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Abstract—Recent studies have demonstrated that reinforce-
ment learning (RL) agents are susceptible to adversarial manip-
ulation, similar to vulnerabilities previously demonstrated in the
supervised learning setting. While most existing work studies the
problem in the context of computer vision or console games, this
paper focuses on reinforcement learning in autonomous cyber
defence under partial observability. We demonstrate that under
the black-box setting, where the attacker has no direct access
to the target RL model, causative attacks—attacks that target
the training process—can poison RL agents even if the attacker
only has partial observability of the environment. In addition,
we propose an inversion defence method that aims to apply
the opposite perturbation to that which an attacker might use
to generate their adversarial samples. Our experimental results
illustrate that the countermeasure can effectively reduce the
impact of the causative attack, while not significantly affecting
the training process in non-attack scenarios.

Index Terms—adversarial reinforcement learning, partial ob-
servability, cyber security.

I. INTRODUCTION

The adversarial machine learning [1]–[4] literature has
demonstrated that machine learning models are vulnerable
to both exploratory (test-time) and causative (training-time)
attacks. These attacks are typically crafted by applying calcu-
lated perturbations to the test or training instances, in order to
either cause misclassification or poison the training process.
More recent studies [5]–[8] have shown that similar attacks can
also be effective against reinforcement learning algorithms.

Unlike the majority of the literature that mainly focuses on
the vision domain or console games, in previous work we [7]
analyse how reinforcement learning agents react to different
forms of poisoning attacks in the context of autonomous de-
fence in software-defined networking (SDN) [9]. Specifically,
we first demonstrate that without any poisoning attacks, an
RL agent can be successfully trained to identify the optimal
strategy for preventing the attacker from propagating through

the network. Then we investigate the effect of two different
types of poisoning attacks on the RL training process, and
show that the RL agent can be misled into making non-optimal
decisions, causing a significantly larger part of the network to
be compromised by the attacker. Section II provides a more
detailed description.

However, there are two limitations with the previous
work [7]: (1) full observability of the (network) states is as-
sumed in the analysis, which is often not the case in real-world
situations, especially for the attacker; (2) while an important
topic, treatment of RL defence mechanisms is preliminary,
and the proposed method does not work effectively in the
new setup as introduced below. In this work, we address these
limitations and make the following contributions:

First, we impose partial observability for the attacker.
Since it is unlikely that the attacker can map out the entire
network topology, we consider the scenario where the defender
has full observability of the network, but the attacker only
knows part of the topology. Specifically, Fig. 1 depicts the
running example network studied in this paper. The network
is comprised of 100 nodes and 172 links, and the attacker
has an initial foothold of a handful of compromised nodes.
They aim to propagate through the network to take control
of a specific node corresponding to the critical server, which
in response can be migrated by the defender to some pre-
determined alternate nodes.

As shown in the figure, two setups are considered, where
the attacker can observe around one-third and half of all
the nodes, respectively. Under each setup, the defender trains
a reinforcement learning agent to (1) protect the critical
server from being compromised, and (2) maintain the network
functionality as much as possible, i.e., maximise the number
of nodes that can reach the critical server. On the other hand,
the attacker only has partial observability, which restricts their
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action set: they cannot compromise an adjacent node unless
the link to the node is known.

Second, we propose a new inversion defence method
to counteract the causative attack on reinforcement learning
algorithms. Our experimental results suggest that the approach
introduced in [7] does not work well in our setup (Fig. 1).
Instead, we design a method that requires no prior knowledge
about the attacker, and attempts to undo attacker poisoning
of the RL training process. We demonstrate the effectiveness
of the new defensive algorithm, and show that it has limited
impact in non-attack scenarios.

The remainder of this paper is organised as follows: Sec-
tion II summarises the problem of applying reinforcement
learning for autonomous defence in computer networks; Sec-
tion III introduces the causative attack via state perturbation
and Section IV the defence mechanism; Section V presents
the experimental verification; Section VI reviews previous
work in adversarial machine learning; and finally Section VII
concludes the paper and offers directions for future work.

II. PROBLEM: REINFORCEMENT LEARNING FOR
AUTONOMOUS NETWORK DEFENCE

We now overview the problem of autonomous defence in
computer networks using reinforcement learning.

A. Background on Reinforcement Learning

Reinforcement learning [10] deals with a sequential decision
making problem where an agent interacts with the environment
to maximise its rewards. At each time step t, the agent (1)
receives an observation st of the environment; (2) takes an
action at based on its policy π, which is a mapping from
states to actions; and (3) obtains a reward rt based on state st ,
action at , and the environment’s transition to a new state st+1.
The goal of the agent is to maximise its cumulative rewards,
i.e., Rt =

∑∞
τ=t γ

τ−trτ , where γ ∈ (0, 1] is a discount factor
which affects the present importance of long-term rewards.

We focus our experiments on two widely used RL
algorithms—Double Deep Q-Networks (DDQN) [11] and
Asynchronous Advantage Actor-Critic (A3C) [12]—and the
transferability of attacks between them.

B. Autonomous Network Defence with Reinforcement Learn-
ing

Maintaining the security of cyber environments without
affecting the normal exchange of information is a challenging
task. Although the problem of cyber defence has been studied
for decades, most deployed solutions are still rule-based that
require a significant human involvement and are prone to gen-
erating false alarms—rules are formulated based on previously
seen threats, and may not be applicable to new vulnerabilities.
In addition, for those solutions that do employ machine learn-
ing, traditional one-class or two-class prediction algorithms
are often used, which require prior knowledge on existing
attacks to make accurate decisions. However, acquiring the
prior knowledge on all existing attacks is almost impossible,
as more sophisticated attacks are generated everyday.

In this work, we investigate the feasibility of applying RL
for autonomous cyber defence, as RL has the ability to adapt
and generalise, and has been successfully used for autonomous
control in a wide range of applications.

Specifically, we consider a computer network of |N | nodes,
N = {n1, n2, ..., n |N |}, and |L | links, L = {l1, l2, ..., l |L |} (e.g.,
Fig. 1), where ND ⊂ N is the set of critical servers to be
protected (one or more blue nodes), NM ⊂ N is the set of
possible migration destinations for node n ∈ ND (one or more
green nodes), and NA ⊂ N is the set of nodes that have
been compromised (red nodes). In addition, while the defender
knows all the nodes and links, the attacker is only able to map
out a subset of them—NO and LO, where NO ⊆ N, LO ⊆ L.

The attack scenario we consider is a cyber attack against the
network infrastructure. Here, the attack spreads through the
network, and aims to take control of the critical servers (note
that we assume that the attacker has to compromise all nodes
on the path). However, they can compromise a node n only
if there is a link l ∈ LO between n and a compromised node
n′ ∈ NA. That is NA keeps expanding as the attack proceeds.

In order to protect the critical servers from being compro-
mised, the defender trains an RL agent that:
1) Monitors the system state. The system state is represented
using a binary feature representation. The state representation
has a number of bits equal to the sum of the number of nodes
and number of links in the network. A bit corresponding to a
node is 0/1 to represent whether that node is un/compromised.
A bit corresponding to a link is 0/1 to represent whether that
link is down/up. Note that detection is not our focus—we are
not studying how to detect the attacker, nor how the attacker
can escape detection. Therefore, we have modeled the defender
as having in place a detection system. Our experiments suggest
that as long as the system achieves a reasonable detection rate,
e.g., ≥ 75%, it does not have an obvious impact on the final
results. In our experiment, the detection rate is set to 90%.
2) Chooses an appropriate action to take when in a given
system state. The actions that are available comprise: (i)
isolating and patching one node; (ii) reconnecting one node
and its links; (iii) migrating the critical server to a certain
destination; and (iv) taking no action. Note that for actions (i)
or (ii), only one node can be isolated or reconnected during
each action cycle.

The reward function that the RL agent is trained on is given
in (1), where Ut is the number of nodes unreachable from the
critical server after the current tth step, Ct is the number of
newly compromised nodes at the tth step, rc is the reward for
an additional node to be compromised, rm is the migration
cost, 1a=m = 1 iff the action a is to migrate the critical server,
and α, β ≥ 1.0.

rt =

{
−1, n ∈ ND is compromised or the action is invalid(
1 − α · Ut

|N | · β
t
)
− Ct · rc · βt − 1a=m · rm, otherwise

(1)
As we can see, the reward is based on (i) whether any

critical server has been compromised; (ii) the validity of an
action, e.g., if a node has already been isolated, it cannot be
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(a) Setup 1 (b) Setup 2

Fig. 1: Network setups: (a) the attacker can observe 34 nodes and 46 links; (b) the attacker can observe 51 nodes and 80 links.

isolated again; (iii) the number of nodes reachable from the
critical servers; (iv) the number of newly compromised nodes;
and (v) the migration cost. Note that the term βt encourages
RL agents to find the optimal solution with minimal steps.

For each of the setups in Fig. 1, we train multiple DDQN
(with Prioritised Experience Replay [13]) and A3C agents with
different structures, i.e., different numbers of hidden layers and
different numbers of neurons per layer. These agents help us
identify the optimal policy without tampering (see Fig. 2): (1)
under the first setup, isolating nodes in the order of 10, 53,
81, 80, which results in a total of 92 out of 100 nodes being
preserved. Note that there are several other equally optimal
solutions for this case; (2) under the second setup, isolating
nodes in the order of 90, 53, 62, 22, 31, which results in a
total of 82 out of 100 nodes being preserved.

However, the above cyber attack scenario and resulting
trained RL agents leave important questions unanswered: if
the attacker has the ability to poison the training process,
can the agents still identify the optimal actions? What can
the defender do to mitigate attack impact? We seek to address
these questions.

III. PARTIALLY-OBSERVABLE POISONING ATTACKS ON RL
BY STATE MANIPULATION

In order for RL techniques to be successfully applied in
autonomous cyber defence, it is crucial to analyse the suscep-
tibility of RL agents to potential causative attacks. However,
most existing adversarial attacks against RL agents are based
on gradient descent optimisation [5], [6], [8], [14], and in our
case the attacker aims to manipulate the binary state of a node
(note again that the purpose of the attack is not to escape
detection/cause misclassification). Therefore, gradient descent-
based attacks are not applicable. Instead, we have investigated
the following attack mechanisms:
1) Tampering with a small number (e.g., 5%) of rewards to
maximise the defender’s loss. Specifically, the gradient of
the loss with respect to the rewards, is used to select which
rewards to tamper with;
2) Random perturbation of the observed states;

3) Manipulating the states to minimise the defender’s rewards;
4) Manipulating the states to minimise the probability of
taking the optimal action.

In our preliminary unreported experiments we found that
the last attack mechanism was the most effective and hence
we subsequently use it as the attacker’s strategy.

A. Threat Model

We focus on the scenario where the attacker tampers with
the states observed by the RL agents, so that the trained model
learns sub-optimal actions. Specifically, suppose that the agent
observes an experience (s, a, s′, r) without any attacks, where
s is the current system state, a is the action taken by the
agent, s′ is the new state, and r is the reward. When the
system reaches the new state s′, the agent would continue
to take the next optimal action a′. The attacker can counteract
this by introducing false positive (FP) and false negative (FN)
readings in s′, meaning that uncompromised (compromised)
nodes will be reported as compromised (uncompromised) to
the defender. Consequently, the agent observes (s, a, s′ + δ, r ′)
(where δ represents the FP and FN readings) instead of
(s, a, s′, r), and hence may not take action a′ next.

The key issue here is how the attacker chooses the nodes
to manipulate. We consider the following strategy:

1) Against the DDQN agent: loop through all observable
nodes to find δ that minimises the Q-value of the optimal
action a′ for state s′ + δ, i.e., argminδ Q(s′ + δ, a′);
2) Against the A3C agent: loop through all observable nodes
to find δ that minimises the probability of taking the optimal
action a′ for state s′ + δ, i.e., argminδ π(a′ |s′ + δ).

We next abstract the threat model for adversarial learning
in autonomous cyber defence as follows:

Black-box approach. The attacker does not have access to
the defender’s training model as per our partial observability
assumption. This constitutes a form of black-box attack, which
means the attacker needs to train their own surrogate model
first, based on the partial topology visible to them.
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Nodes compromised in Step 3

(a) Setup 1 (b) Setup 2

Fig. 2: Optimal results in response to a cyber attack against the network (in the absence of attacking the RL algorithm).

Limited choice of potential false positive and false negative
nodes. It is unlikely that the attacker can falsify the state of all
observable nodes. Therefore, we limit the nodes whose states
can be perturbed by the attacker. Section V further explains
how these nodes are selected.

Limits on the number of false readings per time step. In
our experiments, the number of FP and FN nodes that can be
introduced per time step are no more than two per case.

Our view is that this model of attacker information/control is
a key point of interest in exploring domains beyond computer
vision. Algorithm 1 details this attack against DDQN. The
algorithm for attacks against A3C is similar and so is omitted.

IV. THE INVERSION DEFENCE MECHANISM

For the defender we aim to design a defence mechanism
that (1) effectively mitigates the impact of the above causative
attack, (2) requires minimum knowledge of the attacker, and
(3) does not affect the training when there is no attack. Specif-
ically, we propose a countermeasure that generates training
instances by applying a perturbation counter to simulated
adversarial samples.

Since the attacker adds false readings δ into the observed
states, can δ be reversed? If the defender knows the nodes that
are visible to the attacker, limits on the FP & FN nodes, and the
number of FPs and FNs added per time step, then they may
find these false readings, by solving the inverse problem of
how the attacker generates the adversarial samples: while the
attacker receives (s, a, s′, r), and loops through all observable
nodes to find δ that either minimises the Q-value Q(s′ + δ, a′)
or the probability π(a′ |s′ + δ) of action a′ for state s′ + δ, the
defender receives (s, a, s′+δ, r ′), and searches within the same
nodes to find δ′ that maximises Q(s′ + δ + δ′, a′) for DDQN,
and π(a′ |s′ + δ + δ′) for A3C. In other words, δ′ = −δ.

However, the defender does not know (1) the attacker’s
partial knowledge of the network topology, (2) the limits on
the choice of FP & FN nodes, and (3) the number of false
readings per time interval/step. As shown in Algorithm 2, we
propose the following to address these obstacles:

1) Instead of looping through the nodes observable to the at-
tacker, the defender necessarily goes through all network nodes
to find δ′—this solves the first two issues, but increases the
training time. We further discuss the overhead in Section V-C1;
2) Test the scenarios where compared with the actual number
of false readings introduced by the attacker at each time step,
the defender assumes less, the same and more added—as
demonstrated in our experiments (Section V-C), even if the
defender does not know the exact number of false readings,
the inversion defence method is still effective.
δ′ obtained in such a way may not exactly match δ, and

the defender can choose to either keep both (s, a, s′ + δ, r ′)
and (s, a, s′ + δ + δ′, r ′), or only the latter. This method does
not make any assumptions about the attacker, except that they
falsify the states of certain nodes. However, as demonstrated
by the results in Section V, the method is effective against
the causative attack, and it does not prevent the agent from
learning the optimal actions in the non-attack scenario.

V. EXPERIMENTAL RESULTS

We next introduce our experimental setup, present how
DDQN and A3C agents are affected by causative attacks, and
demonstrate effectiveness of the proposed defence.

A. SDN Experimental Environment

In order to better cope with today’s dynamic and high-
bandwidth traffic, software-defined networking (SDN) [9] is
designed as a next-generation tool chain for computer network
management. SDN adopts a three layer architecture: (1) in
the top application layer, applications that deliver services
communicate their network requirements to the controller;
(2) in the middle layer, the SDN controller translates the
received requirements into low-level controls, and passes them
to the bottom infrastructure layer; (3) the infrastructure layer
includes switches that control forwarding and data processing.
Under such an architecture, the controller has a centralised
view of the whole network, and is directly programmable since
network control is decoupled from forwarding functions. It is
thus convenient to monitor and reconfigure network resources.



Algorithm 1: Causative attack against DDQN via state
perturbation

Input : The original experience, (s, a, s′, r);
The list of observable nodes, NO;
The list of nodes that can be perturbed as
false positive (false negative) by the attacker,
LFP (LFN);
The main DQN, Q;
Limit on the number of FPs and FNs per
time, LIMIT

Output : The tampered experience (s, a, s′ + δ, r ′)
1 FN = FP = {};
2 minQFN = minQFP = {};
3 a′ = argmaxa∗ Q(s′, a∗);
4 for node n in NO do
5 if n is compromised and n in LFN then
6 mark n as uncompromised;
7 if Q(s′ + δ, a′) < any value in minQFN then

// δ represents the FP and/or FN readings
8 insert n and Q(s′ + δ, a′) into appropriate

positions in FN and minQFN ;
9 if |FN | > LIMIT then

10 remove extra nodes from FN and
minQFN ;

11 restore n as compromised;

12 else if n is uncompromised and n in LFP then
13 mark n as compromised;
14 if Q(s′ + δ, a′) < any value in minQFP then
15 insert n and Q(s′ + δ, a′) into appropriate

positions in FP and minQFP;
16 if |FP | > LIMIT then
17 remove extra nodes from FP and

minQFP;

18 restore n as uncompromised;

19 Change nodes in FN to uncompromised;
20 Change nodes in FP to compromised;
21 return (s, a, s′ + δ, r ′)

There have been a number of proprietary and open-source
SDN controller software platforms. In this paper, we choose
OpenDaylight [15], the most popular open-source SDN con-
troller available. Specifically, we use Mininet [16], a popular
network emulator, to create the network with 100 nodes and
172 links as shown in Fig. 1. Once the network is created,
OpenDaylight is added as the controller. It provides APIs
for the RL agent to retrieve network information and execute
different types of operations as defined in Section II.

We want to emphasise that SDN is only one platform we
choose for demonstration purposes—although it is used in
production. The studied causative attacks and the proposed
defence method are not coupled to any particular platform.

Algorithm 2: The inversion defence mechanism
Input : The potentially tampered experience,

(s, a, s′ + δ, r ′);
The main DQN, Q;
The list if all nodes, N;
The estimate of the attacker’s limit on the
number of FPs and FNs per time, LIMIT ′

Output : The corrected experience (s, a, s′ + δ + δ′, r ′)
1 FN = FP = {}; // FN(FP) is a list of potentially false

negative (false positive) nodes tampered by the
adversaries that need to be corrected

2 maxQFN = maxQFP = {};
3 a′ = argmaxa∗ Q(s′ + δ, a∗);
4 for node n in N do
5 if n is compromised then
6 mark n as uncompromised;
7 if Q(s′ + δ + δ′, a′) > any value in maxQFP then

// δ′ represents the correction introduced by
the defender

// n is potentially a false positive node
8 insert n and Q(s′ + δ + δ′, a′) into appropriate

positions in FP and maxQFP;
9 if |FP | > LIMIT ′ then

10 remove extra nodes from FP and
maxQFP;

11 restore n as compromised;

12 else if n is uncompromised then
13 mark n as compromised;
14 if Q(s′ + δ + δ′, a′) > any value in maxQFN then

// n is potentially a false negativnode
15 insert n and Q(s′ + δ + δ′, a′) into appropriate

positions in FN and maxQFN ;
16 if |FN | > LIMIT ′ then
17 remove extra nodes from FN and

maxQFN ;

18 restore n as uncompromised;

19 Change nodes in FN to compromised;
20 Change nodes in FP to uncompromised;
21 return (s, a, s′ + δ + δ′, r ′)

B. Causative Attacks via State Perturbation

As described in Section III, we are considering a black-box
setting, which means that the attacker does not have direct
access to the target RL model, and needs to train its own
model. For each of the setups in Fig. 1, we achieve this by
training a DDQN agent using the partial topology visible to the
attacker. The model is then used as the surrogate to attack both
of the defender’s models (i.e., both DDQN and A3C agents).

In addition, there is a limit on the nodes that the attacker
can perturb. This is an appropriate threat model—even if the
attacker can map out part of the network topology, it is very



unlikely that they can manipulate the states of all those nodes.
We run the attack by adding one FP and one FN per time
interval/step but without any limits on the choices of FPs
and FNs. In this way, we are able to find the nodes that are
most frequently selected as FPs and FNs. LFP and LFN in
Algorithm 1 are then initialised with these nodes. Note that
the nodes in LFP and LFN are different under the two setups,
and within each setup they are also different for the DDQN
and A3C agents. The attacker is only allowed to manipulate
the states of these nodes.

Furthermore, the attacker also needs to limit the number
of false positive and false negative readings added per time
interval. Considering the practicality of the attack, two settings
are used in our experiments: (i) one FP & one FN, and (ii)
two FPs & two FNs.

Fig. 3 shows the effectiveness of the attack under different
settings, where the top four, six, eight FP nodes and top two
FN nodes are selected, i.e., |LFP | = 4, 6 or 8, while |LFN | = 2.
|LFN | is set to 2 because additional experiments with multiple
combinations suggests that further increasing |LFN | does not
have an obvious impact. The results demonstrate that:
1) The causative attack designed in Algorithm 1 is effective
against both DDQN and A3C agents when there is no form of
defence—under both setups a significant percentage of attacks
either cause the critical server to be compromised (the red
bars), or cause fewer nodes to be preserved (the blue bars).
Note that this also demonstrates the existence of transferability
between RL algorithms [17]—attackers do not need to have
knowledge of the defender’s model and hence attempting to
keep the model secret is not an effective countermeasure
against adversarial reinforcement learning attacks.
2) Under the second setup where the attacker observes more
nodes, the attacks are more effective in general—the average
number of preserved nodes is much lower in most cases.
This is because the effectiveness of the attack depends on
how close the surrogate and target models are, and with a
larger observable topology, the attacker is more likely to train
a surrogate that resembles the target RL agent.
3) Given the same number of false readings per time step,
the stricter the limits on the choices of FPs and FNs, i.e., the
smaller |LFP | and |LFN | are, the less powerful the attacks are—
not only do the limits restrict which nodes can be manipulated,
they also decrease the number of steps that are poisoned in
each training episode.
4) Interestingly, if we compare the second and fourth bars in
all four figures, when |LFP | = 6, adding one FP & one FN per
time step is more effective than adding two FPs & two FNs
per time step. This is because more training steps are likely to
be poisoned in the former case given that |LFP | is the same.

In the next section, we test our proposed countermeasure
against the most powerful form of attack as illustrated in
Fig. 3, where |LFP | = 8, |LFN | = 2, and two FPs & two FNs
are added per time step under the second setup.

1) Discussion on the attack efficiency: The limited choice
of potential false positive and false negative nodes, i.e., LFP
and LFN , not only makes the attack more practical but also

increases the efficiency of the attack, as the attacker only needs
to loop through these two lists of nodes to find the FPs and FNs
instead of checking all the visible nodes. Our experimental
results suggest that the attack does not cause an obvious delay
to the normal training process.

2) Discussion on the Impact of Partial Observability: As
we mentioned earlier, a subset of nodes are more frequently
selected as FPs and FNs. Therefore, the attack will become
more effective if the attacker can take control over more of
these most damaging nodes. For future work, we intend to
further study the relation between partial observability and
attack effectiveness. Specifically, we will identify a minimum
set of nodes that the attacker needs to control for a given level
of efficiency.

C. Countermeasure

Our inversion defence method only assumes that attackers
perturb the states of a certain number of nodes in each training
step, and aims to identify & revert the manipulations. However,
the defender has to loop through all the nodes rather than the
nodes in LFP & LFN , and has to estimate the number of false
readings added per step.

Specifically, four scenarios are investigated under the second
setup: in the first three scenarios, the attacker adds two FPs
& two FNs per training step, and |LFP | = 8, |LFN | = 2 (i.e.,
the most powerful form of attack studied in the experiments),
while the defender assumes that there are (1) one FP & one
FN, (2) two FPs & two FNs, (3) three FPs & three FNs per
training step. In the last case, the defender assumes that two
FPs & two FNs are added per time step, but in fact there is
no attack. The first three scenarios investigate the situations
where the defender either does or does not know the limit
on the number of false readings added per time, while the
last scenario is designed to study whether the normal learning
process will be impacted when the defender falsely assumes
the presence of an attack.

Comparing the rightmost bars in Figs. 3c & 3d and the left
three bars in Figs. 4a & 4b, we can see that the proposed
defence method can effectively mitigate the impact of the
causative attacks—the percentage of experiments where the
critical server is compromised drops from almost 100% to
less than 30% on average. In addition, the two rightmost bars
in Fig. 4 also indicate that in most cases the defence method
will not prevent the agent from learning the optimal actions
when there is no attack—in all the cases represented by the
blue bar in Fig. 4a, only one less node is preserved.

1) Discussion on the Overhead: A disadvantage of the
inversion defence method is that it significantly slows down
the training process, as it is time-consuming to loop through all
the nodes to find the potential FPs and FNs. We aim to improve
the performance in our future work. Specifically, we find that
not all nodes are equally important in terms of preventing the
critical server from being compromised—incorrect readings
from certain nodes can cause more damage. Therefore, we
will be investigating improving the efficiency of the defence
method by only looping through those crucial nodes.
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(b) Setup 1: attacks against A3C
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(c) Setup 2: attacks against DDQN
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(d) Setup 2: attacks against A3C

Fig. 3: Attacks against the DDQN & A3C agents. The bars
indicates the percentage of attacks (left y−axis) that (1) have
no impact; (2) cause fewer nodes to be preserved; and (3)
cause the critical server to be compromised. The lines indicate
the average number of preserved servers (right y−axis).

VI. RELATED WORK

This section first summarises adversarial machine learning
against supervised classifiers, and then reviews recent work on
similar attacks against reinforcement learning models. Finally,
we discuss existing defence mechanisms.

A. Adversarial Machine Learning

Adversarial machine learning aims to minimise the modifi-
cations to the input, i.e., either the test instance or the training
sample, to cause a malfunction of the machine learning model.

Biggio et al. [3], [18] formulate the problem of evading
a machine learning classifier as optimisation of the model’s
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(a) Defence against attacks on DDQN
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(b) Defence against attacks on A3C

Fig. 4: Defence against attacks on the DDQN & A3C agents.

continuous scores, and use gradient descent to generate adver-
sarial samples. Szegedy et al. [4] highlight the observation that
modifications imperceptible to humans can cause deep neural
networks to misclassify, and they design the Fast Gradient
Sign Method [19] for the attack. Since then a number of
different methods for creating adversarial samples have been
proposed [17], [20]–[26], among which the C&W attack [25]
is empirically the most efficient exploratory attack so far. In
addition, more recent work has also studied adversarial attacks
in other domains, such as graph-based models [27], [28].

B. Adversarial Reinforcement Learning

It has been shown that reinforcement learning models are
also vulnerable to the above attacks against classifiers. For
example, Huang et al. [5] demonstrate that both white-box and
black-box attacks using the Fast Gradient Sign Method [19]
are effective against deep RL.

Behzadan & Munir [6] were the first to investigate causative
attacks against RL agents. They show how adversaries can
perturb the observed state, in order to prevent the DQN agent
from learning the correct policy.

Lin et al. [14] propose two types of attacks against deep
RL: (1) strategically-timed attack, which aims to decrease the
number of time steps to launch the attack; (2) enchanting
attack, which aims at misleading the agent to a specific state.

Pattanaik et al. [8] show that even the naı̈ve attack, that
is, adding random noise into the current state, is effective
against deep RL—this is contrary to our experimental findings.
However, our scenario is different to that described by the
authors, including the dimensions of the state, the action space,
and they design a gradient based attack that aims to maximise
the probability of taking the worst possible action.

C. Existing Defence Mechanisms

Generally speaking, existing defence methods against adver-
sarial machine learning can be categorised into two classes: (1)



data-driven defence, which either filters adversarial samples,
injects adversarial samples into training—a.k.a., adversarial
training, or projects inputs into a lower dimension; (2) learner
robustification, which stabilises the training, applies moving
target, or leverages ideas from robust statistics.

Countermeasures against attacks on RL models adopt simi-
lar approaches. Mandlekar et al. [29], Pattanaik et al. [8] pro-
pose different adversarial training algorithms. Lin et al. [30]
use previous images to predict future input and detect adver-
sarial examples. Havens et al. [31] propose the Meta-Learned
Advantage Hierarchy framework that measures the underlying
changes in a task to detect the attack. Another line of work
initiates the study of formal verification of deep RL [32].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we show that in the context of autonomous
defence in cyber networks, RL agents can be manipulated by
attacks that target the training process, even if the attacker
only has partial observability of the environment and defensive
algorithms. In order to defend against the attack, we propose
an inversion method that aims to revert the perturbations
added by the attacker. Our experimental results demonstrate
the effectiveness of the proposed approach, and show that
it causes limited impact in non-attack scenarios. Our work
focuses on learning in software-defined networking, which
brings with it novel threat models of independent interest to
adversarial learning research.

For future work, we plan to work on three directions—(1)
partial observability: (i) impose partial observability also on
the defender, as the defender may not obtain the correct states
of all the nodes all the time; (ii) identify the minimum set
of nodes the attacker needs to control for a certain level of
effectiveness. (2) Consider a more powerful attacker that can
(i) expand their partial observability as the attack proceeds; and
(ii) spread more freely through the network, instead of having
to compromise all the nodes on the paths to the critical server.
(3) Replace the binary state with a continuous state.
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