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Abstract— Transhumeral amputation has a considerable 

detrimental effect on the amputee’s quality of life and 

independence. Previous work has already established the 

potential for exploiting proximal humerus myoelectric and 

kinematic signals for the effective control of a myoelectric 

prosthesis. That previous work used a Time-Delay Neural 

Network (TDNN) to perform the mapping of six 

electromyographic (EMG) and six kinematic proximal humerus 

signals to predict elbow flexion/extension. Since that earlier work 

alternative deep learning and recurrent neural network 

architectures, well-suited to the processing of high-dimensional 

time-series data, have come to the fore. The work reported here 

is a comparative evaluation using the metric of RMS error for 

the predicted elbow flexion/extension angles output by TDNN, 

Long Short Term Memory (LSTM) and Echo State Network 

(ESN) architectures. For the most effective comparison we 

reproduce the earlier TDNN results and then using the same 

datasets, and networks of broadly similar complexity, evaluate 

the effectiveness of the LSTM and ESN approaches. The current 

work is not intended to find the best possible LSTM or ESN 

solution for this problem. Instead the intention is to see if any 

particular network architecture works best with the particular 

challenges of transhumeral biomedical engineering data of this 

sort. 
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Networks, Long Short-Term Memory, transhumeral prosthesis 
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I. INTRODUCTION 

Each year in the UK alone thousands of major limb 
amputations are carried out [1]. More than half of these 
amputees are under 55 years old and trauma is the major reason 
for upper limb amputation. Therefore, loss of the upper limb 
significantly affects an individual’s ability to work, 
independence and overall quality of life. Amputees who choose 
to fit a prosthetic limb onto the remaining arm often have the 
option of an active prosthesis: one that has the potential to 
restore some upper limb function. Active prostheses can be 
body powered, using straps and cables to transfer energy from 
controlled upper-body movements, or myoelectric, which are 
electrically powered and use elements of the amputee’s 
residual neuromuscular system for its control.  

Myoelectric prostheses are controlled by 
electromyographic signals (EMG) generated by contractions of 
the amputee’s residual muscles. There is an on-going need to 
increase the functionality and ease of control of myoelectric 
prostheses in order to facilitate their wider adoption. To this 
end biomedical engineers have sought to develop sophisticated 
control algorithms and signal processing techniques to allow 
more EMG signals to be used. Pulliam et al. (2011) for have 
shown that EMG from seven proximal residual muscles could 
be used to predict elbow flexion and forearm 
pronation/supination [2]. However, Fougner et al. (2011) have 
shown that by incorporating kinematic signals, derived from 
accelerometers sensing residual body motions, along with 
EMG prosthesis control could be further improved [3].   

This sort of multi-sensor data fusion, combining EMG and 
inertial measurement unit (IMU) kinematic sensor data, is an 
area that is well suited to the application of artificial neural 
networks [4]. Additional promise derives from the possibility 
of using these sensor data as they evolve through time to 
deliver improved prosthesis control. The ability of one time-
series processing neural network architecture, Time-Delayed 
Neural Network (TDNN) was the subject of work by Blana et 
al. (2015) [5]. In that study it was shown that TDNN 
processing of combined EMG and kinematic data could deliver 
effective predictions for elbow and forearm movements.  Since 
those encouraging results were obtained additional highly 
effective time-series processing neural network architectures 
have come to the fore e.g. Long Short-Term Memory (LSTM) 
networks are leading proponents from the domain of deep-
learning and Echo-State Networks (ESNs) from reservoir 
computing. The work reported here is an initial comparative 
investigation into the effectiveness of all three network 
architectures (TDNN, LSTM and ESN) when applied to this 
important and challenging real-world biomedical engineering 
task. 

The approach taken here is not to try to obtain the very best 
performing networks of each type for the prosthesis controller 
task – that might result in networks with radically different 
characteristics. Instead we have attempted to create and 
evaluate networks with broadly similar characteristics to see 
how well they each cope with the challenges posed by this 
particular task. 



The remainder of the paper is organised as follows. Section 
II briefly introduces neural network architectures. Section III 
explains the biomedical engineering data acquisition 
techniques used and how the training and testing data for the 
networks were prepared. Section IV explains how the networks 
were trained and tested. Section V presents and discusses the 
results obtained so far and Section VI concludes the paper and 
outlines directions for future work. 

II. TIME-SERIES NETWORKS 

Time Delay Neural Networks (TDNNs), see Figure 1, are 
an established time-series processing neural network 
architecture, first introduced by Waibel et al. in 1989 [6]. 
TDNNs deal with the temporal extent of key features from the 
input signal using tapped-delay lines to provide a kind of short-
term memory that feeds into an otherwise conventional feed-
forward network architecture. 

 

 

Figure 1: A schematic overview of a time-delay neural network. 

   

 The TDNN networks used here were trained and tested 
using the MATLAB Deep Learning toolbox [7]. 

Long Short-Term Memory (LSTM) networks were 
introduced by Hochreiter & Schmidhuber [8, 9] in order to 
more effectively deal time-series data where important 
components of key input signal characteristics had differing 
temporal extents. The fundamental building block of LSTM 
networks is the LSTM-cell (Figure 2). 

 

Figure 2: Overview of an LSTM-cell – the fundamental building block of 

LSTM neural networks. 

 
Some of the most important features of an LSTM-cell are 

three tuneable parameters known as the input gate (IG), forget 
gate (FG) and the output gate (OG). These gates control the 

extent to which: the current features from the input signal; the 
persistence of the current cell’s state; and the significance of 
the current cell’s state, respectively, will have on the output 
activation of the cell. The action of these gates are one of the 
key aspects of LSTM networks comprised of several cells that 
allows then to simultaneously respond to both short-term and 
long-term features of time-varying signals.  The LSTM 
networks used here were trained and tested using the 
MATLAB Deep Learning toolbox [7]. 

Echo State Networks (ESNs) are a type of recurrent 
artificial neural network from the field of reservoir computing 
[10]. What sets ESNs apart from many other neural networks is 
the existence of a sparsely interconnected reservoir, since the 
recurrent connections within this reservoir allow time-series 
data to resonate, effectively giving the network a short term 
memory. A typical ESN topology can be seen in Figure 3.  

 

 

Figure 3: Schematic overview of a typical Echo-state neural network. 
 

The input units are fully connected with the reservoir, 
whereas the reservoir units themselves are only sparsely 
interconnected, and all of these weighted connections are 
randomly generated at the initialisation of the reservoir and 
kept constant throughout. Only the weights on the connections 
between each reservoir unit and each output unit are trained, 
usually by a simple regression technique such as ridge 
regression [11–13]. The ESNs used here were trained and 
tested using the reservoir computing toolbox for MATLAB 
[14]. 

The ability of ESNs to exhibit a short term memory means 
that they have often been used to process time-series data in a 
number of fields, with recent examples including industry [15], 
medicine [16] and structural health monitoring [17]. 

In the ESN architecture used here, at any time t, the output 
of the vector of ESN reservoir neurons, x, was given by (1). 
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res
res
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Here, 
inp
resW is the input to reservoir weight matrix, f is the tanh 

activation function that was used (other commonly used 
activation functions include the sigmoid function), t − 1 is the 

previous time step, 
res
resW is the reservoir weight matrix, u(t) is 

the vector of the input data at time t and δ is the leak rate.  



One advantage of ESNs is that there are several tuneable 
parameters, allowing networks to be configured for particular 

tasks. For example, although 
inp
resW is randomly generated, it 

can be uniformly scaled according to the task, with a greater 
input scaling increasing non-linearity and increasing the 
relative effect of the input at time t compared to past inputs 
[19]. In this case, the scaled input weights were calculated by 
(2). 

inp
res

inp
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where 
inp
res'W represents the input to reservoir weight matrix 

prior to scaling and ρ is the input scaling. 

Similarly, the randomly generated internal reservoir 
weights can be scaled in order to adjust the length of the ESN’s 
short term memory. This can be done by multiplying the initial 
reservoir weight matrix by the spectral radius scaling factor 
and dividing by the maximum eigenvalue of this initial matrix 
[10], as shown in (3). 

max/'  res
res

res
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Here, α is the spectral radius scaling factor and λmax is the 

maximum eigenvalue of res
res'W , which represents the initial 

reservoir weights. The spectral radius is usually limited to a 
maximum value of 1 in order to ensure the echo state property 
for the network, and it can be seen in (3) that as the spectral 
radius decreases, so too will the resonance of past inputs in the 
reservoir, since the values of the reservoir weights will 
decrease. 

Other parameters that can be adjusted include the reservoir 
size (i.e. the number of neurons in the interconnected reservoir) 
and the connectivity factor of the reservoir, which is the 
proportion of connections within the reservoir to reservoir 
units. The final tuneable parameter, the leak rate, acts as a time 
constant, speeding up or slowing down the reservoir dynamics. 
The effect of the leak rate on a reservoir unit can be seen in (1). 

Each of the above feed-forward, deep-learning and 
reservoir-computing network architectures have proven track 
records in terms of their effectiveness in handling time-series 
data that have particular characteristics; this may make them 
particularly suitable for modelling the dynamics of limb 
motion. In addition, each of the network architectures have 
particular characteristics that will make direct neural network 
comparisons difficult. Despite these difficulties, in this study 
we seek to compare their effectiveness with the particular 
biomedical engineering data that will arise from this important 
developing application domain.  

III. DATA ACQUISITION  

In Blana et al. [5] TDNNs were first evaluated to assess 
their effectiveness as transhumeral prosthesis controllers. In 
that work several able bodied participants were asked to repeat 
several controlled reaching and grabbing exercises with gesture 
targets rendered using a virtual reality headset. Before 
performing these reaching and grabbing exercises the 
transhumeral skin surface of each the participants had a 
number of EMG and IMU sensors attached. The EMG and 

IMU sensors provided a total of twelve input signal channels 
(i.e. six EMG signals and six IMU kinematic signals) that 
needed to be mapped into the correct elbow flexing and wrist 
pronation/supination angles. The ground truth values for these 
target angles were contemporaneously derived from suitable 
IMU sensors situated distally on the participants’ humerus and 
forearms. The study was approved by the Keele University 
Ethics Panel and all participants gave informed consent. An 
overview of the data recording set-up is shown in Figure 4. 

 

Figure 4: Overview of the data acquisition set-up. Gray ovals indicate EMG 
sensors; orange boxes indicate IMU sensors for kinematic data. IMU sensor 

data provide information that allows the ground truth elbow-flexing and wrist-

rotation angles to be determined. 

 
Examples of the kind of time-series data that were acquired 

in this way can be seen in Figure 5. Example input data streams 
are shown the top two panels depicting six channels of 
normalised EMG data and six channels of normalised IMU 
data. The bottom panel shows the target data stream i.e. elbow 
flexing/extending angle.   

 

Figure 5: a typical sequence of normalised EMG and IMU input data and the 
corresponding target elbow flex/ext angle. 

 
This data acquisition set-up was used with a total of twelve 

able-bodied human participants. Prompted by the virtual reality 
headset, each participant was shown a range of reaching and 
grabbing target objects that they were asked to capture several 
times. Delivering between 10 to 15 recorded time-series for 
each able-bodied participant. Each recorded time-series was 
typically around 30 seconds duration, sampled every 50ms 
(20Hz). 



IV. NETWORK TRAINING AND TESTING 

Blana et al. [5] experimented by training several TDNNs to 
act as transhumeral prosthesis controllers. Their TDNNs 
accepted the twelve dimensional EMG and IMU data, 
described above, as input and provided estimates of the desired 
elbow or wrist angles as the outputs. Separate elbow angle and 
wrist angle prediction TDNN networks were trained for each 
participant. That is, their TDNNs were participant and task (i.e. 
elbow or wrist angle prediction) specific. Their best performing 
TDNNs were determined using the RMS error of the network 
outputs and used a single layer of just 6 hidden nodes and three 
input time delays. Table I provides a summary of the best 
performing TDNNs reported by Blana et al. 

TABLE I.  THE RMS PREDICTION ERROR, IN DEGREES, FOR THE TEN 

PARTICIPANT SPECIFIC TDNNS TRAINED AND EVALUATED BY BLANA ET AL. 
(2015).  THE MEAN PERFORMANCE FOR THE TDNNS IS ALSO GIVEN 

(STANDARD DEVIATION IN BRACKETS). 

Participant 

 

Elbow flex RMSE (o) 

 

Training data Test Data 

S1 2.8 15.8 

S2 2.9 8.4 

S3 3.4 11.5 

S4 2.4 17.6 

S5 2.6 11.4 

S6 3.0 20.8 

S7 3.3 17.1 

S8 2.0 6.1 

S9 2.1 9.0 

S10 2.5 19.4 

Mean (std) 2.7 (0.5) 13.7 (5.1) 

 

The main objective of the work reported here is to compare 
the performance of the three network architectures to assess 
their effectiveness in this biomedical engineering domain.  

One approach for this type of machine learning comparison 
would be to rigorously configure networks with equivalent 
numbers of free-parameters. For neural networks this would 
largely be determined by the total number of weights and 
biases in each of the networks. However, this is not the 
approach that has been taken here.  

As described above in Section II each of the network 
architectures under consideration are radically different. For 
example, TDNNs use fully connected hidden layers and several 
delay lines, LSTMs require individual cells with some 
significant internal structure and ESNs usually operate with 
large, but only sparsely interconnected, reservoirs. So, instead 
of rigidly constraining networks to have the same numbers of 
free parameters, our approach was to consider each network 
architecture’s principal operational features and, based on those 

network configuration options, compare how well they were 
able to complete the prosthesis control task.  

An important aspect of the comparison carried out in this 
work is that it was possible to control for the preparation and 
treatment of the training and testing datasets that would be 
used by each of the network architectures. A total of 109 
recordings of time-series data were available from Blana et al’s 
data acquisition process. In each time-series the 12 input 
signals and the ground-truth elbow flexion angles were present 
and for each time-series used to train/test the networks the 
inputs were all normalised over the range [0, 1]. Each of these 
participant-specific time series were then divided into sub-
sequences, in the proportions [0.7, 0.15, 0.15], to be used as 
either: network training data; training-validation data; or the 
testing data sets, respectively. 

Blana et al. [5] have already determined that TDNNs with 
12 input nodes, 6 hidden nodes and a single output node 
worked best with this type of prosthesis related data. Our first 
step was to see if the TDNN results reported in that work were 
reproducible using the particular treatment of the available data 
described above. 

In keeping with the motivation outlined in Section I, above, 
a series of LSTM networks with broadly similar overall 
characteristics i.e. 12 input units, 6 LSTM-cells and a single 
output unit were created. One of the important training options 
for deep-learning networks such as LSTMs is to train using 
penultimate layers of drop-out nodes to prevent premature 
overfitting [18]. An initial grid-search to assess the 
effectiveness of using drop-out indicated that there was no 
significant benefit to be gained here. So for all of the the 
LSTM networks that we report on below drop-out was not 
used, and just the training-validation datasets were used to 
prevent overfitting. 

An equivalent set of ESN networks were also configured to 
have 12 input units and a single output unit, but here the 
intervening reservoir was comprised of 60 reservoir units. This 
reservoir size was chosen to reflect the fact that ESN reservoirs 
(the seat of the ESN’s short-term memory time-series 
processing power) are, necessarily, only sparsely 
interconnected. For our ESNs only 10% of the possible 
interconnections were realised. An initial grid-search was again 
performed to estimate some useful settings for several of the 
other ESN specific training parameters. With the small subset 
of data used for the grid-search an ESN spectral radius of 0.1 
and reservoir-unit leak-rate of 0.5 were selected for use with all 
of the ESNs.  

For each of the time-series recordings that were available 
from all of the participants ten separate neural networks of each 
architectural type were trained and tested, using the appropriate 
training-validation dataset to avoid overfitting. In this way the 
best performing participant-specific network could be found 
for each of the architectural approaches. In addition, it was also 
possible to determine the mean participant-specific network 
performance for each of the network architectures: averaging 
network performance over all of the time-series recorded by 
each participant. (N.B. in most realistic transhumeral prosthesis 
usage scenarios it is likely that a patient-specific controller 
would be desirable. In the case of amputees this might best be 



developed using bespoke patient-specific data captured from a 
remaining upper-limb.) 

V. RESULTS AND DISCUSSION 

Tables II, III and IV, below, summarise the performance of 
each of the network types evaluated in this paper. Table II 
shows the results of attempting to reproduce Blana et al’s 
previous results using TDNNs. Table IIII shows equivalent 
results for the LSTMs and Table IV give the results for the 
ESNs. Each of these tables shows for each of the participants: 
the best RMSE obtained from any network using its training 
data; as well as the average RMSE obtained from all of that 
participant’s networks when using its training data. The final 
two columns of each of these tables show the best and average 
RMSEs obtained – but this time when using each network’s 
testing data. 

TABLE II.  THE TDNN RMS PREDICTION ERROR, IN DEGREES, FOR 

THE TEN PARTICIPANTS IN THIS STUDY. THE MEAN PERFORMANCE IS ALSO 

GIVEN (STANDARD DEVIATIONS IN BRACKETS). 

 

Participant 

Elbow flex RMSE (o) 
(training data) 

Elbow flex RMSE (o) 
(testing data) 

Best Mean (std) Best Mean (std) 

S1 1.9 8.4 (4.9) 4.2 9.9 (4.0) 

S2 2.8 9.1 (4.0) 1.0 11.3 (4.5) 

S3 1.9 11.6 (6.7) 3.6 14.6 (7.5) 

S4 2.1 11.4 (8.0) 2.3 12.9 (8.4) 

S5 2.5 10.6 (4.6) 2.0 11.2 (6.0) 

S6 0.9 11.9 (9.7) 4.1 13.0 (7.5) 

S7 5.1 13.1 (7.5) 6.1 14.7 (7.7) 

S8 2.4 8.3 (5.2) 2.8 9.4 (5.3) 

S9 2.1 8.6 (4.5) 3.0 10.8 (5.5) 

S10 2.1 8.7 (4.2) 3.5 10.4 (5.1) 

Mean (std) 2.3 (1.1) 10.2  (1.8) 3.3  (1.4) 11.8 (1.9) 

 

Comparing the findings shown in Table II with those in 
Table I shows that some aspects of the previous TDNN results 
were reproducible here. Broadly similar network performance 
was obtained when comparing the best networks for each 
participant when evaluated using their training data. Inspecting 
the results when the TDNNs were evaluated using their testing 
data though shows that generally superior performance was 
obtained from the networks trained for the current study and 
that their performance was less variable. 

The results presented in Tables III and IV below, allow 
similar comparisons to be made for the LSTM and ESN 
approaches. Generally, the best LSTM networks were less able 
to fit their training data than any of the best TDNNs or the best 
ESNs. (Though interestingly all of the network types seem to 
have struggled with training data recorded from participant 
S7.) The standard deviations for this set of comparators also 
suggested similar levels of variability for the most pre-eminent 
networks when fitting their training data. 

TABLE III.  THE LSTM RMS PREDICTION ERROR, IN DEGREES, FOR 

THE TEN PARTICIPANTS IN THIS STUDY. THE MEAN PERFORMANCE IS ALSO 

GIVEN (STANDARD DEVIATIONS IN BRACKETS). 

 

Participant 

Elbow flex RMSE (o) 
(training data) 

Elbow flex RMSE (o) 
(testing data) 

Best Mean (std) Best Mean (std) 

S1 3.0 5.8 (1.3) 3.5 8.7 (3.3) 

S2 4.1 7.0 (1.4) 3.0 11.5 (4.0) 

S3 3.9 8.1 (1.8) 4.2 14.0 (6.1) 

S4 4.3 7.6 (1.7) 7.1 10.8 (4.5) 

S5 3.3 7.2 (1.8) 4.4 10.4 (5.4) 

S6 4.3 7.5 (1.5) 2.7 9.8 (3.5) 

S7 5.7 8.4 (1.3) 5.2 12.6 (4.3) 

S8 3.3 6.1 (1.7) 2.7 7.9 (3.4) 

S9 3.6 6.2 (1.5) 4.3 9.0 (3.4) 

S10 4.2 6.3 (1.4) 7.2 9.3 (2.4) 

Mean (std) 3.9 (0.8) 7.0 (0.9) 4.4 (1.6) 10.4 (1.9) 

TABLE IV.  THE ESN RMS PREDICTION ERROR, IN DEGREES, FOR 

THE TEN PARTICIPANTS IN THIS STUDY. THE MEAN PERFORMANCE IS ALSO 

GIVEN (STANDARD DEVIATIONS IN BRACKETS). 

 

Participant 

Elbow flex RMSE (o) 
(training data) 

Elbow flex RMSE (o) 
(testing data) 

Best Mean (std) Best Mean (std) 

S1 2.2 3.9 (0.9) 4.1 10.6 (6.0) 

S2 2.8 4.1 (0.7) 3.7 17.1 (13.9) 

S3 0.6 4.2 (1.2) 4.8 17.5 (12.3) 

S4 2.5 3.9 (0.9) 2.6 14.8 (8.8) 

S5 1.0 3.9 (1.2) 6.9 15.7 (9.3) 

S6 0.9 4.1 (1.2) 1.8 25.7 (35.2) 

S7 4.2 5.3 (1.5) 9.2 23.3 (22.1) 

S8 1.7 3.3 (0.9) 3.4 13.7 (9.4) 

S9 2.8 3.6 (0.7) 4.0 11.7 (7.7) 

S10 2.9 3.7 (0.7) 4.8 12.9 (9.1) 

Mean (std) 2.6 (1.1) 4.0 (0.5) 4.5 (2.1) 16.3 (4.9) 

 

The evaluation is significantly different when considering 
the performance of each architecture with their testing datasets. 
The mean performance of the TDNNs in the current study is 
once again slightly superior to the test performance reported by 
Blana et al. and the standard deviations suggest their test data 
performance is also less variable. On average though the best 
performing networks with previously unseen test data were the 
LSTM networks.   

On average the worst performing networks with previously 
unseen test data were the ESNs. At first this kind of ESN 
performance is suggestive of potential overfitting to the 
training data, despite the precautions taken with the network 
training regime. More detailed inspection of the ESN outputs 
when processing many of their test datasets, see Figure 6, 



suggests that another ESN reservoir phenomenon might be 
influencing their degraded performance.  

When some trained ESNs need to perform a mapping that 
involves a marked transition from either a non-linear to a less 
variable output characteristic, or vice versa, their reservoir 
dynamics can sometimes give rise to highly eccentric output 
activations that can persist for some time after the transition 
[19, 20]. The precise input data and trained reservoir 
characteristics that give rise to this behaviour are not well 
understood. ESNs seem perfectly capable of processing non-
linear data or data that transitions relatively slowly. The issue 
appears to arise when there is a marked transition. It may be 
that the degraded ESN performance with some of the test data 
evaluated here is an example of this kind of behaviour. Figure 
6 shows how the output of one of the trained ESNs upon 
encountering a need to transition its outputs from relatively 
variable to relatively constant characteristic instead begins to 
behave erratically.  

 

Figure 6: ESN target activation (red) and output unit activation (blue) when 

processing previously unseen test data for participant S6.  

 

LSTM networks by virtue of the LSTM-cell’s built-in 
adaptive internal gate-structures (allowing different parts of 
LSTM networks to become attuned to either slowly or more 
rapidly varying data characteristics) may already be pre-
disposed to cope well with these sort of phenomena. 

ESN networks have no such reservoir-adaptation 
capability: the ESN reservoir connectivity is fixed at network 
initialisation and if such characteristic data transitions are not a 
significant part of the ESNs training data this might explain 
why the trained ESNs could episodically deliver poorer 
performance than expected.  

VI. CONCLUSION AND FUTURE WORK 

Currently the LSTM networks seem to hold the greatest 
promise for the development of neural controllers for upper 
limb prostheses of the sort modelled here.  

This conclusion is based on the overall performance rates 
of the LSTM networks when processing their previously 
unseen test datasets. This is the scenario that best models the 
potential future operating environment for any neural controller 
for such prostheses. 

None of the results reported above have involved any 
filtering or smoothing of the network outputs (in case they 
might obscure potentially interesting network properties in this 
comparative evaluation). However, such filtering and 
smoothing of the outputs is likely to be highly beneficial, to 
emulate some of the inertial properties of real limbs, if the 
alternative biomedical engineering objective of developing the 
most effective prosthesis controller were brought to the fore. 

More fundamental neural network work, attempting to 
address the issues summarised in Figure 6 and Section V 
above, will investigate the effectiveness of a hybrid ESN 
architecture, Reservoir with Random Static Projections (R2SP), 
[19, 20] with this domain data. 

 The revised R2SP ESN model was first proposed by 
Butcher at al. to show that by supplementing the standard ESN 
reservoir architecture with two additional, strategically placed, 
feed-forward layers, the augmented architecture did help to 
overcome some of the non-linear/linear data transition 
challenges. The modestly sized ESN reservoirs and the time 
series data used for the current study may well make a more 
detailed investigation using R2SP ESN variants insightful. Both 
for further neural network research as well as for biomedical 
engineers seeking to develop ever more effective prosthesis 
controllers. 
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