this becomes true, it signifies that
the robot has already been taught that word. Hence, the centre
of the mask will be computed and fed to the motor control
system so that the robot will look at the object of interest.

IV. EXPERIMENTAL EVALUATION

The proposed model is validated in two scenarios. In Section
IV-A (Experiment I), the performance of the isolated architec-
ture illustrated in Fig. 3 is evaluated with respect to a subset
of the dataset used (test dataset), whereas in Section IV-B
(Experiment II) the behaviour of this architecture is studied in
a HRI setting. The former experiment was carried out to find
the parameters for optimal operation. On the other hand, in
the latter, experiments were carried out to substantiate correct
performance of the two modalities of operation for teaching
a real humanoid robot new words through the use of deictic
gestures. With that, our goal is to outline how the proposed
system behaves in a language acquisition task.

A. Experiment I

The aim of this experiment is to provide insight into the per-
formance of each part of the model. Since the three networks
work in unison to fulfil the task of a gesture-object detector,
obtaining the most favourable performance from each part of
the network is vital to ensure overall correct functionality.



Fig. 4: The overall block diagram for deploying the gesture-language system on the iCub.

Here, we report the results for the keypoint detection
network, for gesture classification and for object detection.
The effectiveness and robustness of our approach is assessed
on a subset of our gesture-object dataset, which has a similar
setting to that used for training.

1) Keypoint Detection Network Evaluation: The pre-trained
keypoint detection system was evaluated on 300 frames
for each of the deictic gestures. Three different backbones,
ResNet-50, ResNet-101 and ResNet-X101 were chosen on
which the tests were run. The results obtained are illustrated
in Table I. In these results, it can be clearly seen that when
the participant is performing the deictic gesture of pointing,
the wrist is easier localised than when the same participant
performs the requesting deictic gesture. This is mainly a result
of the wrist being more visible in the pointing scenario.
Moreover, most misclassifications occurred due to the other
wrist being present in the frame or the participants carrying
out the gesture with the other hand as they were free to
use whichever hand felt more natural. Overall the results
obtained show that the method chosen for wrist detection gives
positive results. Compared to keypoint detection results [21],
the accuracy obtained here is quite high; however, we need
to take into account that in all the images the wrist is highly
exposed and we are recording the performance for only one
joint. In comparison, in other works using keypoint detection,
this method tends to be used for tracking several body joints
and hence the overall performance tends to decrease.

TABLE I: The testing accuracy (%) for each model backbone
of the end-to-end keypoint-only Mask R-CNN for different
deictic gestures reported in Section IV-A1.

Keypoint Wrist Detection Class Accuracy

ResNet50-FPN Pointing 97%
Requesting 95.3%

ResNet101-FPN Pointing 98%
Requesting 92.67%

ResNetX101-FPN Pointing 98.3%
Requesting 94.3%

2) Gesture Recognition Network Evaluation: The same
testing procedure as for the keypoint detection module was
adopted to evaluate the gesture recognition system. Here,
we tested using only the 50-layer ResNet. For pointing, we
obtained a testing accuracy of 74%, whilst 66% for the
deictic gesture of requesting. The results obtained are good
considering how similar the two classes are and comparable
with the results Tsironi obtained using CNNs [25]. In future
work, it is envisaged that the other two deictic gestures of
showing and giving will also be included.

3) Object Detection Network Evaluation: For the object
detection system, three classes among the ten available were
chosen. To this end, the two backbones of R101-FPN and
R50-C4 were considered. The results obtained are illustrated
in Table II. With regards to the results obtained from the object
detector, it can be observed that the networks behave similarly
with the two classes, and slightly worse with the other class.



This could be mainly due to the fact that since the first few
layers were pre-trained on COCO, two of the classes were
more similar to the ones found in this dataset. In addition,
comparing this to current state-of-the-art using the Mask R-
CNN network, our model is not able to generalise as well as
these. Nonetheless, with the quality of the images and the size
of our dataset, the performance is as expected.

TABLE II: The testing accuracy (%) for each model backbone
of the end-to-end Mask R-CNN for some of the object classes
reported in Section IV-A3.

Object Detection Network Class Accuracy

Object Detection (R50-C4)
Cup 82%
Car 54%
Ball 86%

Object Detection (R101-FPN)
Cup 86%
Car 56%
Ball 88%

As the system is deployed on a real robot and it is
envisioned that on-the-fly training will be achieved in future
work, results regarding the training times were collected and
are outlined in Table III. Taking into account the training times
illustrated in Table III, the final model chosen was the R50-C4.

TABLE III: The average training time for the Mask R-CNN
used for object detection. As previously mentioned, the models
were trained on a single NVIDIA TITAN Xp GPU.

Maximum Iterations
Network 2000 5000 10,000
R50-C4 ≈ 2min ≈ 5min ≈ 10min

R50-FPN ≈ 5min ≈ 10min ≈ 20min
R101-FPN ≈ 7min ≈ 16min ≈ 35min

Indeed, in all scenarios, when taking into consideration the
quality of the images captured directly by the iCub’s cameras
and the size of the dataset, the performance achieved is good
and shows promising results for deploying the model on the
iCub. This result is a vital first step towards attaining a system
that can perform well in a HRI environment, as it illustrates
that in a constrained task it succeeds in fulfilling its main
goals.

B. Experiment II
The aim of this experiment is to illustrate the implementa-

tion of the gesture-object detection system on the iCub. Our fo-
cus is on having the iCub understand complementary gesture-
word combinations. Hence, this experiment was carried out to
analyse how the iCub performs in such an example.

In the evaluation process of Experiment I, training and
testing took place in analogous settings; here, we observe how
the complete architecture performs in a more realistic HRI
setup. This is a critical aspect of every model that will be
implemented on a real robotic platform, as we would like our
system to generalise to the real world. For this reason, we
carried out this experiment to determine to what extent the
learning system generalises here.

Fig. 5: Illustration of the performance of the system during the
HRI experiment. Left image depicts an object taken directly
from the training database, whilst the object in the right frame
is a similar car, but not the exact same one used in the training
database. With the help of the deictic gesture, the system is
able to obtain the mask for the object of interest.

As previously mentioned, the trained model communicated
with the robot’s main control unit through YARP. After mask
inference is done on the main computer, the results are sent
to the motor control module of the robot in order to have the
iCub look at the correct object.

During this experiment, the image acquisition setup is the
same as that used to capture the frames for the training dataset,
i.e. we capture the images using the RGB camera on the
iCub. In this case, the objects used are similar objects to
those in the training dataset. A subject stands in front of the
table with the objects in front of the robot and performs a
deictic gesture with respect to an object, whilst simultaneously
uttering the name of the object. An example of this would be
that the participant points at a cup and says ”cup”. Here, the
architecture is operating in the LEARN scenario. In turn, this
action is followed up by providing an instruction to the robot
such as ”show me the cup” and the iCub looks at the cup
to illustrate correct comprehension and consequently result in
fulfillment of the task. In such a case, the robot is operating
in the RECALL mode.

Fig. 5 illustrates how the system operates in the HRI
scenario. The participant is carrying out deictic gestures in
front of familiar objects and unfamiliar, but similar, objects. In
the left figure, the mask obtained for the object has a higher
confidence score than the mask obtained in the right hand
figure, as can be seen by the outline of the mask. This is a
result of the car in the left frame being taken directly from the
training database, whilst the car in the right frame is a similar
car, but not the exact same one used in the training database.
Hence, the system was able to generalise well. Fig. 5 shows
that the performance in this testing case remains adequate;
therefore, the networks performed well in this scenario.

V. DISCUSSION AND CONCLUSION

This paper addresses the challenge of using deictic ges-
tures for equipping humanoid robots with language skills. A
successful completion of this task is important for natural
language acquisition in robotics as research in infants’ devel-
opmental stages has shown that gestures play a pivotal role in
communication. State-of-the art deep learning-based solutions
contribute to achieving this integration as they have shown



groundbreaking performance in both vision and language
domains. Here, we proposed a pipeline that uses the method
of Mask R-CNNs to detect the wrist keypoint before gesture
recognition, together with a Mask R-CNN for object detection.
Hence, we showed how together with speech recognition
and motor control modules, the aforementioned architecture
can fulfill its task of gesture-word comprehension in a HRI
scenario. Specifically, we showed how the iCub humanoid
robot learns new words with the help of deictic gestures.

Other interesting research directions for this work include
focusing more on gestures’ role in predicting sentence com-
plexity. In addition, we would also like to look in more depth at
how the system can handle occlusions and how deictic gestures
can be used to help in such an occasion. Nonetheless, we
believe the addressed problem is an initial step towards real-
ising robot platforms that improves its language mechanism
by learning from a teacher. In this perspective, the presented
contribution is a stride towards robots that can learn language
in a similar way to humans.
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