
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A comparative evaluation of time-delay, deep

learning and echo state neural networks when used as

simulated transhumeral prosthesis controllers
Charles R. Day

School of Computing and Mathematics

Keele University

Keele, United Kingdom
c.r.day@keele.ac.uk

Edward K. Chadwick

School of Engineering

University of Aberdeen

Aberdeen, Scotland
edward.chadwick@abdn.ac.uk

Dimitra Blana

School of Medical Sciences & Nutrition

University of Aberdeen

Aberdeen, Scotland
dimitra.blana@abdn.ac.uk

Abstract— Transhumeral amputation has a considerable

detrimental effect on the amputee’s quality of life and

independence. Previous work has already established the

potential for exploiting proximal humerus myoelectric and

kinematic signals for the effective control of a myoelectric

prosthesis. That previous work used a Time-Delay Neural

Network (TDNN) to perform the mapping of six

electromyographic (EMG) and six kinematic proximal humerus

signals to predict elbow flexion/extension. Since that earlier work

alternative deep learning and recurrent neural network

architectures, well-suited to the processing of high-dimensional

time-series data, have come to the fore. The work reported here

is a comparative evaluation using the metric of RMS error for

the predicted elbow flexion/extension angles output by TDNN,

Long Short Term Memory (LSTM) and Echo State Network

(ESN) architectures. For the most effective comparison we

reproduce the earlier TDNN results and then using the same

datasets, and networks of broadly similar complexity, evaluate

the effectiveness of the LSTM and ESN approaches. The current

work is not intended to find the best possible LSTM or ESN

solution for this problem. Instead the intention is to see if any

particular network architecture works best with the particular

challenges of transhumeral biomedical engineering data of this

sort.

Keywords— Echo State Networks, Time-Delay Neural

Networks, Long Short-Term Memory, transhumeral prosthesis

control, time-series processing.

I. INTRODUCTION

Each year in the UK alone thousands of major limb
amputations are carried out [1]. More than half of these
amputees are under 55 years old and trauma is the major reason
for upper limb amputation. Therefore, loss of the upper limb
significantly affects an individual’s ability to work,
independence and overall quality of life. Amputees who choose
to fit a prosthetic limb onto the remaining arm often have the
option of an active prosthesis: one that has the potential to
restore some upper limb function. Active prostheses can be
body powered, using straps and cables to transfer energy from
controlled upper-body movements, or myoelectric, which are
electrically powered and use elements of the amputee’s
residual neuromuscular system for its control.

Myoelectric prostheses are controlled by
electromyographic signals (EMG) generated by contractions of
the amputee’s residual muscles. There is an on-going need to
increase the functionality and ease of control of myoelectric
prostheses in order to facilitate their wider adoption. To this
end biomedical engineers have sought to develop sophisticated
control algorithms and signal processing techniques to allow
more EMG signals to be used. Pulliam et al. (2011) for have
shown that EMG from seven proximal residual muscles could
be used to predict elbow flexion and forearm
pronation/supination [2]. However, Fougner et al. (2011) have
shown that by incorporating kinematic signals, derived from
accelerometers sensing residual body motions, along with
EMG prosthesis control could be further improved [3].

This sort of multi-sensor data fusion, combining EMG and
inertial measurement unit (IMU) kinematic sensor data, is an
area that is well suited to the application of artificial neural
networks [4]. Additional promise derives from the possibility
of using these sensor data as they evolve through time to
deliver improved prosthesis control. The ability of one time-
series processing neural network architecture, Time-Delayed
Neural Network (TDNN) was the subject of work by Blana et
al. (2015) [5]. In that study it was shown that TDNN
processing of combined EMG and kinematic data could deliver
effective predictions for elbow and forearm movements. Since
those encouraging results were obtained additional highly
effective time-series processing neural network architectures
have come to the fore e.g. Long Short-Term Memory (LSTM)
networks are leading proponents from the domain of deep-
learning and Echo-State Networks (ESNs) from reservoir
computing. The work reported here is an initial comparative
investigation into the effectiveness of all three network
architectures (TDNN, LSTM and ESN) when applied to this
important and challenging real-world biomedical engineering
task.

The approach taken here is not to try to obtain the very best
performing networks of each type for the prosthesis controller
task – that might result in networks with radically different
characteristics. Instead we have attempted to create and
evaluate networks with broadly similar characteristics to see
how well they each cope with the challenges posed by this
particular task.

The remainder of the paper is organised as follows. Section
II briefly introduces neural network architectures. Section III
explains the biomedical engineering data acquisition
techniques used and how the training and testing data for the
networks were prepared. Section IV explains how the networks
were trained and tested. Section V presents and discusses the
results obtained so far and Section VI concludes the paper and
outlines directions for future work.

II. TIME-SERIES NETWORKS

Time Delay Neural Networks (TDNNs), see Figure 1, are
an established time-series processing neural network
architecture, first introduced by Waibel et al. in 1989 [6].
TDNNs deal with the temporal extent of key features from the
input signal using tapped-delay lines to provide a kind of short-
term memory that feeds into an otherwise conventional feed-
forward network architecture.

Figure 1: A schematic overview of a time-delay neural network.

 The TDNN networks used here were trained and tested
using the MATLAB Deep Learning toolbox [7].

Long Short-Term Memory (LSTM) networks were
introduced by Hochreiter & Schmidhuber [8, 9] in order to
more effectively deal time-series data where important
components of key input signal characteristics had differing
temporal extents. The fundamental building block of LSTM
networks is the LSTM-cell (Figure 2).

Figure 2: Overview of an LSTM-cell – the fundamental building block of

LSTM neural networks.

Some of the most important features of an LSTM-cell are

three tuneable parameters known as the input gate (IG), forget
gate (FG) and the output gate (OG). These gates control the

extent to which: the current features from the input signal; the
persistence of the current cell’s state; and the significance of
the current cell’s state, respectively, will have on the output
activation of the cell. The action of these gates are one of the
key aspects of LSTM networks comprised of several cells that
allows then to simultaneously respond to both short-term and
long-term features of time-varying signals. The LSTM
networks used here were trained and tested using the
MATLAB Deep Learning toolbox [7].

Echo State Networks (ESNs) are a type of recurrent
artificial neural network from the field of reservoir computing
[10]. What sets ESNs apart from many other neural networks is
the existence of a sparsely interconnected reservoir, since the
recurrent connections within this reservoir allow time-series
data to resonate, effectively giving the network a short term
memory. A typical ESN topology can be seen in Figure 3.

Figure 3: Schematic overview of a typical Echo-state neural network.

The input units are fully connected with the reservoir,
whereas the reservoir units themselves are only sparsely
interconnected, and all of these weighted connections are
randomly generated at the initialisation of the reservoir and
kept constant throughout. Only the weights on the connections
between each reservoir unit and each output unit are trained,
usually by a simple regression technique such as ridge
regression [11–13]. The ESNs used here were trained and
tested using the reservoir computing toolbox for MATLAB
[14].

The ability of ESNs to exhibit a short term memory means
that they have often been used to process time-series data in a
number of fields, with recent examples including industry [15],
medicine [16] and structural health monitoring [17].

In the ESN architecture used here, at any time t, the output
of the vector of ESN reservoir neurons, x, was given by (1).

1)))(1)((1)-(δ)-((1)( tttf t xWuWxx
res
res

inp
res (1)

Here,
inp
resW is the input to reservoir weight matrix, f is the tanh

activation function that was used (other commonly used
activation functions include the sigmoid function), t − 1 is the

previous time step,
res
resW is the reservoir weight matrix, u(t) is

the vector of the input data at time t and δ is the leak rate.

One advantage of ESNs is that there are several tuneable
parameters, allowing networks to be configured for particular

tasks. For example, although
inp
resW is randomly generated, it

can be uniformly scaled according to the task, with a greater
input scaling increasing non-linearity and increasing the
relative effect of the input at time t compared to past inputs
[19]. In this case, the scaled input weights were calculated by
(2).

inp
res

inp
res × 'WW   (2)

where
inp
res'W represents the input to reservoir weight matrix

prior to scaling and ρ is the input scaling.

Similarly, the randomly generated internal reservoir
weights can be scaled in order to adjust the length of the ESN’s
short term memory. This can be done by multiplying the initial
reservoir weight matrix by the spectral radius scaling factor
and dividing by the maximum eigenvalue of this initial matrix
[10], as shown in (3).

max/'  res
res

res
res WW  (3)

Here, α is the spectral radius scaling factor and λmax is the

maximum eigenvalue of res
res'W , which represents the initial

reservoir weights. The spectral radius is usually limited to a
maximum value of 1 in order to ensure the echo state property
for the network, and it can be seen in (3) that as the spectral
radius decreases, so too will the resonance of past inputs in the
reservoir, since the values of the reservoir weights will
decrease.

Other parameters that can be adjusted include the reservoir
size (i.e. the number of neurons in the interconnected reservoir)
and the connectivity factor of the reservoir, which is the
proportion of connections within the reservoir to reservoir
units. The final tuneable parameter, the leak rate, acts as a time
constant, speeding up or slowing down the reservoir dynamics.
The effect of the leak rate on a reservoir unit can be seen in (1).

Each of the above feed-forward, deep-learning and
reservoir-computing network architectures have proven track
records in terms of their effectiveness in handling time-series
data that have particular characteristics; this may make them
particularly suitable for modelling the dynamics of limb
motion. In addition, each of the network architectures have
particular characteristics that will make direct neural network
comparisons difficult. Despite these difficulties, in this study
we seek to compare their effectiveness with the particular
biomedical engineering data that will arise from this important
developing application domain.

III. DATA ACQUISITION

In Blana et al. [5] TDNNs were first evaluated to assess
their effectiveness as transhumeral prosthesis controllers. In
that work several able bodied participants were asked to repeat
several controlled reaching and grabbing exercises with gesture
targets rendered using a virtual reality headset. Before
performing these reaching and grabbing exercises the
transhumeral skin surface of each the participants had a
number of EMG and IMU sensors attached. The EMG and

IMU sensors provided a total of twelve input signal channels
(i.e. six EMG signals and six IMU kinematic signals) that
needed to be mapped into the correct elbow flexing and wrist
pronation/supination angles. The ground truth values for these
target angles were contemporaneously derived from suitable
IMU sensors situated distally on the participants’ humerus and
forearms. The study was approved by the Keele University
Ethics Panel and all participants gave informed consent. An
overview of the data recording set-up is shown in Figure 4.

Figure 4: Overview of the data acquisition set-up. Gray ovals indicate EMG
sensors; orange boxes indicate IMU sensors for kinematic data. IMU sensor

data provide information that allows the ground truth elbow-flexing and wrist-

rotation angles to be determined.

Examples of the kind of time-series data that were acquired

in this way can be seen in Figure 5. Example input data streams
are shown the top two panels depicting six channels of
normalised EMG data and six channels of normalised IMU
data. The bottom panel shows the target data stream i.e. elbow
flexing/extending angle.

Figure 5: a typical sequence of normalised EMG and IMU input data and the
corresponding target elbow flex/ext angle.

This data acquisition set-up was used with a total of twelve

able-bodied human participants. Prompted by the virtual reality
headset, each participant was shown a range of reaching and
grabbing target objects that they were asked to capture several
times. Delivering between 10 to 15 recorded time-series for
each able-bodied participant. Each recorded time-series was
typically around 30 seconds duration, sampled every 50ms
(20Hz).

IV. NETWORK TRAINING AND TESTING

Blana et al. [5] experimented by training several TDNNs to
act as transhumeral prosthesis controllers. Their TDNNs
accepted the twelve dimensional EMG and IMU data,
described above, as input and provided estimates of the desired
elbow or wrist angles as the outputs. Separate elbow angle and
wrist angle prediction TDNN networks were trained for each
participant. That is, their TDNNs were participant and task (i.e.
elbow or wrist angle prediction) specific. Their best performing
TDNNs were determined using the RMS error of the network
outputs and used a single layer of just 6 hidden nodes and three
input time delays. Table I provides a summary of the best
performing TDNNs reported by Blana et al.

TABLE I. THE RMS PREDICTION ERROR, IN DEGREES, FOR THE TEN

PARTICIPANT SPECIFIC TDNNS TRAINED AND EVALUATED BY BLANA ET AL.
(2015). THE MEAN PERFORMANCE FOR THE TDNNS IS ALSO GIVEN

(STANDARD DEVIATION IN BRACKETS).

Participant

Elbow flex RMSE (o)

Training data Test Data

S1 2.8 15.8

S2 2.9 8.4

S3 3.4 11.5

S4 2.4 17.6

S5 2.6 11.4

S6 3.0 20.8

S7 3.3 17.1

S8 2.0 6.1

S9 2.1 9.0

S10 2.5 19.4

Mean (std) 2.7 (0.5) 13.7 (5.1)

The main objective of the work reported here is to compare
the performance of the three network architectures to assess
their effectiveness in this biomedical engineering domain.

One approach for this type of machine learning comparison
would be to rigorously configure networks with equivalent
numbers of free-parameters. For neural networks this would
largely be determined by the total number of weights and
biases in each of the networks. However, this is not the
approach that has been taken here.

As described above in Section II each of the network
architectures under consideration are radically different. For
example, TDNNs use fully connected hidden layers and several
delay lines, LSTMs require individual cells with some
significant internal structure and ESNs usually operate with
large, but only sparsely interconnected, reservoirs. So, instead
of rigidly constraining networks to have the same numbers of
free parameters, our approach was to consider each network
architecture’s principal operational features and, based on those

network configuration options, compare how well they were
able to complete the prosthesis control task.

An important aspect of the comparison carried out in this
work is that it was possible to control for the preparation and
treatment of the training and testing datasets that would be
used by each of the network architectures. A total of 109
recordings of time-series data were available from Blana et al’s
data acquisition process. In each time-series the 12 input
signals and the ground-truth elbow flexion angles were present
and for each time-series used to train/test the networks the
inputs were all normalised over the range [0, 1]. Each of these
participant-specific time series were then divided into sub-
sequences, in the proportions [0.7, 0.15, 0.15], to be used as
either: network training data; training-validation data; or the
testing data sets, respectively.

Blana et al. [5] have already determined that TDNNs with
12 input nodes, 6 hidden nodes and a single output node
worked best with this type of prosthesis related data. Our first
step was to see if the TDNN results reported in that work were
reproducible using the particular treatment of the available data
described above.

In keeping with the motivation outlined in Section I, above,
a series of LSTM networks with broadly similar overall
characteristics i.e. 12 input units, 6 LSTM-cells and a single
output unit were created. One of the important training options
for deep-learning networks such as LSTMs is to train using
penultimate layers of drop-out nodes to prevent premature
overfitting [18]. An initial grid-search to assess the
effectiveness of using drop-out indicated that there was no
significant benefit to be gained here. So for all of the the
LSTM networks that we report on below drop-out was not
used, and just the training-validation datasets were used to
prevent overfitting.

An equivalent set of ESN networks were also configured to
have 12 input units and a single output unit, but here the
intervening reservoir was comprised of 60 reservoir units. This
reservoir size was chosen to reflect the fact that ESN reservoirs
(the seat of the ESN’s short-term memory time-series
processing power) are, necessarily, only sparsely
interconnected. For our ESNs only 10% of the possible
interconnections were realised. An initial grid-search was again
performed to estimate some useful settings for several of the
other ESN specific training parameters. With the small subset
of data used for the grid-search an ESN spectral radius of 0.1
and reservoir-unit leak-rate of 0.5 were selected for use with all
of the ESNs.

For each of the time-series recordings that were available
from all of the participants ten separate neural networks of each
architectural type were trained and tested, using the appropriate
training-validation dataset to avoid overfitting. In this way the
best performing participant-specific network could be found
for each of the architectural approaches. In addition, it was also
possible to determine the mean participant-specific network
performance for each of the network architectures: averaging
network performance over all of the time-series recorded by
each participant. (N.B. in most realistic transhumeral prosthesis
usage scenarios it is likely that a patient-specific controller
would be desirable. In the case of amputees this might best be

developed using bespoke patient-specific data captured from a
remaining upper-limb.)

V. RESULTS AND DISCUSSION

Tables II, III and IV, below, summarise the performance of
each of the network types evaluated in this paper. Table II
shows the results of attempting to reproduce Blana et al’s
previous results using TDNNs. Table IIII shows equivalent
results for the LSTMs and Table IV give the results for the
ESNs. Each of these tables shows for each of the participants:
the best RMSE obtained from any network using its training
data; as well as the average RMSE obtained from all of that
participant’s networks when using its training data. The final
two columns of each of these tables show the best and average
RMSEs obtained – but this time when using each network’s
testing data.

TABLE II. THE TDNN RMS PREDICTION ERROR, IN DEGREES, FOR

THE TEN PARTICIPANTS IN THIS STUDY. THE MEAN PERFORMANCE IS ALSO

GIVEN (STANDARD DEVIATIONS IN BRACKETS).

Participant

Elbow flex RMSE (o)
(training data)

Elbow flex RMSE (o)
(testing data)

Best Mean (std) Best Mean (std)

S1 1.9 8.4 (4.9) 4.2 9.9 (4.0)

S2 2.8 9.1 (4.0) 1.0 11.3 (4.5)

S3 1.9 11.6 (6.7) 3.6 14.6 (7.5)

S4 2.1 11.4 (8.0) 2.3 12.9 (8.4)

S5 2.5 10.6 (4.6) 2.0 11.2 (6.0)

S6 0.9 11.9 (9.7) 4.1 13.0 (7.5)

S7 5.1 13.1 (7.5) 6.1 14.7 (7.7)

S8 2.4 8.3 (5.2) 2.8 9.4 (5.3)

S9 2.1 8.6 (4.5) 3.0 10.8 (5.5)

S10 2.1 8.7 (4.2) 3.5 10.4 (5.1)

Mean (std) 2.3 (1.1) 10.2 (1.8) 3.3 (1.4) 11.8 (1.9)

Comparing the findings shown in Table II with those in
Table I shows that some aspects of the previous TDNN results
were reproducible here. Broadly similar network performance
was obtained when comparing the best networks for each
participant when evaluated using their training data. Inspecting
the results when the TDNNs were evaluated using their testing
data though shows that generally superior performance was
obtained from the networks trained for the current study and
that their performance was less variable.

The results presented in Tables III and IV below, allow
similar comparisons to be made for the LSTM and ESN
approaches. Generally, the best LSTM networks were less able
to fit their training data than any of the best TDNNs or the best
ESNs. (Though interestingly all of the network types seem to
have struggled with training data recorded from participant
S7.) The standard deviations for this set of comparators also
suggested similar levels of variability for the most pre-eminent
networks when fitting their training data.

TABLE III. THE LSTM RMS PREDICTION ERROR, IN DEGREES, FOR

THE TEN PARTICIPANTS IN THIS STUDY. THE MEAN PERFORMANCE IS ALSO

GIVEN (STANDARD DEVIATIONS IN BRACKETS).

Participant

Elbow flex RMSE (o)
(training data)

Elbow flex RMSE (o)
(testing data)

Best Mean (std) Best Mean (std)

S1 3.0 5.8 (1.3) 3.5 8.7 (3.3)

S2 4.1 7.0 (1.4) 3.0 11.5 (4.0)

S3 3.9 8.1 (1.8) 4.2 14.0 (6.1)

S4 4.3 7.6 (1.7) 7.1 10.8 (4.5)

S5 3.3 7.2 (1.8) 4.4 10.4 (5.4)

S6 4.3 7.5 (1.5) 2.7 9.8 (3.5)

S7 5.7 8.4 (1.3) 5.2 12.6 (4.3)

S8 3.3 6.1 (1.7) 2.7 7.9 (3.4)

S9 3.6 6.2 (1.5) 4.3 9.0 (3.4)

S10 4.2 6.3 (1.4) 7.2 9.3 (2.4)

Mean (std) 3.9 (0.8) 7.0 (0.9) 4.4 (1.6) 10.4 (1.9)

TABLE IV. THE ESN RMS PREDICTION ERROR, IN DEGREES, FOR

THE TEN PARTICIPANTS IN THIS STUDY. THE MEAN PERFORMANCE IS ALSO

GIVEN (STANDARD DEVIATIONS IN BRACKETS).

Participant

Elbow flex RMSE (o)
(training data)

Elbow flex RMSE (o)
(testing data)

Best Mean (std) Best Mean (std)

S1 2.2 3.9 (0.9) 4.1 10.6 (6.0)

S2 2.8 4.1 (0.7) 3.7 17.1 (13.9)

S3 0.6 4.2 (1.2) 4.8 17.5 (12.3)

S4 2.5 3.9 (0.9) 2.6 14.8 (8.8)

S5 1.0 3.9 (1.2) 6.9 15.7 (9.3)

S6 0.9 4.1 (1.2) 1.8 25.7 (35.2)

S7 4.2 5.3 (1.5) 9.2 23.3 (22.1)

S8 1.7 3.3 (0.9) 3.4 13.7 (9.4)

S9 2.8 3.6 (0.7) 4.0 11.7 (7.7)

S10 2.9 3.7 (0.7) 4.8 12.9 (9.1)

Mean (std) 2.6 (1.1) 4.0 (0.5) 4.5 (2.1) 16.3 (4.9)

The evaluation is significantly different when considering
the performance of each architecture with their testing datasets.
The mean performance of the TDNNs in the current study is
once again slightly superior to the test performance reported by
Blana et al. and the standard deviations suggest their test data
performance is also less variable. On average though the best
performing networks with previously unseen test data were the
LSTM networks.

On average the worst performing networks with previously
unseen test data were the ESNs. At first this kind of ESN
performance is suggestive of potential overfitting to the
training data, despite the precautions taken with the network
training regime. More detailed inspection of the ESN outputs
when processing many of their test datasets, see Figure 6,

suggests that another ESN reservoir phenomenon might be
influencing their degraded performance.

When some trained ESNs need to perform a mapping that
involves a marked transition from either a non-linear to a less
variable output characteristic, or vice versa, their reservoir
dynamics can sometimes give rise to highly eccentric output
activations that can persist for some time after the transition
[19, 20]. The precise input data and trained reservoir
characteristics that give rise to this behaviour are not well
understood. ESNs seem perfectly capable of processing non-
linear data or data that transitions relatively slowly. The issue
appears to arise when there is a marked transition. It may be
that the degraded ESN performance with some of the test data
evaluated here is an example of this kind of behaviour. Figure
6 shows how the output of one of the trained ESNs upon
encountering a need to transition its outputs from relatively
variable to relatively constant characteristic instead begins to
behave erratically.

Figure 6: ESN target activation (red) and output unit activation (blue) when

processing previously unseen test data for participant S6.

LSTM networks by virtue of the LSTM-cell’s built-in
adaptive internal gate-structures (allowing different parts of
LSTM networks to become attuned to either slowly or more
rapidly varying data characteristics) may already be pre-
disposed to cope well with these sort of phenomena.

ESN networks have no such reservoir-adaptation
capability: the ESN reservoir connectivity is fixed at network
initialisation and if such characteristic data transitions are not a
significant part of the ESNs training data this might explain
why the trained ESNs could episodically deliver poorer
performance than expected.

VI. CONCLUSION AND FUTURE WORK

Currently the LSTM networks seem to hold the greatest
promise for the development of neural controllers for upper
limb prostheses of the sort modelled here.

This conclusion is based on the overall performance rates
of the LSTM networks when processing their previously
unseen test datasets. This is the scenario that best models the
potential future operating environment for any neural controller
for such prostheses.

None of the results reported above have involved any
filtering or smoothing of the network outputs (in case they
might obscure potentially interesting network properties in this
comparative evaluation). However, such filtering and
smoothing of the outputs is likely to be highly beneficial, to
emulate some of the inertial properties of real limbs, if the
alternative biomedical engineering objective of developing the
most effective prosthesis controller were brought to the fore.

More fundamental neural network work, attempting to
address the issues summarised in Figure 6 and Section V
above, will investigate the effectiveness of a hybrid ESN
architecture, Reservoir with Random Static Projections (R2SP),
[19, 20] with this domain data.

 The revised R2SP ESN model was first proposed by
Butcher at al. to show that by supplementing the standard ESN
reservoir architecture with two additional, strategically placed,
feed-forward layers, the augmented architecture did help to
overcome some of the non-linear/linear data transition
challenges. The modestly sized ESN reservoirs and the time
series data used for the current study may well make a more
detailed investigation using R2SP ESN variants insightful. Both
for further neural network research as well as for biomedical
engineers seeking to develop ever more effective prosthesis
controllers.

ACKNOWLEDGMENT

The authors are grateful to ten anonymous, able-bodied,
human participants who participated in the recording of all of
the datasets used to train and test the above neural networks.

REFERENCES

[1] NASDAB, 2005. National Amputee Statistical
Database (NASDAB). The Amputee Statistical Database
for the United Kingdom 2004/05.

[2] Pulliam, C. L., Lambrecht, J. M., Kirsch, R. F., 2011.

Electromyogram-based neural network control of

transhumeral prostheses. The Journal of Rehabilitation

Research and Development 48 (6), 739.

[3] Fougner, A., Scheme, E., Chan, A. D. C., Englehart,

K., Stavdahl, O., Dec. 2011. Resolving the limb position e

ect in myoelectric pattern recognition. IEEE transactions on

neural systems and rehabilitation engineering : a

publication of the IEEE Engineering in Medicine and

Biology Society 19 (6), 644–51.

[4] Smith, D.L., & Singh, S. (2006). Approaches to

Multisensor Data Fusion in Target Tracking: A Survey.

IEEE Transactions on Knowledge and Data Engineering,

18, 1696-1710.

[5] D. Blana, T. Kyriacou, J.M. Lambrecht, E.K.

Chadwick, Feasibility of using combined EMG and

kinematic signals for prosthesis control: a simulation study

using a virtual reality environment, Journal of

Electromyography and Kinesiology (2015), doi:

http://dx.doi.org/10.1016/j.jelekin.2015.06.010

[6] Waibel, A.H., Hanazawa, T., Hinton, G.E., Shikano,

K., & Lang, K.J. (1989). Phoneme recognition using time-

delay neural networks. IEEE Trans. Acoustics, Speech, and

Signal Processing, 37, 328-339.

[7] MATLAB and Deep Learning Toolbox Release

2018b, The MathWorks, Inc., Natick, Massachusetts,

United States.

[8] Hochreiter, S., Schmidhuber, J. (1997). "Long short-

term memory". Neural Computation. 9 (8): 1735–1780.

doi:10.1162/neco.1997.9.8.1735.

[9] Hochreiter, S., Schmidhuber, J. (1996). LSTM can

solve hard long time lag problems. Advances in Neural

Information Processing Systems. 473-479.

[10] H. Jaeger, “The ‘echo state’ approach to analysing

and training recurrent neural networks,” Fraunhofer

Institute for Autonomous Intelligent Systems, 2001.

[11] X. Dutoit, B. Schrauwen, J. V. Campenhout, D.

Stroobandt, H. V. Brussel, and M. Nuttin, “Pruning and

regularization in reservoir computing,” Neurocomputing,

vol. 72, pp. 1534–1546, 2009.

[12] A. E. Hoerl and R. W. Kennard, “Ridge Regression:

Biased Estimation for Nonorthogonal Problems,”

Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[13] D. C. Montgomery, E. A. Peck, and C. G. Vining,

Introduction to Linear Regression Analysis. Wiley, 1982.

[14] D. Verstraeten, B. Schrauwen, M. D’Haene, and D.

Stroobandt, “An experimental unification of reservoir

computing methods,” Neural Networks, vol. 20, no. 3, pp.

391–403, 2007.

[15] J. Park, B. Lee, S. Kang, P. Y. Kim, and H. J. Kim,

“Online Learning Control of Hydraulic Excavators Based

on Echo-State Networks,” IEEE Transactions on

Automation Science and Engineering, vol. 14, no. 1, pp.

249–259, Jan. 2017.

[16] Z. H. Khan, N. Hussain, and M. I. Tiwana,

“Classification of EEG signals for wrist and grip

movements using echo state network,” Biomedical

Research, vol. 28, pp. 1095–1102, 2017.

[17] E. A. Antonelo, E. Camponogara, and B. Foss, “Echo

State Networks for data-driven downhole pressure

estimation in gas-lift oil wells,” Neural Networks, vol. 85,

pp. 106–117, 2017.

[18] Srivastava, N., G. Hinton, A. Krizhevsky, I.

Sutskever, R. Salakhutdinov. "Dropout: A Simple Way to

Prevent Neural Networks from Overfitting." Journal of

Machine Learning Research. Vol. 15, pp. 1929-1958, 2014.
[19] Butcher JB, Verstraeten D, Schrauwen B, Day CR,

Haycock, P.W.. 2010. Extending reservoir computing with
random static projections: a hybrid between extreme
learning and RC. 18th European Symposium on Artificial
Neural Networks (ESANN 2010) (pp. 303-308). Evere,
Belgium: D-Side.

[20] Butcher JB, Verstraeten D, Schrauwen B, Day CR,
Haycock PW. 2013. Reservoir Computing and extreme
learning machines for non-linear time-series data analysis.
Neural Networks, vol. 38, 76-89.

