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Abstract. Matrix completion has a long-time history of usage as the
core technique of recommender systems. In particular, 1-bit matrix com-
pletion, which considers the prediction as a “Recommended” or “Not
Recommended” question, has proved its significance and validity in the
field. However, while customers and products aggregate into interacted
clusters, state-of-the-art model-based 1-bit recommender systems do not
take the consideration of grouping bias. To tackle the gap, this paper
introduced Group-Specific 1-bit Matrix Completion (GS1MC) by first-
time consolidating group-specific effects into 1-bit recommender systems
under the low-rank latent variable framework. Additionally, to empower
GS1MC even when grouping information is unobtainable, Cluster De-
veloping Matrix Completion (CDMC) was proposed by integrating the
sparse subspace clustering technique into GS1MC. Namely, CDMC al-
lows clustering users/items and to leverage their group effects into matrix
completion at the same time. Experiments on synthetic and real-world
data show that GS1MC outperforms the current 1-bit matrix comple-
tion methods. Meanwhile, it is compelling that CDMC can successfully
capture items’ genre features only based on sparse binary user-item inter-
active data. Notably, GS1MC provides a new insight to incorporate and
evaluate the efficacy of clustering methods while CDMC can be served as
a new tool to explore unrevealed social behavior or market phenomenon.

Keywords: Recommender Systems · Matrix Completion · Sparse Sub-
space Clustering.

1 Introduction

Recommender systems aim at improving customers’ experience by maximizing
the use of the available information, including (i) user-item interactive data,
such as ratings or clicking behavior, and (ii) attribute information, such as cat-
egory or context profiles. Methods that utilize the interaction data are referred
as collaborative filtering [10,22,26,29] while the other methods that use the tex-
tual information are referred as content-based methods [5,24,30]. In particular,
collaborative filtering is a method predicting the missing ratings given by a spe-
cific user to a specific item. Based on the idea that users and items are highly
correlated to each other, the unspecified ratings can be estimated via learning
the hidden relations.

Collaborative filtering can be seen as a special case of matrix completion
task. It has become a cornerstone of most powerful recommender systems while
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it is mainly founded on two main streams of methods: neighbourhood-based
methods [10,17,22,26,29] and model-based methods [6,1,18,23,31,32]. Though
neighbourhood-based methods are easy to interpret and implement, they can-
not extract enough information and suffer from low prediction accuracy when
observed data is sparse. In this case, dimension reduction methods [1,4,28] and
graphs [14,25] were tried to address the sensitivity issue. Alternatively, model-
based methods define a parameterized model which can be optimized by the
available data during the training process. Numerous model-based approaches
were tested in previous research, including Support Vector Machines [15], Maxi-
mum Entropy [36], Boltzmann Machines [27] and Singular Value Decomposition
(SVD) [18,23,31,32].

Under the assumption that the continuation of data points is convincing
and compelling, standard collaborative filtering methods take observed entries
of a rating matrix as real numbers. However, the adequacy of this measurement
is undoubtedly questionable when intervals between data points are different.
For instance, personal judgments from different customers vary as a result of
personality. Say, generous customers tend to give fairly higher ratings than cur-
mudgeon customers. Thus, instead of taking data as continuous numbers, it is
more feasible considering them as categories, especially the binary case. For in-
stance, researchers [2,7,9] use a small part of binary subset generated by the
real-valued entries, namely ‘+1’ for “Recommended” and ‘−1’ for “Not Recom-
mended”. Experiments show their approaches perform significantly better than
continuous matrix completion methods.

Although 1-bit matrix completion has proven its success in recommender
systems, same as most other matrix completion methods, it suffers from a fun-
damental limitation: every user/item is treated merely as standalone individuals,
which arrogantly ignores the homogeneity of products and the clustering charac-
teristic of social behaviors. For instance, some fundamental management theory
points out that people have a propensity of conformity nature based on demo-
graphic, psychographic and behavioral variables [21]. Some recent research was
noticed focusing on integrating preliminary clusters into continuous matrix com-
pletion task [3] and experiments demonstrated that their approach outclassed
traditional SVD methods. However, to the best of our knowledge, so far there is
not any 1-bit matrix completion methods taking cluster information into consid-
eration. Moreover, state-of-the-art recommender systems either take clustering
as an independent task or treat clusters as preliminaries, there is not any exist-
ing method for summarizing clusters along with matrix completion. Since the
clustering nature of individuals plays a vital role in social behavior research, it is
consequently significant to introduce a new method that learns the clusters, on
the other hand also to utilize the clustering effects for matrix completion. In this
work, we focus on two tasks: (i) integrating group information into 1-bit matrix
completion, namely group-specific 1-bit matrix completion (GS1MC), and (ii)
proposing an efficient algorithm of cluster developing matrix completion on the
binary case, viz. cluster developing matrix completion (CDMC).
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To exploit the grouping effects, based on current latent variable model, we
expand the scope of quantized matrix completion to developing clusters auto-
matically as well as leveraging their effects. The proposed methods can be used
to take advantages of preliminary known user/item clusters or learn the groups
during the training process according to the subspace correlations of targets. Ex-
perimentally, we show that the proposed GS1MC outperforms existing known
model-based 1-bit matrix completion methods. And more importantly, CDMC
successfully captures targets’ generic features and achieves convergence of both
user/item clusters.

The rest of the paper is constructed as follows: In Section 2, we discuss
preliminary knowledge and background of the problem setting. In Section 3,
we introduce group-specific 1-bit matrix completion(GS1MC). In Section 4, the
method is further extended to positively learn the cluster identities: cluster de-

veloping matrix completion(CDMC). In Section 5, we evaluate our method on
synthetic data as well as a real-world application. Section 6 presents the discus-
sion and future aspiration.

2 Background

In this section, we discuss some preliminary knowledge of the research, including
traditional SVD-based matrix completion, the framework of probabilistic 1-bit
matrix completion and sparse subspace clustering techniques.

2.1 Matrix Completion

Consider R̂ = (r̂ui)n1×n2
as the original utility matrix, where n1 and n2 are

the number of users and items, respectively. Within R̂, each r̂ui is the explicit
feedback given by user u towards item i of a scale, e.g., from 1 to 5, where the
intervals probably differ as a result of personal bias. Regularized SVD (RSVD)
[13] predictor assumes R̂ as a low-rank matrix because of instance correlations
and make the approximation (prediction) by:

rui = uuv
T
i , (1)

where uu and vi are K-dimensional latent variables associated to user u and
item i, respectively. RSVD estimates the latent variables by minimizing the sum
of residuals of observed entries via gradient descent method with a regularization
term:

ûu = argmin
uu

∑

i∈Ωu

(rui − uuv
T
i )

2 + λ‖vi‖
2
2

and
v̂i = argmin

vi

∑

u∈Ωi

(rui − uuv
T
i )

2 + λ‖uu‖
2
2,

where Ωu denotes all items rated by user u and Ωi stands for all users who rated
item i.
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As the most fundamental SVD method, RSVD has been extended in dif-
ferent directions. For instance, a variety of regularization terms were applied
for specific considerations [35], and biased version of SVD methods [19,20,23]
were also introduced. To take the advantages of the general preference of each
user and discrimination of each item, a set of biasing variables were incorpo-
rated in biased SVD methods. Then, apart from taking individual-specific bias,
users/items can also be allocated into clusters and aggregated with group ef-
fects. For instance, taking preliminary cluster identities as inputs, a set of latent
variables representing the group bias [3] can be learned via the training process.

2.2 1-Bit Matrix Completion

Though matrix completion methods have been used for recommender systems
for long, 1-bit matrix completion [9] has been officially introduced lately. Varied
from the continuous model which applies numerical computation on discrete
rating data directly, original observation is converted into a binary matrix Ŷ by
comparing each observed entry to the average rating score. Then, the objective
of the task is formalized as learning an n1 × n2 latent variable matrix M. The
predicted binary feedback is finally computed by:

Yui =

{

+1, with probability f(Mui)

−1, with probability 1− f(Mui)
(u, i) ∈ Ω, (2)

where Ω is the set of all the observed entries and f can be the Sigmoid function
defined as:

f(z) =
1

1 + exp{−z}
. (3)

Similar to other low-rank matrix completion methods, a wide variety of ap-
proaches have been applied to constrain the latent variable matrix. For instance,
a trace-norm [9] was considered under the assumption of uniform sampling.
Then, a max-norm method as a convex relaxation [7] was explored under a
general sampling model. Moreover, the theory has been extended further to dis-
cuss the exact low-rank constraint [2]. However, all these existing 1-bit matrix
completion methods treat every instance as autonomous individuals. In other
words, predictions have been made generously, ignoring the ground truth that
users/items tend to have a specific baseline or belong to certain clusters. Fur-
thermore, as far as we know, there is not any methodology that can both learn
the cluster identities and leverage their group effects for matrix completion at
the same time.

2.3 Sparse Subspace Clustering

Sparse subspace clustering (SSC) [12] aims at clustering data points in their
low-dimensional subspace via the self expressive matrix, which represents each
instance by an affine combination of other points within the same subspace.
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Nevertheless, in terms of the fact that representations for each data point by
the other should be as sparse as possible, which results in an NP-hard problem, a
convex relaxation must be proposed to get around the NP difficulty. Thus, SSC
formalizes the original problem as a l1-norm optimization task. Take the most
standard procedure as an example, SSC assumes the whole noise-free dataset
X ∈ RD×Nl can be separated into n subspaces {Sl}

n
l=1 of dimensions D =

{dl}
n
l=1. Alternatively speaking, the matrix of the whole dataset can be written

as:
X , [x1...xN ] = [X1...Xn]Υ,

where Υ is an unknown permutation matrix and Xl ∈ RD×Nl is a subset of the
data points lying in Sl, namely a dl-rank matrix of Nl points (Nl > dl). Now,
each data point xi ∈ ∪n

l=1Sl can be reconstructed by a combination of other
points within the same subspace as:

xi = Xci, cii = 0. (4)

Then, different norm functions can be applied for the estimation of (4). Finally
the problem is defined as, under the l1-norm constraint,

min ‖C‖1 s.t. X = XC, diag(C) = 0, (5)

where C , [c1c2...cN ] ∈ RN×N corresponds to the non-trivial subspace-sparse
representation for all the data points xis.

Since user-item interaction data is exceedingly sparse and high-dimensional,
many dimensions are irrelevant and covered by noise. In the meantime, the
correlation between individuals can be interpreted as similarities of their private
latent variable, which is not strictly around any centroids. Thus, conventional
clustering methods that utilizing the spatial proximity is not applicable in this
case. Differently, subspace clustering methods aim at grouping the points that
are not necessarily close but lie in the same subspace, which does not depend
on the spatial characteristic of the data. Moreover, as sparse subspace clustering
deploys a convex approach to pick out the sparse representation of each point, the
optimization process automatically eliminates some common issues of clustering
methods, such as sensitivity to the ideal cluster size and bordering matter of the
overlapped subspace.

3 Group-specific 1-Bit Matrix Completion (GS1MC)

In this section, we integrate group effects into 1-bit matrix completion task such
that biases of clusters can be learned along with latent variable training process.

3.1 Model Framework

Suppose Ŷ is the observed n1 × n2 binary rating matrix with entries equal to
‘+1’ or ‘−1’, corresponding to “interested” or “not interested”, where n1/n2 is
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the number of users/items, the “not observed” entries are represented by ‘0’. Ω
stands for the observed user-item pairs, i.e. entries with same indexes as ‘+1’
and ‘−1’ in Ŷ. We construct the latent variable matrix as M ∈ R

n1×n2 . To
make predictions for missing entries by (2), our main objective is to find the
estimation of M that best explains the observed data.

Since it has been proved that the exact low-rank method results in a high
convergence rate [2], especially when the fraction of revealed entries is small
(cold-start problem), we choose to apply an exact low-rank constraint on M.
We assume that every user/item is classified into one single user/item group,
respectively. We formulate the latent variable matrix M by integrating group
bias into matrix factorization. Then each entry in M can be written as:

Mui = (pu + svu)
′(qi + tji). (6)

Here pu ∈ RK and qi ∈ RK are K-dimensional latent factors standing for
user u’s preference and item i ’s character, while svu ∈ RK and tji ∈ RK rep-
resent biases of clusters that individuals belong to. For instance, svu means
the cluster effect of user cluster vu, i.e. the cluster user u belongs to. Here we
have assumed that there are m1 users clusters and m2 item clusters, such that
vu ∈ {1, 2, ...,m1} and ji ∈ {1, 2, ...,m2}. Then, the group effects of the user and
item clusters can be formalized as:

SU = [s1, s2, ..., sm1
]T ∈ R

m1×K and TJ = [t1, t2, ..., tm2
]T ∈ R

m2×K .

For the sake of convenience, in terms of matrix notations, we assume the user-
item interaction data Ŷ = (Ŷui) and its corresponding latent variableM = (Mui)
have been permuted such that the first U1 rows corresponds user cluster 1,
followed by U2 rows corresponding to user cluster 2, ..., and the last Um1

rows
corresponding to user cluster m1. Similarly, the columns have been rearranged
accordingly. After this alteration, the decomposition (6) can be written as the
following matrix format:

M = (P+ S)(Q+T)T (7)

where

P = [p1,p2, ...,pn1
]T ∈ R

n1×K ;

Q = [q1,q2, ...,qn2
]T ∈ R

n2×K ;

S = [s11
T
U1
, s21

T
U2
, ..., sm1

1T
Um1

]T ∈ R
n1×K ;

T = [t11
T
J1
, t21

T
J2
, ..., tm2

1T
Jm2

]T ∈ R
n2×K .

Here 1m stands for m-dimensional (column) vector of all ‘1’s. In other words,
instances of group effects matrix SU and TJ have been duplicated in order to
match the dimension of matrix P and T. For the convenience of the transfor-
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mation between S, T and SU , TJ , we define the following two matrices:

Im1×n1

U =











1T
U1

0 · · · 0

0 1T
U2

· · · 0
...

...
. . .

...
0 0 · · · 1T

Um1











and Im2×n2

J =











1T
J1

0 · · · 0

0 1T
J2

· · · 0
...

...
. . .

...
0 0 · · · 1T

Jm2











.

Thus, it is clear that S, T and SU , TJ can be transformed to each other by:

S = ITUSU and T = ITJTJ . (8)

Then, (7) can be rewritten as:

M = (P+ ITUSU )(Q+ ITJTJ ). (9)

3.2 Objective and Optimization

Following the objective function of basic 1-bit matrix completion method [2],
the fundamental loss function is defined as:

FΩ,Ŷ(M) = −
∑

(u,i)∈Ω

{I(Ŷui=1) log(f(Mui)) + I(Ŷui=−1) log(1− f(Mui))},

where f(M) is the matrix operation of applying f over M element-wise, and 1

is the all 1’s matrix. Here Iµ is the indicator function, i.e. Iµ = 1 when µ is true,
else Iµ = 0. Iµ can be implemented as two mask matrices Yn1×n2

1 = (Y1(u, i))

and Yn1×n2
−1 = (Y−1(u, i)) of the same size as M, where Y1(u, i) = 1 if Ŷui = 1,

otherwise Y1(u, i) = 0, and Y−1(u, i) = 1 if Ŷui = −1, otherwise Y−1(u, i) = 0.
Then, the fundamental loss function can be transformed into:

FΩ,Ŷ(M) = −
∑

Ω

(Y1 ◦ log f(M) + Y−1 ◦ log(1− f(M)), (10)

where ◦ means the element-wise product of two matrices. We notate Γ =
(P,Q,SU,TJ) and R0 = {Ŷij : (i, j) ∈ Ω}. After adding the regularization
term, the new loss function can be formulated as:

L(Γ |R0) = FΩ,Ŷ(M) + λ(‖P‖2F + ‖SU‖
2
F + ‖Q‖2F + ‖TJ‖

2
F ). (11)

Our goal is to predict the missing entries of the rating matrix, which can be
computed by:

Γ̂ = argmin
Γ

L(Γ |R0). (12)

We solve the optimization problem (12) via the Alternating direction method
of multipliers (ADMM). Firstly, to update the latent factors of users and user
clusters, we fix Q and TJ , and minimize (12) by estimating P̂ and ŜU:

P̂ = argmin
P

+λ‖P‖2F}, (13)
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ŜU = argmin
SU

+λ‖SU‖
2
F }. (14)

Then for items and item clusters, we fix P and SU , conducting following
computations:

Q̂ = argmin
Q

+λ‖Q‖2F}, (15)

T̂J = argmin
TJ

+λ‖TJ‖
2
F }. (16)

Each of sub-problems (13) - (16) can be solved by the gradient descent al-
gorithm. We can work out the gradient in the following way. First we take f as
the Sigmoid function defined in (3), then it is easy to check that:

∂FΩ,Ŷ(M)

∂M
= Y1 ◦ (f(M)− 1) + Y−1 ◦ f(M).

Considering (7), with the matrix differentiation chain rule, it can be proved that:

∂FΩ,Ŷ(M)

∂P
= [Y−1 + (Y1 + Y−1) ◦ (f(M)− 1)](Q+T) (17)

∂FΩ,Ŷ(M)

∂Q
= [Y T

−1 + (Y T
1 + Y T

−1) ◦ (f(M
T )− 1)]T (P+ S). (18)

On the one hand, we have

∂FΩ,Ŷ(M)

∂S
=

∂FΩ,Ŷ(M)

∂P
and

∂FΩ,Ŷ(M)

∂T
=

∂FΩ,Ŷ(M)

∂Q
.

On the other hand, according to (8), it is clear to state that:

∂S

∂SU

= IK ⊗ ITU and
∂T

∂TJ

= IK ⊗ ITJ .

According to the chain rules, we finally get:

∂FΩ,Ŷ(M)

∂SU

= IU
∂FΩ,Ŷ(M)

∂S
and

∂FΩ,Ŷ(M)

∂TJ

= IJ
∂FΩ,Ŷ(M)

∂T
.

In other words, the sum of the first U1 rows of
∂F

Ω,Ŷ
(M)

∂S
is the first row of

∂F
Ω,Ŷ

(M)

∂SU
, the sum of the next U2 rows of

∂F
Ω,Ŷ

(M)

∂S
is the second row of

∂F
Ω,Ŷ

(M)

∂SU
,

..., and the sum of the last Um1
rows of

∂F
Ω,Ŷ

(M)

∂S
becomes the m1-th row (the

last row) of
∂F

Ω,Ŷ
(M)

∂SU
. The similar way can be used to construct

∂F
Ω,Ŷ

(M)

∂TJ
from

∂FΩ,Ŷ(M)

∂T
.

4 Cluster Developing Matrix Completion (CDMC)

In this section, we intend to learn the cluster identities of users/items during the
latent variable training process and integrate the clustering results with group-
specific matrix completion.
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Problem Setting The model (GS1MC) proposed in Section 3 takes cluster
identities as preliminary information. However, in most practical scenarios, it
might be inaccessible to such details, especially for the cold-start problem. Sec-
ondly, since the original binary user-item interaction data is extremely sparse, it
is controversial to apply standard clustering techniques on it directly. Moreover,
common clustering methods may take advantage of distance between points to
divide the space into different partitions. Nevertheless, regarding a latent vari-
able model, market segments may not necessarily congregate based on spatial
proximity but lie in a subspace. Thus, found on GS1MC, we aim at clustering
users/items that belong to a union of low-dimensional subspace respectively.

A common dilemma for most clustering techniques is the drawback that
they might be decidedly sensitive to improper initialization, such as cluster size
and centroids. As long as the size of user/item clusters is unrevealed and each
data points can have an infinite number of expressions in terms of the other,
we incorporate sparse subspace clustering (SSC) technique to optimize a sparse
representation among these expressions through a convex realization approach.

Algorithm Based on GS1MC, we extend the scope of the method to developing
clusters during the latent variable training process.

In the last session, we deploy ADMM to optimize latent variables P,SU ,Q
and TJ in an iterative manner. Now, to develop clusters based on the gradually
recovering matrix, after each iteration of updating latent variables P,SU ,Q and
TJ , we construct the rating likelihood matrix f(M) and f(M)T via (9) and
(3). We consider the rating likelihood matrix f(M) lies in m2 disjoint subspaces
{Si}

m2

i=1 while f(M)T lies in {Si}
m1

i=1. According to Theorems 2 and 3 from [12],
we employ the l1-norm relaxation of the self-expressive matrix to obtain the
sparse representation C1/C2 for users/items’ features respectively, namely:

min ‖Cl‖1 s.t.

{

f(M) = f(M)C1 or

f(M) = CT
2 f(M),

}

diag(Cl) = 0, l = {1, 2}. (19)

Here, each column of C1 and C2 stands for an user/item’s hidden profile,
and within each column, non-zero entries correspond to the other homogeneous
points that lie in the same subspace with this point in the ideal case.

Next, a non-directional weighted graph of C1 is built as G1 = (N1,W1),
where N1 is the nodes regarding all sparse representations in C1, and W1 is
the weighted edges between each pair of N1. A natural choice of the weighted
matrix is that the nodes within the same subspace will share non-zero weighted
edges while the other edges are zero-weighted. Alternatively speaking, an affinity
matrix can be constructed by W1 = |C1| + |CT

1 |, where the non-zero entries
represents latent variable pairs that actually lie in the same subspace. Then,
we apply spectral clustering method on W1 to procure item clusters. Similar
method is conducted to build W2 for user cluster developing.

After observing new clusters from last step, we update group identities of
each user/item. Then, to leverage group effects of the latest clusters into matrix
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completion, we estimate latent variables P,SU ,Q,TJ by (13) to (16) again.
Thus, CDMC conducts sparse subspace clustering and GS1MC iteratively. The
complete algorithm is shown in Algorithm 1.

Algorithm 1 Cluster Developing 1-bit Matrix Completion

1 procedure CDMC

2 Randomly initialize user/item groups

3 Update latent variables P,SU ,Q,TJ by (13) to (16)

4 loop:

5 Construct f(M) Matrix by (9) and (3)

6 Build adjacency matrices C1, C2, weighted graphs W1 and W2

7 Apply spectral clustering on W1 and W2

8 Update cluster identities

9 Update latent variables P,SU ,Q,TJ by (13) to (16) in a smaller inner loop

10 If not converged, goto Step 4: loop.

5 Experiments

In this section, we evaluate the proposed GS1MC and its extension CDMC, sep-
arately. The experiments are based on simulation analysis as well as benchmark
comparison on a real-world dataset.

5.1 Dataset and Experiment Settings

To start with, to verify the effectiveness of GS1MC, a synthetic dataset with
group information was designed in the following way. Firstly, we set n1 = 200,
n2 = 800, m1 = 10 and m2 = 10. Then we generate P̂ ∼ N(0, In1×K) and
Q̂ ∼ N(0, In2×K), where Im×K is an (m×K)×(m×K)-order identity matrix. To
include the group information, we design ŜU = (̂sv) and T̂J = (̂tj), where ŝv ∼
N(−2 + 0.4v,1K), t̂j ∼ N(−3 + 0.6j,1K), v ∈ {1, ...,m1} and j ∈ {1, ...,m2}.

Then, we construct the latent variable matrix by M̂ = (P̂+ ITU ŜU )(Q̂+ ITJ T̂J )

and scale it so that ‖M̂‖∞ = 1. Now, we take the 1-bit transformation and add
the noise by f(M̂) +N(0, In1×n2

). We keep a certain percentage π of entries as
observations, where π is the observation rate.

Notably, we also tested our methods on one of the most common recom-
mender system benchmark dataset: Movielens 100k [16]. This user-item inter-
action data consists of 100,000 ratings (1-5) from 943 users on 1682 movies.
Following the problem settng of previous literature [2,7,9], the original obser-
vations, scaled from 1 to 5, have been quantized as ‘+1’ and ‘-1’ according to
whether they are above or below the average score.
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The proposed method is implemented and tested in Matlab R2017b on a PC
with Intel(R) Core(TM) i5-7600 CPU @ 3.500GHz and 8.00GB RAM.

5.2 Experiments on GS1MC

Simulation Analysis We set K = 3 and K = 6. Then we randomly split
the data in terms of different training size, namely π = {25%, 20%, 15%, 10%}
for cross-validation. we assume the right group identities are preliminary and
compare our method with a Trace-Norm approach [9]. The tuning parameter λ
for the proposed method is selected as 37 by minimizing the average relative error
while the parameters search for the Trace-Norm approach is embedded in the
original implementation. The best results for both methods, shown in Table 1,
are chosen among 100 replications. It is indicated that GS1MC has much smaller
relative error compared to traditional 1-bit matrix completion, especially when
the observed data is sparse (cold-start problem) or when the latent variable have
higher dimensions.

It is straightforward to comprehend the result: since group effects can be
regarded as extra information compared to the observed sparse matrix, GS1MC
can have a much more robust performance compared to the fundamental 1-
bit matrix completion when the observed information is limited or when the
complexity of the latent variable is high.

No. of latent factors Observation Rate: π 10% 15% 20% 25%

K = 3
The Proposed Method 1.00 0.85 0.78 0.73

Trace-Norm 1.89 1.74 1.67 1.59

K = 6
The Proposed Method 1.00 0.92 0.81 0.74

Trace-Norm 2.53 2.27 2.15 2.02

Table 1: The relative error is computed by:
‖M−M̂‖2

F

‖M̂‖2

F

. We have compared the

results for synthetic data of different ranks and observation rates, namely K = 3,
K = 6 and π = {25%, 20%, 15%, 10%}.

% Prediction accuracy

% Training size The proposed method Exact-rank HL Logit Trace-norm Max-norm

95 74.1 73.0 72.0 68.0 73.0 72.2

10 66.3 61.0 - - 59.0 59.0

5 63.3 54.5 - - 49.9 50.5

Table 2: Prediction accuracy of GS1MC versus methods in previous literature
when the observation rate is 95%, 10% and 5%.

Movielens Dataset Since the fact that the cluster information of most user-
item interaction data is not available, to provide GS1MC cluster information, we
group the original dataset according to their implicit feedback. Implicit feedback
refers to the density of items receiving comments or the frequency of people
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giving feedback. In other words, people tend not to choose items randomly but
choose things they already expected [11]. Thus, implicit feedback only concerns
about the identity of ratings irrespective of actual rating values. It is expected
that people giving more ratings tend to be more curmudgeon while items with
more feedback tend to have higher average ratings [3]. Thus, we group users and
items according to the number of ratings they have given or received.

We compared GS1MC with the other existing 1-bit matrix completion meth-
ods, namely: a) hinge loss with variational approximation (HL) [8], (b) Bayesian
logistic model with variational approximation (Logit) [8], (c) the trace-norm fre-
quentist logistic model (Trace-norm) [9], (d) the exact low-rank model (Exact-
rank) [2] and (e) a max-norm constrained minimization approach (Max-norm)
[7]. Following their experiment setup, Movielens 100k dataset has been split into
different training-test size (Note: Here, the training size is not the observation
rate in the simulation anaysis). Since some methods are not open-sourced, we
compared our results with the best results appeared in previous literature. The
converged accuracy results are displayed in Table 2. It is easy to reveal that the
proposed method has outperformed all the other baselines. Conspicuously, re-
garding the scenario when the training size is extremely small (5%), our method
has greatly boosted traditional binary matrix completion method by utilizing
the group information.

5.3 Experiments on CDMC

Robustness Analysis As far as our knowledge, there is not any comparable
baseline for clustering problems in recommender systems research. Thus, to eval-
uate the convergence performance of CDMC, we conduct the first experiment
on Movielens 100k dataset.

To start with, we split the data (95%, 5%) and initialize group identities of
users/items randomly. Then we train the CDMC model for a number of epochs
until the clustering results tend to stabilize (200 epochs for 95% Movielens 100k
dataset). So far, the produced cluster identities of each instance are stored as the
baseline. Afterwards, we re-conduct the process multiple times with completely
random initialization. Namely, another (95%, 5%) entries of the dataset are split
for cross-validation, and all the cluster identities, as well as all latent variables,
are determined arbitrarily. We use adjusted mutual information (AMI) [33] as
the evaluation score to measure the degree of matching, regarding the cluster-
ing results from multiple cross-validation processes. As Figure 1a shows, both
user/item clusters converge to a highly similar distribution over the training
epochs.

Meanwhile, during each iteration of the optimization process, we construct
f(M) and make the prediction on the 5% test set. The recorded misclassification
rate is shown in Figure 1b. It is indicated that the misclassification rate gradually
stabilize as the cluster developing process proceeds and the resulted prediction
accuracy is highly comparable with GS1MC proposed in Session 3, even for this
case the cluster information is totally unknown.
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Fig. 1: (a) AMI fitting score of clusters via cross-validation based on fully ran-
dom initialization. Converged clusters tend to match with the other. (b) The
misclassification rate decreases as training proceeds and the prediction accuracy
converges to a comparable value with GS1MC even CDMC did not take any
preliminary cluster information.

Clustering Outcome For item clusters, we use three dimensions of item-
related latent variable (Q + ITJTJ ) as axis. The learned clusters are visualized
in Figure 2a. Similarly, developed user clusters are plotted on user-related latent
variable (P + ITUSU ). As Figure 2 shows, the item clusters are more dispersed
and differentiable while the user clusters gather in closer proximity.
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Fig. 2: The clustering results of CDMC.

In order to validate the practical influence of CDMC, we project the actual
profile features of each user/item onto the latent variable CDMC learned and
discovered some noteworthy findings.
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Firstly, since there are 19 categories of items available, and each movie can
be labeled as multiple genres. We extracted this information and constructed
a genre matrix A ∈ R

n2×19, here aig = 1 means item-i can be classified in
category-g. As items in A share the 1-to-1 exact same index with (Q+ ITJTJ ),
we applied k-means clustering method on this generic information and visualized
its results corresponding to the latent variable that CDMC learned.

As shown in Figure 3b, it is compelling that the learned latent variable
(Q + ITJTJ ) have a clear discernible pattern regarding items’ generic features.
In other words, even though the fact that our proposed CDMC method did
not take any generic information, it has captured items’ factual profile based
on only the sparse rating matrix. Besides, as CDMC conducts sparse subspace
clustering and group-specific matrix completion in an iterative manner, along
with gradually learning the hidden profiles, the model can integrate this infor-
mation immediately into matrix completion task, which in turn positively boost
the next iteration’s clustering.

Similarly, we build a feature matrix of users based on their context profiles,
including age, gender and occupations. The clustering result is projected on
(P + ITUSU ) and shown in Figure 3c. As we expected, understanding human’s
preference is a much more complicated task, and the clustering result is visibly
more confusing. But it is still noticeable in the plot that blue and purple nodes
gather in the vertically higher part of the space while yellow and green ones are
distributed below. As pointed out in the previous literature [34], it is a quite
common issue that multiple individuals might share a single account, which has
biased the accuracy of the profile information.
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Fig. 3: (a) Item clustering results of CDMC. (b) Items’ genre information is
reflected on the latent variable in a clear differentiable pattern. (c) User clusters
show much higher complexity, but it is still noticeable that blue and purple nodes
aggregate on vertically higher part of the space while yellow and green points
are distributed below.
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6 Conclusions and Future Works

In this paper, we introduced group-specific matrix factorization into 1-bit ma-
trix completion task and proposed GS1MC. Then we first time integrated sparse
subspace clustering with matrix completion task and proposed CDMC, extend-
ing the scope of GS1MC from passively receiving preliminary cluster information
into positively developing clusters and leveraging their effects. Experiments show
GS1MC outperforms existing methods on both synthetic and real-world data,
especially for the cold-start problem. And CDMC successfully captures items’
hidden generic features from highly sparse binary rating matrix. It is noteworthy
that GS1MC and CDMC provide a new insight to evaluate the quality of clus-
ters or to detect undiscovered segments. For instance, when integrating implicit
feedback clusters into GS1MC, the prediction accuracy was greatly boosted com-
pared to previous methods. In terms of CDMC, our experiments show movies’
genres have a large impact on their popularity among certain audience while
users’ age, gender and occupation tends to have slighter effects on their pref-
erence. For future work, it will be valuable to apply GS1MC and CDMC into
more real-world applications and discover possible unrevealed social behavior
and market phenomenon.
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