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Abstract—The deep neural network is vulnerable to adver-
sarial examples. Adding imperceptible adversarial perturbations
to images is enough to make them fail. Most existing research
focuses on attacking image classifiers or anchor-based object
detectors, but they generate globally perturbation on the whole
image, which is unnecessary. In our work, we leverage higher-
level semantic information to generate high aggressive local
perturbations for anchor-free object detectors. As a result, it
is less computationally intensive and achieves a higher black-
box attack as well as transferring attack performance. The
adversarial examples generated by our method are not only
capable of attacking anchor-free object detectors, but also able
to be transferred to attack anchor-based object detector.

Index Terms—adversarial attack, object detection, fast local
attack

I. INTRODUCTION

The development of deep neural networks (DNNs) supports
researchers to achieve unprecedented high performance in
various computer vision problems. Nevertheless, these deep
learning-based algorithms are notoriously vulnerable to adver-
sarial examples [14]: adding some imperceptible adversarial
perturbations is enough to make them fail. This phenomenon
can be found in different applications [2], [4], [10], [18], [20],
[24], [36], [41], including classification, object detection, etc.
In this paper, we specifically focus on the adversarial attack
of object detectors.

Existing object detectors can be broadly categorized into
two groups: anchor-based or anchor-free detectors. Recent
anchor-free object detectors [17], [19], [43], [44] achieve com-
petitive performance with traditional anchor-base detectors.
Additionally, anchor-free detectors are structurally simpler and
more computationally efficient than anchor-based detectors.
Anchor-based detectors have dominated object detection due
to their superior performance. However, adversarial perturba-
tions to this type of detectors have not been explored.

All the existing research focus on the adversarial attack of
anchor-based detectors, such as DAG [39] and UEA [37].
However, Existing methods suffer from three major short-
comings: 1) Most of the attack methods [14], [23], [27],
[39] generate global perturbations, including the background.
However, most of the pixels of these perturbations are useless
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(a) Clean Input (b) Clean Detection

(c) Perturbation of DAG (d) Perturbation of FLA

(e) Attack Result of DAG (f) Attack Result of FLA

Fig. 1. Comparison between global (DAG) and local (FLA) attack methods
for object detectors. (a) and (b) are the clean input and its detection result on
Centernet. In the global attack method, the adversarial examples are generated
for all image pixels (c), including the background. Our Fast Locally Attack
(FLA) generates perturbations only local to the target objects (d). Using this
technique, the attack result of FLA (f) is superior to DAG (e). Especially in
(d), the FLA only generate small-scale locally perturbation around the center
that completes the attack of both human and horse.

to fool the detectors. On the contrary, they increase the
perceptibility of the perturbations. 2) The generated adversarial
examples have the poor transferring ability, e.g., the adversarial
examples generated by DAG on Faster-RCNN can only attack
Faster-RCNN models and the generated examples can hardly
be transferred to attack other object detectors. 3) They only
attack one proposal at one time or relies on training, which is
extremely computational consumption. Thus, it is desired to
investigate a special attacking scheme for anchor-free detectors
that have more local perturbations.
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In this paper, inspired by the fact that the key information
lies in or around objects, we propose a new method, Fast
Locally Attack (FLA), to generate locally adversarial pertur-
bation for anchor-free object detectors. ”Fast” denotes that
our method generates adversarial examples with lower time
consumption than previous work. For this purpose, we focus
on high-level semantic information to generate adversarial
examples. We attack all objects in each iteration instead of
a single object in each iteration, which can reduce the amount
of iteration and improve the transferring attack performance
of our method. As for ”Locally”, which means our method
generates locally perturbation that only changes little-scale
pixels around the detected objects. Locally perturbation can
increase the imperceptible of perturbation without reducing
attack performance. Examples in Fig. 1 demonstrates the ad-
versarial examples from our method and compare with DAG’s
examples. Experimental results show that FLA improves the
performance over the published state-of-the-art on both white
and black box attack tasks.

In comparison with the previous works, the main contribu-
tions of this work can be summarized as follows:
• FLA generates locally perturbations only around target

objects, which increases the imperceptibility of the gen-
erated perturbations.

• FLA is efficiently on attacking the SOTA object detec-
tors. It achieves higher white-box attack performance than
previous methods with lower computational consumption.

• The adversarial examples generated by FLA achieve
higher black-box attack performance than previous meth-
ods. They are not only capable of attacking anchor-free
detectors but also can be transferred to attack anchor-
based detectors.

This paper is organized as follows. We first discuss the
related work in section II. Then, we provide the details of FLA
in section III. The detailed setup and results of our experiment
are described in Section IV. Finally, we conclude the paper
in section V.

II. RELATED WORK

A. Object Detection

There are some great progress has been made in object
detection. With the deep convolutional neural network’s de-
velopment, many valuable approaches have been proposed.
One of the most popular object detection categories is the
RCNN [12] family, such as Faster-RCNN [32]. The first
process of RCNN’s pipeline is generating a large number of
proposals which is base on the anchor. Then use a differ-
ent classifier to classifying the proposals. At last, use post-
processing algorithms, such as NMS, to reduce redundancy
proposals.

There are also other object detectors that rely on the anchor,
like YOLOv2 [31], SSD [22]. Anchor-base detector has high
detected accuracy but also has three shortcomings. Slow, hard
to apply a new dataset and more difficult to training. Such as
Faster-RCNN.

To solve these shortcomings, some new object detectors
have been proposed. Such as CornerNet [19] and Center-
Net [43]. These new object detectors detect the objects by
detecting the keypoints of objects. CornerNet detects the
objects by detecting the two corners of the objects. CenterNet
relies on find the center points of objects to detect objects.
These two methods can complete the training without preset
anchor, which we call as the anchor-free detector. These two
detectors are not only faster and simpler to training than
anchor-base detectors, but they also achieve SOTA detect
performance. Both CornerNet and CenterNet can use multiple
convolutional neural networks as the backbone network to
extract the semantic features of the input image. Then locate
the keypoint of the object through these features. Normally,
the keypoint include the size and category information of the
object. At last, use some post-processing algorithms to remove
the redundancy key-point.

B. Adversarial Example for object detection

Goodfellow [14] first showed the adversarial example prob-
lem of the deep neural network. The adversarial example
means deliberately generate imperceptibly perturbation to add
on the original input dataset.

The adversarial example is aimed to make the deep neural
network output the wrong result. Almost existing adversarial
attack methods are focus on minimizing the Lp norm of the
adversarial perturbation. In the most attack methods p = 2 or
∞ that can generate imperceptible perturbation.

The most classical attack methods are the FGSM family,
such as Fast Gradient Sign Method (FGSM) [14], Project
Gradient Descent (PGD) [23]. The first of the pipeline of the
FGSM is to get the loss value of the deep neural network,
then compute the gradient of the input image. At last, use
the gradient and the sign function to generate the adversarial
perturbation. The principle can be summarized as follows:

x′ = x+ ε · sign(5xf(x, y)) (1)

where f is the classifier, x is the input image for the classifier,
ε is to constrain the L∞ of the perturbation.

The difference of the PGD is to add the iterative module
to the FGSM. Use many small and accurate perturbation
instead of one big perturbation. The PGD achieve higher attack
success rate and generate smaller Lp norm perturbation. The
principle can be summarized as follows:

xt+1 = Πx+s(xt + ε · sign(5xf(x, y))) (2)

There is another attack method can generate lower L2

perturbation than FGSM family, Deepfool [27]. Deepfool
uses the generated hyperplane to approximate the decision
boundary, and compute the lowest Euclidean distance between
the input image and the hyperplane iterative. Then use the
distance to generate the adversarial perturbation. Deepfool
achieve state-of-art attack performance while has a lower L2

norm of perturbation than the FGSM-base attack method.
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Fig. 2. Illustration of Each Iteration of FLA: First of each iteration, we extract heatmap of each detected categories. Second, use the heatmap to compute the
adversarial gradient information of each detected categories. Then normalizing the adversarial gradients with L∞ and add up all gradients. After normalizing
gradients, add up all gradients to generate globally adversarial perturbation by further applying sign operation on it. Finally, generate locally perturbation by
the dot product of global perturbation and mask.

The above attack methods are mainly to attack the classifier,
there are only a few research for attack object detector. Such
as DAG and UEA. Both DAG and UEA attack anchor-base
object detectors, such as Faster-RCNN and the SSD. Both
DAG and UEA generate globally adversarial perturbation. The
main shortcoming of DAG is slow, average consume 10−20s
to complete ones attack, and weakness on transferring attack.
UEA is base on the Generate Adversarial Network [13], it
also achieves high attack performance and better transferring
attack performance than DAG. But UEA need retraining to
attack new dataset or new detector, which is more complex
than the optimization-based methods.

III. METHOD

The Fast Locally Attack (FLA) consists of three parts (as
shown in Fig. 2), i.e., (a) Local Target Region Selection
(b) Compute Adversarial Gradient and (c) Local Perturbation
Generation. We first formulate the FLA as a constraint opti-
mization problem in Section (III-A), then introduce each part
in Sections III-B, III-C and III-D, respectively.

A. Problem Definition

The problem of generating adversarial perturbation for
object detection can be formulated to the following constraint
optimization problem:

minimize
r

‖r‖p

subject t̂(x+ r) ∩ t̂(x) = ∅
min ≤ x+ r ≤ max

(3)

where x is the origin input image, r is the adversarial pertur-
bation. t̂(x) denotes the object set that detected by the object
detector. max, min ∈Rn denote the maximum and minimum
pixel intensity to constraint the pixel of the x+ r.

There are two ways to satisfy that the intersection of t̂(x+r)
and t̂(x) is empty. The first one is attacking each object of
t̂(x) individually, the second one is attacking the whole image

to make all object categories incorrect. We found the second
way is more efficient, thus constraint in the Eq. (3) can be
reformatted as follows:

∀tn ∈ t̂(x), f(x+ r, tn) 6= f(x, tn) (4)

where tn denotes the n-th object of the object set t̂(x) that
detected by the detector, and the f(x, tn) denotes the category
of the object tn.

B. Local Target Region Selection

We select the local target region using an anchor-free
objection method, i.e. CenterNet [43]. In the CenterNet, the
detector removes the classifier module and use the keypoint
heatmap Ŷ ∈ [0, 1]

W
R ×

H
R×C to predict the category of the

object directly. Where W and H represents the width and
height of the heatmap. C means the number of channels.
R represents the multiple of downsampling from image to
heatmap.

The CenterNet use several different CNN networks as the
backbone to construct the complete object detector, and output
Ŷ of the input image x. The Ŷw,h,c = 1 indicates the point
Ŷw,h is a detected keypoint which belonging category c, in
contrast, the Ŷw,h,c = 0 indicates the point do not belonging
c. where w and h denotes the abscissa and ordinate of the
point. The CenterNet is base on the keypoints detection which
regards the center point of the object as the keypoint. Each
detected keypoint Ŷw,h,c denotes the center point of the object.
The keypoints include the information of the object’s category,
it also includes the scale and the offset of the detection box
of the object.

Due to the CenterNet relies on the detected keypoints, the
attack method can directly attack the detected keypoints to fail
the detector. The constraint in Eq. (4) can be written as the
following functions.



Ŷ = Centernet(x)

P = {pn = Ŷw,h | Ŷw,h,c = 1, Ŷw,h,c ∈ Ŷ }
∀n, f(x+ r, pn) 6= f(x, pn), pn ∈ P

(5)

where pn denotes the n-th detected keypoints, all detected
keypoints construct the target point set P .

After attacked all detected keypoints, the CenterNet should
fail to detect any object on the adversarial example. But we
find it still detects some same object after all the keypoints
are attacked. We check the heatmap where all the keypoints
are changed to the incorrect category, but the neighbor points
around the attacked keypoints are also modified. Some neigh-
bor background points’ confidence level is increased that makes
them belong to the correct category. Due to the new neighbor
keypoints location is near to the old keypoints, the newly
detected object is in the same category as the old one and
the position and the size of the detected bounding box just
change little. These two problems make the CenterNet capable
to detect the correct object on the adversarial example. To
solve those two problems, we can directly add the neighbor
keypoints into the target point set. Then the Eq. (5) is further
extended to the following function.

Ŷ = Centernet(x)

P = {pn = Ŷw,h | Ŷw,h,c = 1, Ŷw,h,c ∈ Ŷ }
Pneighbor = {pk | pk ∈ N(pn), pn ∈ P}
P = P ∪ Pneighbor
∀n, f(x+ r, pn) 6= f(x, pn), pn ∈ P

(6)

where N(pn) indicates the point set which constructed by the
neighbor points around the detected keypoint pn.

After selecting P composed of detected points and neighbor
points, we divide P into different Pj according to different
categories j which has detected object.

Pj = {pn | f(x, pn) = j, pn ∈ P} (7)

We generate the adversarial gradient on each Pj , the process
of computing adversarial gradient is summarized in the next
section.

C. Adversarial Gradient Computation

Our method is base on the PGD [23], which generates
perturbation iteratively. In each iteration, the perturbation is
generated from the adversarial gradient. Unlike DAG, which
only computes gradient on a single object and generates per-
turbation for a single object in each iteration, our method
computes gradient on each Ptarget and add up all the gradients
to generate perturbation that can reduce the time consumption
and increase the transferring attack performance.

As shown in Algorithm. 1, during each iteration, we first
generate target points set Pj for each detected category j
which has detected objects. Then, we compute losssum of Pj
of each detected category j and compute adversarial gradient
information rj for each category j. Each rj is normalized

Algorithm 1 Fast Locally Attack (FLA)
Input: image x, target points set P , number of category C

attack radius R∗

Output: perturbation r

Initialize: x0 ← x, i← 0, j ← 0, P0 ← P, radv ← 0

while Pi ∩ P 6= ∅ and i<MD do
ri ← 0, j ← 0

maski ← GenerateMask(x, Pi, R
∗)

while j<C do
Pj = {pn | f(x, pn) = j, pn ∈ P}
if Pj 6= ∅ then

losssum ←
∑
pn∈Pj

CrossEntropy(x(i), pn)

rj = 5x(i) losssum

r′j =
rj
‖rj‖∞

ri ← ri + r′j

end if
j ← j + 1

end while
xi+1 ← xi + ε′

MD
· sign(ri) ·maski

Pi+1 ← RefreshPoints (xi+1, Pi)

i← i+ 1

end while
return r = xi − x0

by L∞ and obtain adversarial gradient information r′j . After
all, we add up all r′j to obtain total gradient ri. (An example
is shown in Fig. (2).) After obtaining ri, we generate local
perturbation in the next section.

D. Local Perturbation Generation

To generate locally perturbation, we use attack mask maski
to keep perturbation that around detected objects and remove
perturbation in the background. The attack mask maski is
generated from the Pj by GenerateMask step which is demon-
strated in Fig. 2. At first, we generate a zero matrix mask that
has the same size as the input image. We relocated all points pi
of Pj on the input image. Then get the location of each pi and
set the same location points of mask as 1. After relocate all
pi, then set all points in the box with the size of attack radius
R∗ and centered on pi’s location of mask as 1. After that, we
obtain a locally attack mask. In the final of each attack, we use
mask and global perturbation to obtain locally perturbation.
Different R∗ will lead to different attack performance, we will
quantitative analysis of this relation in Section IV-E.

In Algorithm. 1. We generate globally perturbation by ap-
plying sign operation to the ri. After obtaining global per-
turbation we generate locally perturbation by the dot product
of global perturbation and mask. After generating perturba-



tion, we refresh the P by RefreshPoints, which remove the
points pn which has been attacked successfully.

Normally, the DAG needs 150− 200 iterations to generate
perturbation and the FLA only needs 10− 50 iterations.

IV. EXPERIMENT

In this section, we first introduce the detailed setup of the
experiment. Then, we report both the white-box and black-
box attack results. Finally, we evaluate the perceptibility of
the generated adversarial examples and the attack radius R∗.

A. Experimental Details

1) Attacked Object Detectors: All adversarial examples are
generated on CenterNet with two different backbones: ResNet-
18 [16] and DLA-34 [42]. CenterNet with backbone ResNet-
18 is highly efficient. In contrast, CenterNet with backbone
DLA-34 is more computationally intensive but more accurate.

2) Dataset: The above two networks are trained on the train-
ing set of PascalVOC [9] and MS-COCO [21]. The training set
of PascalVOC includes the trainval sets of PascalVOC-2007
and PascalVOC-2012. In this paper, both the white-box and
black-box attack performance are reported on the testing set
of PascalVOC and MS-COCO.

3) Metrics: We compare the white-box attack performance
with the DAG and the UEA. It is evaluated by computing
the decreased percentage of mean average precision (mAP ),
which is referred to as Attack Success Ratio(ASR) in this
paper:

ASR = 1− mAPattack
mAPclean

(8)

where mAPattack denotes the mAP of the targeted object
detector on adversarial examples. mAPclean denotes the mAP
of clean input. Higher ASR means better white-box attack
performance.

The black-box attack signifies the transferability of the gen-
erated adversarial examples to other object detectors. In this
paper, black-box adversarial examples are generated on Cen-
ternet with DLA-34 [42] backbone and tested on Centernet
with different backbones (Resdcn18 and Resdcn101). We also
test these adversarial examples on other object detectors, in-
cluding anchor-free (CornerNet) and anchor-based detectors
(Faster-RCNN and SSD300). In this paper, the performance
of the black-box attack is evaluated by the ASR ratio between
the targeted detector and the original detector on which the
adversarial examples are generated. It’s referred to as Attack
Transfer Ratio (ATR) in this paper:

ATR =
ASRtarget
ASRorigin

(9)

where ASRtarget represents the ASR of the targeted detector
and ASRorigin denotes the ASR of the detector on which
the adversarial examples are generated. Higher ATR denotes
better transferability.

4) Perceptibility Metric: The adversarial perturbation’s per-
ceptibility is quantified by its Lp norms. Specifically, PL2

and
PL0 are used, which are defined as follows.

i) PL2
: L2 norm of the perturbation. A lower L2 value

usually signifies that the perturbation is more imperceptible
for the human. Formally,

PL2
=

√
1

k

∑
r2k (10)

where the k is the number of the pixels. We also normalized
the PL2 in [0, 1].

ii) PL0
: L0 norm of the perturbation. A lower L0 value

means that less less images images are changed during the at-
tack. We compute PL0

by measuing the proportion of changed
pixels. The whole experiment is conducted with a Intel Core
i7-7700k CPU and an Nvidia GeForce GTX-1080ti GPU.

B. White-Box Attack Results

In this subsection, we show the white-box attack result on Pas-
calVOC and MS-COCO. The overall attack results are shown
in Table I. It is obvious that the mAPs of different Centernet
have dropped dramatically after adversarial attack. In Pas-
calVOC, the ASR of FLA is 0.90 and 0.93 respectively when
the backbone is Resdcn18 and DLA-34, outperforming DAG
and UEA. Besides, FLA is almost ten times faster than DAG.
Regarding UEA, we set the attack time to N/A, as they don’t
provide the source code. Note that UEA requires additional
training time. In MS-COCO, the FLA achieves 0.98 ASR on
Resdcn18 and DLA34. On Resdcn18, the average attack time
required by FLA is 2.7s. On DLA34, the average attack time
required by FLA is 4.7s.

C. Black-Box Attack Results

We report the black-box attack results in this subsection.
The black-box attack measures the transferability of adversar-
ial examples. All adversarial examples generated for black-box
attack experiment are generated on Centernet with backbone
DLA34-1x and DLA34-2x.

At first in the experiment, we use the FLA to generate the
adversarial example on the CenterNet and save the adversarial
example in a common image format, JPG. Then reload the
saved adversarial example to compute the mAP. We want to
simulate a real transferring attack scenario, so we are aban-
doning the use of lossless photo formats and use the JPG
format to save. Most of transferring test use the lossless float
matrix to test, but most of normal image input is 8− bit int
matrix. So we save the adversarial example in JPG format, this
process will better simulate a real transferring attack scenario.
Compare with directly compute mAP with lossless adversarial
example, save the adversarial example in JPG will lose a small
amount of aggressiveness [8], because save in JPG will lose
some details of the adversarial example. But in this way we
can further guarantee the attack ability of our method. We test
the transferability of adversarial examples by generated on one
model and compute mAP on other models.

As the pervious experiment, we evaluate the black-box at-
tack performance of the adversarial example on PascalVOC
and MS-COCO. On the PascalVOC, we generate adversarial
example on DLA34-1x and DLA34-2x backbone centernet. As



Method Network Dataset mAP(Clean) mAP(Attack) ASR Time(s)
DAG [39] Faster-RCNN PascalVOC 0.70 0.05 0.92 10.0
UEA [37] Faster-RCNN PascalVOC 0.70 0.05 0.92 —

FLA Resdcn18 PascalVOC 0.67 0.07 0.90 0.8
FLA DLA34 PascalVOC 0.77 0.06 0.93 1.1
FLA Resdcn18 MS-COCO 0.29 0.006 0.98 2.7
FLA DLA34-1x MS-COCO 0.38 0.008 0.98 4.7

TABLE I
RESULTS OF WHITE-BOX ATTACK (MEASURED BY MAP, %). IN THE TABLE, CLEAN MEANS THE MAP OBTAINED FROM THE CLEAR INPUT. ATTACK
DENOTES THE MAP OBTAINED FROM THE ADVERSARIAL EXAMPLE. IN THE TIME COLUMN, WE SHOW THE AVERAGE ATTACK TIME OF THE ATTACK

METHOD.

Network Resdcn18 Resdcn101 DLA34-1x DLA34-2x CornerNet
mAP ATR mAP ATR mAP ATR mAP ATR mAP ATR

Clean 0.29 — 0.36 — 0.38 — 0.39 — 0.43 —
DLA34-1x 0.10 0.86 0.12 0.87 0.09 1.00 0.11 0.94 0.13 0.92
DLA34-2x 0.10 0.88 0.12 0.90 0.11 0.96 0.10 1.00 0.13 0.94

TABLE II
TEST BLACK-BOX ATTACK PERFORMANCE ON THE COCO DATASET. THE FIRST COLUMN MEANS WHICH NETWORK THAT ADVERSARIAL EXAMPLES

GENERATE FROM. THE FIRST ROW MEANS WHICH NETWORK THAT BEEN ATTACKED IN THE BLACK-BOX ATTACK.

Network Resdcn18 DLA34 Resdcn101 Faster-RCNN SSD300
mAP ATR mAP ATR mAP ATR mAP ATR mAP ATR

Clean 0.67 None 0.77 None 0.76 None 0.71 None 0.77 None
DAG [39] 0.65 0.19 0.75 0.16 0.74 0.16 0.60 1.00 0.76 0.08

DLA34-384 0.50 0.30 0.1 1.00 0.62 0.22 0.53 0.35 0.67 0.15
DLA34-512 0.48 0.32 0.07 1.00 0.60 0.24 0.51 0.37 0.66 0.16

TABLE III
TEST BLACK-BOX ATTACK PERFORMANCE ON THE PASCAL DATASET. THE FIRST COLUMN MEANS WHICH NETWORK THAT ADVERSARIAL EXAMPLES

GENERATE FROM. THE FIRST ROW MEANS WHICH NETWORK THAT BEEN ATTACKED IN THE BLACK-BOX ATTACK. THE ROW ’DAG’ DENOTES THE
BLACK-BOX ATTACK RESULT OF DAG. THE ROW ’DLA34-384’ AND ’DLA34-512’ DENOTES THE BLACK-BOX ATTACK RESULT OF FLA ON DLA34

BACKBONE CENTERNET WITH DIFFERENT INPUT SCALE.

Network Dataset PL2 PL0

DAG [39] PascalVOC 3× 10−3 > 99%
Resdcn18 PascalVOC 5.9× 10−3 30%
DLA34 PascalVOC 6.1× 10−3 32%

Resdcn18 MS-COCO 6.0× 10−3 38%
DLA34 MS-COCO 6.0× 10−3 36%

TABLE IV
EVALUATION OF THE PERCEPTIBILITY OF THE GENERATED ADVERSARIAL
EXAMPLES. HIGHER PL2

AND PL2
VALUES GENERALLY MEAN THAT THE

GENERATED ADVERSARIAL EXAMPLES ARE MORE PERCEPTIBLE TO
HUMAN EYES.

compare, we generate adversarial example on Faster-RCNN by
DAG and also save as JPG to transferring to other detector. On
the COCO, we also generate adversarial example on DLA34-
1x and DLA34-2x backbone centernet. and transferring to
other backbone centernet and CornerNet.

The results of black-box attack are summarize in the Table II
and Table III. As the shown on Table III. On the PascalVOC,
adversarial example that generated by our method has ob-
viously higher black-box attack performance than the DAG.
The adversarial example that generated by DAG loss its ag-

gressiveness after JPG compression, hard to attack the faster-
rcnn. The adversarial example that generated by FLA keep
its aggressiveness after JPG compression, and achieve higher
ATR than the DAG. The adversarial example that generated
by FLA is also valid to transferring attacking anchor-base de-
tector, Faster-RCNN and SSD300. Meanwhile, the adversarial
example generated by DAG is invalid to attack anchor-free
detector.

On the Table II, compare with test on PascalVOC, FLA
achieve higher ATR on COCO. The average ATR is over 90%.
The adversarial example that generated by FLA is valid to
different backbone centernet. It is also achieve high black-box
attack performance when transferring to CornerNet.

D. Evaluation of Perceptibility

The PL2 and PL0 values of the generated adversarial exam-
ples by FLA are summarized in Table IV. Higher PL2

and PL2

values generally mean that the generated adversarial examples
are more perceptible to human eyes. Although PL2

of our
method is slighly higher than DAG, the perturbation is almost
imperceptible to human eyes (see Fig. 3). The PL0 value
of FLA is significantly lower than DAG, meaning that the



Fig. 3. Each column is an example. Row 1: Detection results of clean inputs on CenterNet. Row 2&3: DAG perturbations and DAG attacked results on
Faster-RCNN. Row 4&5: FLA perturbations and FLA attacked results on CenterNet. Note that in Row 4, from left to right, the percentage of the changed
pixels for each FLA perturbations are: 17% 8%, 26%, 25%, 26%, 14%. We can see that the perturbations of FLA are smaller than the DAG. To better show
the perturbation, we have multiplied the intensity of all perturbation images by 10.

generated perturbations of FLA are much locally constrained
than DAG.

E. Evaluation of Attack Radius R∗

R∗ correlates with the attack performance, time consump-
tion, and the perceptibility of adversarial examples. We sum-
marize the relation between R∗ and adversarial perturbation in
Fig. 4. In this experiment, all adversarial examples are gener-
ated by attacking centernet with backbone Resdcn18 on MS-
COCO. Based on Fig. 4, we can draw three conclusions. First,
the ASR of FLA correlates positively with R∗ when R∗ is less
16. However, ASR is stable or slightly decreased afterwards.
Second, PL0

of the perturbation correlates positively with R∗.
This is because higher R∗ means bigger attack masks. Finally,
the mean attack time of FLA correlates negatively with R∗

when R∗ is lower than 48. However, the mean attack time of
FLA become stable afterwards.

V. CONCLUSION

In this paper, we propose Fast Locally Attack to generate
transferable adversarial example for attacking SOTA anchor-
free object detectors. Our method leverages higher-level se-
mantic information to generate locally adversarial perturba-
tion. FLA computes adversarial gradient information for all
detected categories and generate locally perturbation, which
can improve the attack performance of adversarial example.
FLA also achieved SOTA white-box attack performance for
attacking Centernet, while being dozens of times faster than
DAG. Additionally, it only changes 30%− 40% image pixels
during the attack process. Finally, our method achieved better
black-box attack performance and are more robust to JPEG
compression.
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Fig. 4. Correlation between the attack radius R∗ and the attack performance, time consumption, and the perceptibility of adversarial examples. The ASR of
FLA correlates positively with R∗ when R∗ is less 16. However, ASR is stable or slightly decreased afterwards. PL0

of the perturbation correlates positively
with R∗. This is because higher R∗ means bigger attack masks. The mean attack time of FLA correlates negatively with R∗ when R∗ is lower than 48.
However, the mean attack time of FLA become stable afterwards.

ACKNOWLEDGMENT

This work was supported by the Sichuan Science and Tech-
nology Program under Grant 2019YFG0399.

REFERENCES

[1] Shumeet Baluja and Ian Fischer. Adversarial transformation net-
works: Learning to generate adversarial examples. arXiv preprint
arXiv:1703.09387, 2017.

[2] Avishek Joey Bose and Parham Aarabi. Adversarial attacks on face
detectors using neural net based constrained optimization. In IEEE
International Workshop on Multimedia Signal Processing (MMSP),
pages 1–6. IEEE, 2018.

[3] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In IEEE Symposium on Security and Privacy (SP),
pages 39–57. IEEE, 2017.

[4] Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen Horng Chau.
Robust physical adversarial attack on faster r-cnn object detector. arXiv
preprint arXiv:1804.05810, 2(3):4, 2018.

[5] Francesco Croce and Matthias Hein. Minimally distorted adversar-
ial examples with a fast adaptive boundary attack. arXiv preprint
arXiv:1907.02044, 2019.

[6] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin
Hu, and Jianguo Li. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9185–9193, 2018.

[7] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses
to transferable adversarial examples by translation-invariant attacks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4312–4321, 2019.

[8] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy. A
study of the effect of jpg compression on adversarial images. arXiv
preprint arXiv:1608.00853, 2016.

[9] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI
Williams, John Winn, and Andrew Zisserman. The pascal visual object
classes challenge: A retrospective. International Journal of Computer
Vision (IJCV), 111(1):98–136, 2015.

[10] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rah-
mati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song.
Robust physical-world attacks on deep learning models. arXiv preprint
arXiv:1707.08945, 2017.

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3354–3361. IEEE, 2012.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 580–587, 2014.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in Neural Information Processing
Systems (NIPS), pages 2672–2680, 2014.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 2961–2969, 2017.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[17] Lichao Huang, Yi Yang, Yafeng Deng, and Yinan Yu. Densebox:
Unifying landmark localization with end to end object detection. arXiv
preprint arXiv:1509.04874, 2015.

[18] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial
examples in the physical world. arXiv preprint arXiv:1607.02533, 2016.

[19] Hei Law and Jia Deng. Cornernet: Detecting objects as paired key-
points. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 734–750, 2018.

[20] Yuezun Li, Daniel Tian, Xiao Bian, and Siwei Lyu. Robust adversarial
perturbation on deep proposal-based models. British Machine Vision
Conference (BMVC), 2018.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In European Conference on Computer
Vision (ECCV), pages 740–755. Springer, 2014.

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In European Conference on Computer Vision (ECCV), pages
21–37. Springer, 2016.

[23] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[24] Jan Hendrik Metzen, Mummadi Chaithanya Kumar, Thomas Brox, and
Volker Fischer. Universal adversarial perturbations against semantic
image segmentation. In IEEE International Conference on Computer
Vision (ICCV), pages 2774–2783. IEEE, 2017.

[25] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal
Frossard. Sparsefool: a few pixels make a big difference. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9087–9096, 2019.

[26] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. Universal adversarial perturbations. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
1765–1773, 2017.

[27] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2574–2582, 2016.

[28] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass
networks for human pose estimation. In European Conference on
Computer Vision (ECCV), pages 483–499. Springer, 2016.

[29] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the ACM on Asia Confer-
ence on Computer and Communications Security, pages 506–519. ACM,
2017.

[30] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,
Z Berkay Celik, and Ananthram Swami. The limitations of deep learning



in adversarial settings. In IEEE European Symposium on Security and
Privacy (EuroS&P), pages 372–387. IEEE, 2016.

[31] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 779–788, 2016.

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
In Advances in Neural Information Processing Systems (NIPS), pages
91–99, 2015.

[33] Yucheng Shi, Siyu Wang, and Yahong Han. Curls & whey: Boosting
black-box adversarial attacks. arXiv preprint arXiv:1904.01160, 2019.

[34] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One
pixel attack for fooling deep neural networks. IEEE Transactions on
Evolutionary Computation, 2019.

[35] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[36] Pedro Tabacof, Julia Tavares, and Eduardo Valle. Adversarial images
for variational autoencoders. arXiv preprint arXiv:1612.00155, 2016.

[37] Xingxing Wei, Siyuan Liang, Ning Chen, and Xiaochun Cao. Transfer-
able adversarial attacks for image and video object detection. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 954–960. AAAI Press, 2019.

[38] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn
Song. Generating adversarial examples with adversarial networks. arXiv
preprint arXiv:1801.02610, 2018.

[39] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie,
and Alan Yuille. Adversarial examples for semantic segmentation and
object detection. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pages 1369–1378, 2017.

[40] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang,
Zhou Ren, and Alan L Yuille. Improving transferability of adversarial
examples with input diversity. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2730–2739, 2019.

[41] Dawei Yang, Chaowei Xiao, Bo Li, Jia Deng, and Mingyan Liu. Realis-
tic adversarial examples in 3d meshes. arXiv preprint arXiv:1810.05206,
2, 2018.

[42] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep
layer aggregation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2403–2412, 2018.

[43] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points.
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