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Abstract—Speech-driven facial animation is useful for a variety
of applications such as telepresence, chatbots, etc. The necessary
attributes of having a realistic face animation are 1) audio-
visual synchronization (2) identity preservation of the target
individual (3) plausible mouth movements (4) presence of natural
eye blinks. The existing methods mostly address the audio-
visual lip synchronization, and few recent works have addressed
synthesis of natural eye blinks for overall video realism. In this
paper, we propose a method for identity-preserving realistic facial
animation from speech. We first generate person-independent
facial landmarks from audio using DeepSpeech features for
invariance to different voices, accents, etc. To add realism,
we impose eye blinks on facial landmarks using unsupervised
learning and retarget the person-independent landmarks to
person-specific landmarks to preserve the identity-related facial
structure which helps in generation of plausible mouth shapes of
the target identity. Finally, we use LSGAN to generate the facial
texture from person-specific facial landmarks, using an attention
mechanism that helps to preserve identity-related texture. An
extensive comparison of our proposed method with the current
state-of-the-art methods demonstrate a significant improvement
in terms of lip synchronization accuracy, image reconstruction
quality, sharpness, and identity-preservation. A user study also
reveals improved realism of our animation results over the state-
of-the-art methods. To the best of our knowledge, this is the first
work in speech-driven 2D facial animation that simultaneously
addresses all the above-mentioned attributes of a realistic speech
driven face animation.

Index Terms—Talking face, motion-texture decoupling, realis-
tic face animation, identity preservation.

I. INTRODUCTION

Generating a realistic talking face from speech input is a
fundamental problem with several applications such as virtual
reality, computer-generated imagery (CGI), chatbots, telep-
resence, etc. Essential requirements for all the applications
are that the synthesized face must appear photo-realistic with
accurate and realistic audio-visual lip synchronization, and
must also preserve the identity of the target individual. Also,
for most of these applications, it is expected to have a single
image with the target identity’s face on which the motion
has to be induced from a given speech as input, for greater
flexibility of changing the target subjects at test time. Hence,
audio-driven realistic facial animation from a single image
input is crucial. In general, any speech-driven facial animation
method has several challenges due to the existence of a variety
in the facial structures of different target identities, different
voices, and accents in input audio, etc.
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Fig. 1: Issues with current methods in 2D facial animation (a) Difference in
image texture of synthesized face produced by Vougioukas et al. [27] from
the ground truth image texture leads to perceived difference in identity of
the rendered face from the target individual. (b) Despite synchronization with
audio, the facial animation sequence synthesized using the method of Chen
et al. [4] contains implausible or unnatural mouth shape (last frame) that can
be perceived as being fake. The results were obtained by evaluation using
pre-trained models made publicly available by the respective authors.

Most of the existing methods for facial video synthesis [4],
[6], [23], [30], [31] focus on generating facial movements
synchronized with speech, while only a few [26], [27] have
addressed the generation of spontaneous facial gestures such as
eye blinks that add realism to the synthesized video. However,
the latest methods either fail to preserve the perceived identity
of the target individual (Fig. 1a), or generate implausible or
unnatural shape of the mouth in a talking face (Fig. 1b). Lack
of resemblance with given identity or change of identity in
consecutive synthesized frames (Fig. 1a) can give rise to the
uncanny valley effect [19], in which the facial animation can
be perceived as visually displeasing or eerie to the viewer.
Moreover, the lack of any natural and spontaneous movements
over the talking face except around the mouth region can be
an indication of synthesized videos.

In this paper, we address the above issues for generating
realistic facial animation from speech. To the best of our
knowledge, this is the first work on speech-driven 2D facial
animation which simultaneously addresses the following at-
tributes required for realistic face animation: 1) audio-visual
synchronization (2) identity-preserving facial texture (3) gen-
eration of plausible mouth movements (4) presence of natural
eye blink movements. Inspired by a recent method [4], we first
generate a high-level representation of the face using 2D facial
landmarks to capture the motion from speech, then use an
adversarial network for generating texture by learning motion-
based image attention. Our approach is outlined in Fig. 2.
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Fig. 2: Our proposed method consists of the following 4 stages - (1) speech driven motion generation on person-independent landmarks, (2) eye-blink generation
(3) retargeting of generated motion on person-specific landmarks, (4) Synthesizing face images using attention and color map generation. Attention generation
helps segregate identity information, represented by lighter regions of attention map, from motion-based texture (darker regions).
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Fig. 3: Effect of intermediate attention and color map on the final texture.
Intermediate attention values (grey areas) of extended regions surrounding
the lips in the attention map † generated by Chen et al. [4] (last row) results
in the blurred texture and unusual shape of the mouth in the animated face
(last frame). Whereas uniformly low attention values (dark areas) in the mouth
region in our attention map and distinct lip shape and texture in our color map
leads to generation of sharp facial texture with plausible shape of the mouth.
† Actual attention map (where higher values indicate regions with more
significant motion) generated by [4] is inverted here for direct comparison
with our attention map (lower values indicate regions with more significant
motion).

The challenge is the decoupling of speech-driven motion from
identity-related attributes such as different facial structures,
face shapes, etc. for robust motion prediction. To address this,
we first learn speech-related motion on identity-independent
landmarks. Then, the learnt landmark motion is transferred to
the person-specific landmarks for generating identity specific
facial movements. Unlike state-of-the-art methods for speech-
driven 2D facial animation, we use DeepSpeech [12] features
of given audio input, which exhibits greater robustness to the
variety in audio that exists due to different audio sources,
accents, and noise. Since eye blinks are unrelated to speech,
we generate blink motion independently from audio-related
landmark motion. Finally, we learn an attention map and color
map from the identity image and the predicted person-specific

landmarks. The attention map [21] helps in segregating regions
of facial motion (defined by the lower values of attention) from
the rest of the face containing identity-related information
(defined by higher values of attention). The color map contains
a novel texture for the facial regions where the attention map
indicates motion. We use the combination of attention map
and color map to generate the final texture. Texture in regions
of motion is obtained from the color map, while the texture in
the rest of the face is obtained from the input identity image
(driven by the weights of the attention map). Our network
learns the attention map and the color map without explicit
attention or color map labels for supervision.

The quality of the learned attention map is extremely crucial
for the overall quality of the generated face. Fig. 3 shows an
example of synthesized face images by Chen et al. [4] where
the final texture of the animated face is adversely affected
by the values of intermediate attention map and color map.
In regions of facial motion surrounding the mouth, uniform
regions of very low values (dark regions) of the attention map
are needed for sharp texture generation, while intermediate
values (grey regions) lead to blur in mouth texture (shown
in Fig 3 last row). In regions of low attention (dark regions
of the attention map indicating motion), the color map values
contribute to the overall sharpness of the generated texture and
the shape of the mouth. To address the problem of accurate
attention and color map generation, we propose an architecture
for texture generation which uses LSGAN [18] for learning
sharp image texture and plausible mouth shapes (Fig. 3 second
row). Moreover, during adversarial training, if attention values
become very low in static facial regions, it can lead to texture
blur and also possible loss of identity information. Hence,
regularization is also needed as an additional constraint in the
learning of the attention map. Unlike Chen et al. [4], we use
spatial and temporal L2 regularization on the attention and
color map for generating smooth motion and plausible mouth
shapes without loss of identity.
The main contributions of our paper are:
• We propose a four-stage approach for speech-driven 2D

face synthesis that helps to achieve realistic facial ani-
mation which contains plausible mouth movements syn-



chronized with speech, natural eye blinks, and preserves
the identity information of the target subject.

• Our proposed method generates an intermediate landmark
representation that defines the speech-induced facial mo-
tion along with realistic eye blinks. Further, this interme-
diate representation is used to generate the facial texture
with motion defined at the landmark stage.

• Our proposed audio-to-landmark generator network uses
DeepSpeech features to learn motion on facial landmarks
for better generalization to new voices, accents, and noise.

• We carry out unsupervised learning of eye blinks on facial
landmarks using MMD loss minimization.

• Our texture generation network produces identity-
preserving facial texture from identity-specific facial
landmarks using a combination of attention genera-
tion, attention regularization, and least-squares adversar-
ial training.

II. RELATED WORK

Talking face generation: Generating realistic talking faces
from audio has been a research problem in the computer vision
and graphics community for decades [2], [22], [28]. Recent
research works have carried out the speech-driven synthesis
of lip movements [3], as well as animation of the entire face
in 2D [4], [6], [23], [26], [27], [30], [31]. Earlier approaches
have carried out subject-specific talking face synthesis from
speech [8], [9], [25]. However, these approaches require a
large amount of training data of the target subject, and such
subject-specific models cannot generalize to a new person.
Subject-independent facial animation was carried out by [6]
from speech audio and a few still images of the target face.
However, the generated images contain blur due to L1 loss
minimization on pixel values and an additional de-blurring
step is required. On the other hand, Generative Adversarial
Networks (GANs) [10] are widely used for image generation
due to their ability to generate sharper, more detailed images
compared to networks trained with only L1 loss minimization.
Recent GAN-based methods [4], [5], [23], [26], [27], [30] have
generated facial animation from arbitrary input audio and a
single image of the target identity. In this work, we adopt a
GAN-based approach for synthesizing face images from the
motion of intermediate facial landmarks, which are generated
from audio.

Talking face with realistic expression: Current meth-
ods [4], [5], [23], [30] have mostly addressed audio-
synchronization instead of focusing on overall realism of the
rendered face video. The absence of spontaneous movements,
such as eye blinks can also be an indication of synthesized
videos [16]. Few works [26], [27] have addressed this problem
by using adversarial learning of spontaneous facial gestures
such as blinks. However, these methods generate facial texture
without the use of landmark-guided image attention, which can
lead to loss of facial identity (Fig. 1a). In this work, inspired
by [27] we perform eye blink generation for the realism of
synthesized face videos. Unlike [27], the blink motion is
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Fig. 4: Network architecture for audio-to-landmark prediction.

generated on facial landmarks to ensure decoupled learning
of motion and texture for better identity preservation.

Segregation of motion from texture: In talking face
synthesis, subject-related and speech-related information are
separately addressed in [30] by learning disentangled audio-
visual information, i.e., complementary representations for
speech and identity, thereby generating talking face from either
video or speech. Using high-level image representations such
as facial landmarks [15] is another way to segregate speech-
related motion from texture elements such as identity infor-
mation, viewing angle, head pose, background, illumination.
A recent research work [4] adopts a two-stage approach in
which facial motion is decoupled from texture using facial
landmarks. Although we also use facial landmarks to segre-
gate motion from texture, unlike [4], our approach involves
imposing natural facial movements like eye blinks in addition
to lip synchronization with given audio input. We retarget
the person-independent landmarks with audio-related motion
and blinks to person-specific landmarks for subsequent texture
generation. This helps in generating plausible mouth shapes in
the target facial structures.

III. OUR APPROACH

A. Speech-driven Motion Prediction

For a given speech signal represented by a sequence of
overlapping audio windows A = {A0, A1 · · ·At}, we first
predict the speech-induced motion on a sparse representation
of the face lp = {lp0 , l

p
1 · · · l

p
t } where lpt ∈ R68×2 consists of 68

facial landmark points representing eyes, eyebrows, nose, lips,
and jaw. Unlike the state-of-the-art methods, we use Deep-
Speech features [12] instead of using audio MFCC features.
DeepSpeech features are used for gaining robustness against
noise and invariance to audio input from a variety of speakers.
DeepSpeech features a = {a0, a1, · · · at} where at ∈ R16×29,
corresponding to audio windows A = {A0, A1 · · ·At} are
used for landmark generation.

Landmark prediction from speech: Facial landmarks for
different subjects contain person-specific facial attributes i.e.,
different face structures, sizes, shapes, and different head
positions. Speech driven lip movements for a given audio
segment are independent of these variations. So to make
landmark prediction invariant to these factors, we consider
a canonical landmark representation lm = {lm0 , lm1 · · · lmt };
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Fig. 5: Network architecture for blink generation.

where, lmt ∈ R68×2, which is mean of facial landmarks over
the entire dataset. We consider a frontal face with closed lips
as the neutral mean face, lmN . We train our speech-to-landmark
generation network to predict δlm = {δlm0 , δlm1 · · · δlmt }
where, δlmt ∈ R68×2 represents displacement from the neutral
mean face lmN . Person-specific facial landmarks lpt is calculated
from canonical landmark displacements δlmt from lmN using,

lpt = δlmt ∗ St + PA(lpN , l
m
N ) (1)

where, PA(lpN , l
m
N ) represents the rigid Procrustes alignment

[24] of lmN with lpN as reference. St represents scaling factor
(ratio of height and width of person-specific face to mean
face). δlmt ∗ St represents displacements of person-specific
landmarks δlpt .

The network is trained with full supervision (Llmark) for
a one-to-one mapping of DeepSpeech features to landmark
displacements.

Llmark = ||δlmt − ˆδlmt ||22 (2)

δlmt and δ ˆlmt represents ground-truth and predicted canonical
landmarks displacements.

A temporal loss (Ltemp) is also used to ensure consistent
displacements over consecutive frames as present in ground
truth landmark displacements.

Ltemp = ||(δlmt − δlmt−1)− ( ˆδlmt − ˆδlmt−1)||22 (3)

Total loss (Ltot) for landmark prediction is defined as,

Ltot = λlmarkLlmark + λtempLtemp (4)

where λlmark and λtemp defines weightage of each of the
losses.

B. Spontaneous Blink Generation

Unlike previous approaches which use landmarks for facial
animation [4], we impose eye blinks on the facial landmarks
for adding realism to facial animation. Unlike end-to-end
methods that generate natural facial expressions and eye
blinks [26], our blink movements are learnt over the sparse
landmark representation for better preservation of identity-
related texture.

We train the blink generation network to learn a realistic
eye blink, duration of eye blinks, and permissible intervals
between two blinks from the training datasets. As there is
no dependency of blinks on speech input, we generate eye
blinks in an unsupervised manner only from random noise
input. We aim to learn blink patterns, blink frequencies,
and blink duration over the training dataset via unsupervised
learning. In literature, generative adversarial networks (GAN)
[10] have been used for image generation from random noise
input. Training of GAN requires optimization of a min-max
problem, which is often difficult to stabilize. Li et al. [17] have
proposed a simpler category of GAN where the discriminator
is replaced with a straightforward loss function that matches
different moments of ground-truth (real) and predicted (fake)
distributions using maximum mean discrepancy (MMD) [11].

We use MMD loss LMMD2 to match distribution of each
landmark displacements over a sequence length T .

LMMD2 =
1

N2

N∑
i=1

N∑
i′=1

k(δlmei , δlmei′ )

− 2

NM

N∑
i=1

M∑
j=1

k(δlmei , δ̂l
me

j )− 1

M2

M∑
j=1

M∑
j′=1

k(δ̂l
me

j , δ̂l
me

j′ )

(5)

where, k(x, y) = exp(− |x−y|
2

2σ ) is used as the kernel for com-
paring the real and fake distributions. δlme and δ̂l

me
represents

ground truth and predicted distribution of displacements of
each of the landmark points in eye region over sequence T .
We also use min-max regularization on predicted distributions
to enforce it to be within the range of average displacements
seen in the training dataset.

C. Attention-based Texture Generation

Given a single image of the target identity Iid, the objective
is to transform a sequence of person-specific facial landmarks
lp = {lp0, l

p
1 · · · l

p
t } into a sequence of photo-realistic images

I = {I0 , I1 · · · It} that accurately reflect the facial expres-
sions corresponding to the input landmark images L (image
representation of the 68 × 2 landmarks lp). A generative
adversarial network is trained using ground truth video frames
I∗ and the corresponding ground-truth landmark images L∗ .
Since the texture generation network is trained on ground-
truth landmarks, the network learns to generate face texture
for eye blinks. During evaluation, the predicted speech-driven
landmarks with imposed eye blinks are used as input for
texture generation.

Our generator network focuses on generating novel texture
for image regions that are responsible for facial expressions
(defined by motion on landmarks), while retaining texture from
Iid in the rest of the image. This is achieved by learning
a grayscale attention map and an RGB color map over the
face image instead of directly regressing the entire face image,
using a similar approach presented in [4], [21]. The attention
map attt determines how much of the original texture values
in Iid will be present in the final generated image It. The
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Fig. 6: The architecture of our proposed texture generator network.

color map Ct contains the novel texture in the regions of facial
motion.

The final generated image It is derived as follows:

It = (1− attt) ∗ Ct + attt ∗ Iid (6)

The network is trained by minimizing the following loss
functions:

Pixel Intensity loss : This is a supervised loss on the RGB
intensity values of the entire image with a special emphasis
on the eyes and mouth regions.

Lpix =
∑
t

α|It − I∗t | (7)

where, α represents a fixed spatial mask representing weights
assigned to individual pixels for contributing to the overall
loss, with higher weights assigned to the regions surrounding
the mouth and eyes. A fixed α has been experimentally found
to be more stable than a dynamic pixel mask dependent on
attt used in [4].

Adversarial loss: Using only the pixel intensity loss Lpix
results in a considerable blur in the generated image due
to the L1 distance minimization. A discriminator network is
used to make the generated texture sharper and more distinct,
especially in regions of motion. We adopt the LSGAN [18]
for adversarial training of our texture generation network,
because of its better training stability as well as its ability
to generate higher quality images than the regular GAN.
Regular GANs use the sigmoid cross-entropy loss function,
which is prone to the problem of vanishing gradients, in which
the gradient becomes small for generated images that lie far
from the decision boundary. The LSGAN helps overcome
this problem by using the least-squares loss function which
penalizes samples that are correctly classified yet far from
the decision boundary. Due to this property of LSGANs, the

generation of samples is closer to real data [18]. The LSGAN
loss functions for the discriminator and generator are :

L(D) =
1

2
Ex∼pI(x)[(D(x)− 1)2] +

1

2
Ez∼pz(z)[D(G(z))2]

(8)

L(G) =
1

2
Ez∼pz(z)[(D(G(z))− 1)2] (9)

where pI is the distribution of the real face images and pz is
the distribution of the latent variable z. The adversarial loss
Ladv is computed as follows:

Ladv = L(G) + L(D) (10)

Regularization loss : No ground-truth annotation is available
for training the attention map and color map. Low values of
the attention map in the regions of the face other than the
regions of motion would result in blurring of the generated
texture. Hence, a L2 regularization is applied to prevent the
attention map values from becoming too low.

Latt =
∑
t

||1− attt||2 (11)

To ensure the continuity in the generated images, a temporal
regularization is also applied by minimizing first-order tem-
poral differences of attention and color maps.

Ltemp =
∑
t

||(attt− attt−1)||2 +
∑
t

||(Ct−Ct−1)||2 (12)

The total regularization loss is :

Lreg = Latt + Ltemp (13)

The final objective function of generator is to minimize the
following combined loss:

L = λpixLpix + λadvLadv + λregLreg (14)

where, λpix, λadv λreg are hyper-parameters for optimization,
that control the relative influence of each loss term.



IV. IMPLEMENTATION DETAILS

Audio feature extraction: Given an audio input, Deep-
Speech [12] produces log probabilities of each character
(26 alphabets + 3 special characters) corresponding to each
audio frame. We use the output of the last layer of the pre-
trained DeepSpeech network before applying softmax. We
use overlapping audio windows of 16 audio frames (0.04s
of audio), where each audio window corresponds to a single
video frame.

Extraction of facial landmarks: We use OpenFace [1]
and face segmentation [29] to prepare ground truth facial
landmarks for training audio-to-landmark prediction network.
For a given face image, OpenFace predicts 68 facial landmarks
and uses frame-wise tracking to obtain temporally stable
landmarks. But for the lip region, it often gives erroneous
prediction, especially for the frames with faster lip movements.
To capture an exact lip movement corresponding to the input
audio, we need a more accurate method for the ground truth
landmark extraction. Hence, we use face segmentation [29],
which segments the entire face in different regions like hair,
eyes, nose, upper lip, lower lip, and rest of the face. We select
the upper and lower lip landmark point from the intersection
of projected OpenFace landmark points with segmentation
boundaries of the lip regions, for a more accurate estimation
of lip landmarks.

To prepare ground-truth landmark displacements for training
audio-to-landmark prediction network, we impose lip move-
ments on the mean neutral face. For this, we first align the
person-specific landmark lp with the mean face landmark lmN
using rigid Procrustes alignment [24]. Per frame lip displace-
ments from the person-specific neutral face lpN , are added to
the mean neutral face, lmN to transfer the motion from person
specific landmarks to mean face landmarks, lm. Displacements
are scaled with the ratio of person-specific face height-width
to mean face height-width before adding to lmN .

Landmark Generation from Audio: We adopt an encoder-
decoder architecture (as shown in Fig. 4) for predicting the
landmark displacements. The encoder network consists of four
convolution layers with two linear layers in the decoder. We
use Leaky ReLU activation after each layer of the encoder
network. Input audio feature ai is reshaped as R16×1×29

to consider the temporal relationship within the window of
16 audio frames. We initialize the decoder layers weight
with PCA components (that represents 99% of total variance)
computed over landmark displacements of the mean face of
training samples. The loss parameters λlmark and λtemp have
been set to 1 and 0.5 respectively based on experimental
validation.

Blink generation network: We use RNN architecture to
predict a sequence of displacements for each of the landmark
points of eye region (n×T×44, i.e x, y coordinates of 22 land-
marks; n is batch size ) over T timestamps from given noise
vector z ∼ N (µ, σ2) of size 10 (n × T × 10). Fig. 5 shows
network architecture for the blink generation module. Similar
to the audio-to-landmark prediction network blink generation

network is also trained on landmark displacements. The last
linear layer weight is initialized with PCA components (with
99% variance) computed using eye landmark displacements.

Texture Generation from Landmarks: The proposed ar-
chitecture of the texture generator is shown in Fig. 6. The
current landmark images Lt and the identity landmark image
Lid images are each encoded using a landmark encoder. The
difference in encoded landmark features is concatenated with
the input identity image Iid and fed to an encoder-decoder
architecture, which generates attention map attt and color
map Ct. The generated image It is passed to a discriminator
network, which determines if the generated image is real
or fake. The encoder-decoder architecture of the generator
network is built upon a variation of [21] which uses facial
action units to generate attention for facial expression gen-
eration. The discriminator network is based on the PatchGan
architecture [14] with batch normalization replaced by instance
normalization similar to [21] for greater training stability.
The improved stability of LSGAN training [18] along with
regularization of attention map helped us in achieving stable
adversarial training as the problem of vanishing gradients
in the regular GAN training can adversely effect learning
of attention and color maps. We use Adam optimizer with
learning rate of 0.0001, beta1 = 0.5, beta2 = 0.999 and
training batch size of 16. During training the loss hyper-
parameters have been set to λpix = 100, λadv = 0.5 and
λreg = 0.2 by experimental validation on a validation set.
The adversarial loss and regularization loss parameters have
been chosen to prevent saturation of the attention map while
maintaining the sharpness of the texture of the generated
images.

Our network is trained on a NVIDIA Quadro GV100 GPU.
Training of audio-to-landmark, blink, and landmark-to-image
generation networks take around 6 hours, 3 hours, and 2 days
respectively. We use PyTorch for the implementation of the
above mentioned networks.

V. EXPERIMENTS

The proposed model is trained and evaluated on the bench-
mark datasets GRID [7] and TCD-TIMIT [13]. The GRID
dataset consists of 33 speakers, each uttering 1000 short
sentences, but the words belong to a limited dictionary. The
TCD-TIMIT dataset consists of 59 speakers uttering approxi-
mately 100 sentences each from the TIMIT corpus, with long
sentences that contain much more phonetic variability than the
GRID dataset. We use the same training-testing data split for
the TCD-TIMIT and GRID datasets as in [27].

A. Metrics

The following metrics have been used for quantitative
evaluation of our results:

- Image reconstruction quality metrics, PSNR (peak signal-
to-noise ratio), and SSIM (structural similarity).

- Image sharpness metric CPBD (Cumulative probability
blur detection) [20] to detect the amount of blur in synthesized
image.
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Fig. 7: Results on TCD-TIMIT dataset: Our generated texture is sharper, especially the texture of the mouth and teeth are visibly more distinct compared to
Chen et al. [4], Vougioukas et al. [27] and Zhou et al. [30] and also our generated motion is better than Zhou et al. [30]. In contrast to Vougioukas et al.
[27] and Zhou et al. Zhou et al. [30] our synthesized face retains the texture from the input identity image in the regions of the face not undergoing motion,
resulting in our improved identity-preservation.

- Landmark synchronization metric LMD (landmark dis-
tance) [3] to measure the accuracy of audio-visual synchro-
nization.

Higher values of CPBD, PSNR, and SSIM indicated better
quality of image generation while lower values of LMD
indicate better audio-visual synchronization.

B. Results

Our results have been compared both qualitatively and
quantitatively with recent state-of-the-art methods. A user
study has also been carried out for subjective evaluation of
our method.

1) Qualitative Results: Qualitative comparison of our re-
sults have been carried out with the recent state-of-the-art
methods of Chen et al. [4], Vougioukas et al. [27] and Zhou et

al. [30]. The comparative results on TCD-TIMIT and GRID
dataset are shown in Fig. 7 and 8 respectively. The results
indicate that our proposed method is able to generate facial an-
imation sequences that are superior in terms of image quality,
identity preservation and generation of plausible mouth shapes.
Our generated images contain sharper texture and are better
at preserving the identity-related facial texture of the target
subjects compared to Vougioukas et al. [27] and Zhou et al.
[30] due to our attention-based texture generation with the help
of landmarks, which helps to retain the identity information
from the input identity image. Compared to Chen et al. [4],
our generated face images have less blur and more distinctive
texture in the mouth region and plausible mouth shapes. This
is because of our two-step learning of person-specific facial
landmarks, and texture generation using LSGAN and attention
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Fig. 8: Results on GRID dataset: Our generated images contain sharper and more distinctive mouth texture, plausible mouth shapes, and better preservation
of identity compared to Chen et al. [4], Vougioukas et al. [27] and Zhou et al. [30]. Vougioukas et al. [27] fails to accurately preserve the identity information
of the target in the synthesized images, Chen et al. [4] and Zhou et al. [30] contain some implausible mouth shapes.

map regularization. Unlike Chen et al. [4] and Zhou et al.
[30], our face animation method can generate spontaneous eye
blinks, as shown in Fig. 9.

2) Quantitative Results: In this section, we present a quan-
titative evaluation of our method compared with the recent
methods [4], [27]. Table I shows the metrics computed using
our trained models on GRID and TCD-TIMIT datasets respec-
tively. Our results indicate better image reconstruction quality
(higher PSNR and SSIM), sharper texture (higher CPBD) and
improved audio-visual synchronization (lower LMD) than the
state-of-the-art methods [4], [27].

We also evaluate the performance of our blink generation
network by comparing the characteristics of predicted blinks
with blinks present in ground-truth videos. Fig. 11 shows the
comparison of the distributions of blink duration for around

Dataset Method PSNR SSIM CPBD LMD

TCD-TIMIT Ours 26.153 0.818 0.386 2.39
Vougioukas et al. [27] 24.243 0.730 0.308 2.59

Chen et al. [4] 20.311 0.589 0.156 2.92

GRID Ours 29.305 0.878 0.293 1.21
Vougioukas et al. [27] 27.100 0.818 0.268 1.66

Chen et al. [4] 23.984 0.7601 0.0615 1.59

TABLE I: Quantitative evaluation results. We evaluate the methods of Chen
et al. [4] Vougioukas et al. [27] on our test data using their respective pre-
trained models which are publicly available. Our train-test split is same as
that of Vougioukas et al. [27].

11,000 synthesized (red) and ground-truth (blue) videos (from
GRID and TCD-TIMIT datasets). The average blink duration
per video obtained from our method is similar to that of
ground-truth. Our method produces 0.3756 blinks/s and 0.2985



Fig. 9: Our generated animation of different identities synchronized with the the same speech input, containing spontaneous generation of eye blinks.

Method PSNR SSIM CPBD

Lpix 25.874 0.813 0.366
Lpix + Ladv 25.951 0.814 0.373

Lpix + Ladv + Lreg 26.153 0.818 0.386

TABLE II: Ablation study of the objective function in Eq. 14 on the TCD-
TIMIT dataset.

Method TCD-TIMIT GRID Average

Ours 6.40 7.69 7.05
Vougioukas et al. [27] 6.29 6.51 6.4

Chen et al. [4] 4.67 4.5 4.59

TABLE III: User study results. Scores range from 0-10 (Higher scores indicate
more realistic face animation)

blinks/s for GRID and TCD-TIMIT datasets respectively
which is similar to the average human blink rate, that varies
between 0.28 − 0.4 blinks/s [27]. Also, our method shows
an average of 0.5745s inter-blink duration, which is similar to
ground-truth videos with duration 0.4601s. Hence, our method
is able to produce realistic blinks.

3) Ablation Study: We present an ablation study on a
validation set from TCD-TIMIT, for different losses (Eq. 14)
used for training our landmark-to-image generation network.
This helps to understand the significance of using adversarial
training and regularization. The metrics are summarized in
Table II and generated images are shown in Fig. 10. The
results indicate that our texture generation network trained
using a combination of L1 pixel loss, adversarial loss, and
regularization yields the best outcome.

4) User Study: A user study has also been carried out
to evaluate the realism of our facial animation results. 26
participants have rated 30 videos with a score between 0-10
(higher score indicates more realistic). Out of the 30 videos,
10 videos are selected from each of the following methods
- Ours, Vougioukas et al. [27] and Chen et al. [4]. For each
method, 5 videos are selected from each of the datasets, GRID,
and TCD-TIMIT. Table III summarizes the outcome of the
user study, which indicates higher realism for the synthesized
videos generated by our method. As per the feedback from the
participants, our sharper images, better identity preservation

Lpix

Lpix + Ladv + Lreg

Lpix + Ladv

Synthesized Image Attention map Color map

Fig. 10: Training the network using only generator loss Lpix without the
discriminator, results in blurry texture generation in the mouth region of the
color map. Adding the discriminator and the adversarial loss (row marked
Lpix + Ladv) makes the generated mouth texture sharper in the color map,
however the attention map indicates motion for the entire face resulting in
blur in the final synthesized image, especially noticeable in the mouth region.
Adding the regularization loss (row marked Lpix +Ladv +Lreg) results in
the attention map having low values mostly in regions of motion, hence the
synthesized image contains sharper and more distinct mouth texture.
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Fig. 11: Blink duration in synthesized videos compared to ground-truth.

over the videos, and the presence of realistic eye blinks
helped us achieve higher scores indicating improved realism
compared to state-of-the-art methods.

VI. CONCLUSION

In this paper, we propose an efficient pipeline for generating
realistic facial animation from speech. Our method produces
accurate audio-visual synchronization, plausible mouth move-
ment along with identity preservation and also renders natural



expression like eye blinks. Our results indicate a significant
improvement over the state-of-the-art methods in terms of im-
age quality, speech-synchronization, identity-preservation, and
overall realism, as established by our qualitative, quantitative
and user study results. We attribute this to our segregated
learning of motion and texture, two-stage learning of person-
independent and person-specific motion, generation of eye
blinks, and the use of attention to retain identity information.
In future, we would like to generate a greater variety of
spontaneous human expressions and head movements to make
the animation appear more realistic.
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