
ar
X

iv
:2

01
0.

10
14

1v
1

 [
cs

.L
G

]
 2

0
O

ct
 2

02
0

Language Inference with Multi-head Automata

through Reinforcement Learning

Alper Şekerci

Department of Computer Science

Özyeğin University

İstanbul, Turkey

alper.sekerci@ozu.edu.tr

Özlem Salehi

Department of Computer Science

Özyeğin University

İstanbul, Turkey

ozlem.koken@ozyegin.edu.tr

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI:10.1109/IJCNN48605.2020.9207156

Abstract—The purpose of this paper is to use reinforcement
learning to model learning agents which can recognize formal
languages. Agents are modeled as simple multi-head automaton,
a new model of finite automaton that uses multiple heads, and
six different languages are formulated as reinforcement learning
problems. Two different algorithms are used for optimization.
First algorithm is Q-learning which trains gated recurrent units
to learn optimal policies. The second one is genetic algorithm
which searches for the optimal solution by using evolution-
inspired operations. The results show that genetic algorithm
performs better than Q-learning algorithm in general but Q-
learning algorithm finds solutions faster for regular languages.

Index Terms—finite automata, reinforcement learning, neural
network, Q-learning, genetic algorithm

I. INTRODUCTION

Grammatical inference is the process of learning a formal

language from a set of labeled examples. It has various appli-

cations in the fields of pattern recognition, natural language

processing, and computational biology. Its origins date back to

the seminal work of Gold in 1960s [1]. Since then, it has been

investigated by many researchers including Fu [2], Angluine

and Smith [3], Miclet [4].

Considering the different approaches developed for gram-

matical inference, there has been a great interest in learning

languages using recurrent neural networks (RNN). Some early

examples include works of Elman [5] and Cleeremans et al.

[6] where first order RNNs are trained for regular language

recognition. The problem is formulated as sequence prediction

task, where the model is presented a single input symbol

at each time step and predicts the next symbol. Following

the work of Elman and Cleeremans et al., Giles et al. use

second order RNNs to learn and extract finite automata for

regular languages [7]. Challenging harder languages, Das et

al. [8] proposed an RNN model with an external stack to learn

context-free languages.

An important line of research was opened by the study of

long short-term memory (LSTM) [9] networks in language

recognition. Gers et al. [10] showed that LSTM networks

can learn context-free and context-sensitive languages such

as anbn and anbncn. In 2018, Weiss et al. [11] showed that

LSTM is equivalent to a variant of multicounter automata

[12] and hence perform unbounded counting while recognizing

languages like anbncn whereas Gated Recurrent Units (GRU)

[13] can not, when worked under finite precision regime.1

Another related work is due to Zaremba et al. [15] where the

task is not to learn languages, but simple algorithms which can

be carried on by a finite automaton working as a transducer

and they use both supervised and reinforcement learning while

training GRU and LSTM networks to learn finite automata

accomplishing the task.

An alternative method for grammatical inference is the

usage of evolutionary algorithms for inducing automata. Zhou

et al. [16] and Dupont [17] use genetic algorithm [18] to

learn finite automata recognizing regular languages. Later on

Lankhorst [19] and Huijsen [20] apply genetics algorithm

for the inference of context-free grammars and pushdown

automata. Some more recent works on the subject include

[21]–[23].

In this paper, we introduce a new finite automaton model

with multiple heads, namely simple multi-head automaton

(SMA) and show that intelligent agents modeled as SMA

can learn formal languages. The language recognition task

is not defined as sequence prediction task as opposed to

most of the studies from the literature but the automaton

makes the decision of acceptance or rejection as a result of

a sequential processing. Accordingly, we use reinforcement

learning instead of supervised learning, expanding the previous

work on the subject.

Each language is formulated as an environment where

agents can act on. At each timestep, an agent receives ob-

servation from the environment and it performs an action

which either moves one of the heads on the tape or terminates

the environment by accepting or rejecting the input string

according to its policy. After each action, the agent receives

a reward and maximizing this reward leads to the correct and

efficient decision on the input string.

Two different algorithms are implemented to optimize the

policy of the agents while finding optimal SMA for various

languages. The first algorithm is Q-learning, where the policy

of the agents are represented with GRUs and optimized by

storing an experience buffer which is filled upon interacting

with the environment. The second algorithm is genetic algo-

1Note that RNNs with infinite precision are Turing complete in theory [14].

http://arxiv.org/abs/2010.10141v1
https://doi.org/10.1109/IJCNN48605.2020.9207156

rithm, which does not improve the policy iteratively but instead

tries to improve the whole population of agents by evaluating

the fitness of each agent and creating new individuals from

the best agents with the hope of creating a better generation.

To obtain results about the performance of each algorithm,

6 different languages are tested: 2 regular, 2 context-free and

2 non-context-free languages. Both the agents trained by Q-

learning and genetic algorithm accomplished to recognize the

regular languages 100% correctly, but the agents trained with

Q-learning achieved the results in a shorter time. For the

other languages, genetic algorithm showed significantly better

performance than Q-learning. Our results suggest that genetic

algorithm deserves more attention in the area of grammatical

inference.

In Section II, we define our new multi-head automaton

model. Section III describes the environment design and how

an agent interacts with it. Section IV and V contain informa-

tion about the insights of Q-learning and genetic algorithm and

further details about implementation. We present the results in

Section VI and conclude with Section VII.

II. SIMPLE MULTI-HEAD FINITE AUTOMATA

As the main purpose of this research is to model finite

automata as learning agents for solving decision problems,

a new model of multi-head finite automata is introduced with

the motivation of reducing the parameter count that is required

to be optimized during the learning process.

A simple multi-head automaton (SMA) is a deterministic

finite automaton that uses multiple heads.

Formally, a two-way simple k-head automaton (2SMA(k))

is a 9-tuple (Q, q0, F , Σ, $, #, δ, k, H) where

• Q is the set of states

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of accept states

• Σ is the input alphabet.

• δ is transition function which maps Q× Σ̃ into Q
• k is the number of heads

• H is the head assignment function which maps Q into

{←−, ◦, −→} × {headi | 0 ≤ i < k}.

A machine is two-way if the tape head can move right (→),

left (←) and stay put (◦). By restricting the head movements to

the set {◦, −→}, we obtain a one-way simple k-head automaton

(1SMA(k)).

SMA uses a single finite input tape and the square with

index 1 corresponds to the first symbol of the input string.

Let n denote the length of the input string. Then, the index 0

contains the start-marker $ and the index (n+1) contains the

end-marker #. Note that when the input string is empty, the

index of the end-marker is 1.

Initially, all heads start from the square with index 1 and

the computation starts from the initial state. At each state, first

the head and the direction that are assigned to the state are

determined by the head assignment function H . After that, the

head is moved 1 step in the assigned direction (no movement

if ◦ is assigned) and then the symbol which the head is on

is read. Note that the movement occurs before reading. Also,

moving beyond start and end-markers is not allowed.

After reading the symbol, SMA performs a transition using

δ and enters into a new state. If there are no available

transitions, the machine halts. If the machine halts in an accept

state, the input string is accepted, and rejected otherwise. An

SMA is said to recognize a language L if it accepts all and

only the members of L.

It is easy to see that 1SMA(1) is an ordinary deterministic

finite automaton (DFA) and recognize exactly the class of

regular languages. When compared to the classical multi-head

finite automata (DFA(k)) in which there are k heads reading

from an input tape simultaneously [24], [25], it turns out that

the two models SMA(k) and DFA(k) are equivalent in terms

of language recognition power. The proof is omitted here.

Note that the language recognition power of multi-head finite

automata increase as the number of heads increase both for

one-way and two-way models and two-way models outperform

one-way models for a constant number of heads [25].

III. REINFORCEMENT LEARNING

In this section, we will discuss how the components of the

reinforcement learning algorithm are defined for the task of

language recognition by simple multi-head automata.

A. Environment & Agent

Let’s start by describing the environment and the agent. The

agent is a simple multi-head automaton. It can be one-way or

two-way depending on the setting.

1) Initial State: As it is mentioned while defining SMA,

there is a finite input tape where the first square contains the

start-marker and the last square contains end-marker. When

the environment is reset, all heads of the SMA will be moved

to square 1, which corresponds to the first symbol of the

input string. According to the agent’s actions, these heads will

change their positions on the tape.

2) Observation: The transition function of an SMA dictates

that only a single symbol can be read by a single head at

a time. Note that the current state determines which head

will be active and reading. Furthermore, a desired property

for the observation is that the history of the observations

should give all necessary information about the current state of

the environment. Thus, the observation contains only a single

input symbol, index of the head by which the symbol is read

and the direction in which the head moves.

3) Processing the Action: After receiving the observation,

the agent will decide on its action. If the agent wants to

terminate, which corresponds to the case where there is no

valid transition in the current state, the agent can accept and

terminate or reject and terminate. If it decides to continue,

then it has to determine which head to move and its direction.

Therefore, there are (d · h) possible head actions, where d is

the number of directions and h is the number of heads.

4) Termination & Reward: Theoretically, an SMA may

never halt. Due to practical reasons, we put a limit on the

maximum number of actions N that the agent can perform

during each episode. We set N as (2 ·M + 1) · k + 1 where

k is the number of heads and M is the maximum length of

the input string. This limit allows agent to move all heads to

the end-marker and back to the start-marker before making

a decision. Note that the maximum length of input strings is

also limited because of practical reasons.

The environment is terminated when the number of actions

performed by the agent reaches N or if the agent decides

to terminate early. After each reset, a new input string is

generated and it is determined whether it is a member string

or not by a hand-crafted test function. When the environment

is terminated, the agent receives a reward of +1 if it answers

correctly, that is, accepts a member string or rejects a non-

member string. It receives a reward of -1 if the answer is

wrong, and no reward for actions without termination. There

are 2 special cases for terminal rewards: If the agent answers

wrong without reaching the end-marker, it is encouraged to

read the whole input string before terminating to make sure

that it has the correct answer and therefore it receives a reward

of -10. If the agent waits until the very end of the episode

to reject a string, it receives only a reward of 0.1 which

discourages the agent from waiting too long if it is sure about

the answer.

IV. Q-AGENTS

One way to optimize the policy of an agent is Q-learning.

The agents trained using Q-learning algorithm will be called

Q-agents. In this section, we will describe the details of the

Q-learning algorithm.

A. Deep Q-Learning

Q-value is a measure of how good is it to perform action

a in state q. The function Q(q, a) is defined as

Q(q, a) = R(q, a) + γ · V (qnext)

where R is the immediate reward received by performing the

action a in state q, γ is the discount factor which makes the

rewards that are received sooner more favorable and qnext is

the next state the agent moves in after performing the action.

According to the Bellman Equation [26], the value V of a

state q is simply the maximum Q-value the agent can get in

a given state by performing any action.

V (q) = maxa(Q(q, a))

To learn the optimal Q function, it is possible to use either

arrays or a neural network to approximate the function. In deep

Q-learning, a deep neural network is used to approximate the

Q function.

B. GRU vs. LSTM

In order to provide internal memory for Q-learning agents,

gated recurrent units (GRU) are used in this paper. GRU is a

simpler alternative to long short-term memory (LSTM). It is

known that LSTM is more successful in language recognition

as it can perform unbounded counting [11]. The reason why

GRU is preferred over LSTM in this paper is to test a new

multi-head automaton model focusing on the effect of multiple

heads and ability of moving left. As a recurrent neural network

model which can perform counting can easily learn languages

like anbn or anbncn using a single-head and moving in a

single direction, GRUs which cannot perform counting suit

better the purpose of this paper.

C. Modeling SMA with Neural Networks

The automata defined in this paper have discrete states.

However, a continuous state space is needed to train neural

networks using gradient descent method.

In the discrete case, each state can be represented by an

integer and a boolean lookup table can be used to determine

which states are accepting.

In the continuous case, a state can be represented by a

real vector. Thus, the transition function δ takes as input no

longer an integer but a vector and the one-hot encoding of an

input symbol, and outputs a vector. Instead of a lookup table

for determining the acceptance of a state, a new function A
maps the state vector to a 3 dimensional stochastic vector,

representing a probability distribution over three types of

states:

i. rejecting but not halting,

ii. rejecting and halting,

iii. accepting and halting.

So, the function A randomly samples one of these types

according to the probability distribution and assigns it as the

type of the input state.

Similarly for the head-movement, a function M maps an

input state vector to a 2k-dimensional and 3k-dimensional

stochastic vector for 1SMA(k) and 2SMA(k), respectively.

Then, the function M randomly samples the action for the

head movement and assigns it to the input state.

D. Implementation

As explained in Section III-A, the number of possible

actions A for the agent is 2 + (d · k), where d is the number

of directions and k is the number of heads. Therefore, there

is a Q-network that takes the current internal state, which is

the output of the last recurrent unit, as input. Then, there are

fully-connected hidden layers, the layer count and the number

of neurons in each layer are hyperparameters. The final layer

is the output layer with dimension A.

We use two methods to improve the stability and con-

vergence of deep Q-networks. First, it is possible to store

experiences in a buffer [26]. An experience is a tuple (st,
action, reward, st+1, done) where st is the observation

before performing the action, st+1 is the observation after

performing the action and done represents if the environment

is terminated after the action. While training, a batch of

experiences is sampled uniformly from this buffer.

The second method is using fixed target network [27]. Q-

learning uses the estimation for the next state while updating

Q-value of the current state. With this method, the estimation

will not be taken from the network which is currently being

trained but from a fixed Q-network and the weights of the

trained Q-network is copied onto the target network periodi-

cally.

During training, an agent plays many episodes to fill up

the experience buffer. After the buffer is fulled, the neural

network is optimized using the data in the buffer. At the start

of each episode, the input string on the tape is changed. Thus,

the experience buffer contains different strings with different

lengths, which helps the agent to generalize better.

Moreover, Q-learning agents use ǫ-greedy exploration. That

is, with ǫ probability an agent chooses a random action and

with (1 − ǫ) probability it chooses the best action. This

hyperparameter handles the exploration-exploitation trade-off:

exploration is for trying different actions to achieve better

rewards and exploitation is for using the agent’s current

knowledge to maximize the rewards.

V. G-AGENTS

Another approach for policy optimization in a reinforcement

learning problem is using genetic algorithm. Agents trained

with genetic algorithm will be called G-agents.

A. Genetic Algorithm

Genetic algorithm is a black-box optimization technique

which uses operations inspired by biological evolution [28].

A population of individuals is randomly initialized and each

individual corresponds to a chromosome which is a chain

consisting of genes. There exists a fitness function which takes

a chromosome as input and returns its fitness value, that is,

the performance measure of the chromosome for the given

problem. Genetic algorithm works by improving the initial

population at each generation.

In this approach, each SMA is represented with a chro-

mosome and its performance is evaluated with a fitness

function. Then, at each iteration a collection of chromosomes

is improved by eliminating bad solutions and creating new

chromosomes using the good solutions, with the aim of finding

the most optimal automaton recognizing the language trained

for.

B. Representation of SMA with Chromosome

To apply genetic algorithm, we need to represent an SMA

with a string of integers making up a chromosome. The

individual integers are called the genes.

Let n be the number of states in the SMA and let |Σ̃| = m
where Σ̃ = Σ ∪ {$,#}. There might be a transition between

any pair of two states with any one of the m symbols as its

label. For each state, each possible transition is represented

with a gene g−→ which holds the information about the target

state of the transition. The range of each gene is [0, n], where 0

means that there is no transition and the remaining integers are

the indices of the states. For each state, m genes are required

to represent all possible outgoing transitions from the state for

each symbol.

Moreover, head assignment function which assigns the head

and the direction for each state is stored with a single gene

gk in the range [0, d · k), where d is the number of directions

and k is the number of heads. Lastly, for each state a single

gene ga in the range [0, 1] is required to store whether it is an

accept state or not. As a result, a chromosome is a sequence

of genes

(m · g−→) · n+ gk · n+ ga · n

where multiply represents duplication and plus represents

concatenation.

C. Fitness

Initially, a training set is formed with N strings which are

generated randomly by the environment. This training set is

used for computing the fitness value of an individual.

Each individual is tested for N different episodes, which

contain the input strings on the tape chosen from the training

set. For each episode, the total episode reward is stored and

the sum of all episode rewards is used as the fitness value.

Similar to Q-learning algorithm, the rewards are multiplied by

a discount factor γ to make sooner rewards more favorable.

Moreover, when the best individual in a generation achieves

100% correct prediction rate, a new training set is formed and

all fitness values are recomputed so that if there exist some

strings that are not accepted even by the best individual, the

individual can improve itself further.

VI. RESULTS

A. Languages

During training, agents are taught 6 different languages:

i. L1 = { 0w1 | w ∈ {0, 1}∗}
ii. L2 = { w | w ∈ {0, 1}∗ and length of w is even }

iii. L3 = { anbn | n ≥ 0}
iv. L4 = { w | w ∈ {0, 1}∗ and w is palindrome }
v. L5 = { anbncn | n ≥ 0}

vi. L6 = { ww | w ∈ {0, 1}∗}

Note that L1 and L2 are regular and both can be recognized by

1SMA(1). L3 and L4 are non-regular but context-free and L5

and L6 are non-context-free languages. L3 can be recognized

by a 1SMA(2) but for L4, 2SMA(2) is needed as the tape head

should be able to move to both directions. L5 is recognized

by a 1SMA(2) and L6 is recognized either by a 1SMA(3) or

2SMA(2) but not with a 1SMA(1).

All languages except L4 are trained on a 1SMA. L1 and

L2 are trained with a single head, L4 with 2 heads and finally

L5 and L6 are trained with 3 heads. Note that for L5 an extra

head is added to test whether the algorithms can optimize and

use less heads.

B. Hyperparameters

The hyperparameters for Q-learning are given below:

• The output size of a recurrent unit is 32.

• The discount factor γ is 0.999.

• The Q-network which takes the output of the last recur-

rent unit as input has 1 hidden layer with 32 neurons that

use arctan activation function.

• The experience buffer size is 25000.

• ǫ for exploration is 0.05.

The hyperparameters for genetic algorithm are as follows:

• The population size is 100.

• The state size of SMA is 32.

• The chromosome length C of an individual is

(m+ 2) · n, where m is the number of symbols and n is

the number of states.

• The maximum number of mutations is 3 for regular

languages, (C/20) for other languages.

• The discount factor γ is 0.999.

• The training set size is 1000.

C. Discussion

Fig. 1 shows the performance of different algorithms for

different languages. First column is the model name, second

column is the average reward, third column is the correct

prediction rate and the fourth column is the average episode

length. The data is collected by running the algorithms for

10000 episodes, that is, for 10000 different input strings. Note

that the maximum length of the input strings is set to 20,

because of practical reasons mentioned before.

The number in the model name represents the language the

agent is taught and the rightmost letter represents the algorithm

that the agent uses. R is the random algorithm that performs

a random action at each step, Q and G represent the Q-agent

and G-agent respectively.

An algorithm is commonly evaluated according to 3 criteria:

correctness, memory usage and running time. The solutions

found by Q-agent and G-agent can be also evaluated similarly.

In the results, correct prediction rate shows the correctness of

the solution and the average episode length shows the running

time. Note that optimizing the memory usage is not a concern

in this paper.

The table in Fig. 2 further supports this result. This table

provides statistics about head movement in different solutions.

First column is the model name which represents the same

models as in Fig. 1, next three columns show the usage of

each head compared to others and the last three columns show

which direction the heads are moved mostly.

1) Random Algorithm: The result of the random algorithm

is included in order to better assess the performance of the

other two algorithms. A random agent has no knowledge of

the environment and it does not change its policy according

to the state it is currently in. Any well designed algorithm is

expected to perform better than the random algorithm.

As expected, the random agents for all languages performed

the worst. Note that the correct prediction rates for random

Model Avg. Reward Pred. Rate Avg. Ep. Length

L1R -4.193 0.498 2.0

L1Q 1.000 1.000 8.6

L1G 0.988 1.000 12.8

L2R -4.151 0.504 2.0

L2Q 0.995 1.000 12.8

L2G 0.984 1.000 16.8

L3R -4.156 0.498 3.0

L3Q -1.480 0.731 4.2

L3G 0.989 1.000 11.1

L4R -4.027 0.511 4.0

L4Q -3.208 0.457 8.8

L4G 0.724 0.866 14.5

L5R -4.089 0.499 4.0

L5Q -0.341 0.329 13.2

L5G 0.991 0.999 10.1

L6R -4.172 0.490 4.0

L6Q -0.672 0.445 10.6

L6G 0.795 0.903 17.3

Fig. 1. Performance of models for different languages.

Model h1 h2 h3 ←− ◦ −→

L1Q 1.00 0 1.00

L1G 1.00 0.25 0.75

L2Q 1.00 0.10 0.90

L2G 1.00 0.25 0.75

L3Q 0.71 0.29 0.00 1.00

L3G 0.65 0.35 0.15 0.85

L4Q 0.17 0.83 0.09 0.02 0.89

L4G 0.79 0.21 0.07 0.05 0.88

L5Q 0.04 0.61 0.35 0.06 0.94

L5G 0.53 0.00 0.47 0.08 0.92

L6Q 0.91 0.09 0.00 0.09 0.91

L6G 0.36 0.00 0.64 0.04 0.96

Fig. 2. Statistics about head movement.

agents are approximately 0.5, which means they made the

correct decision for half of the strings. This is expected as with

probability 0.5, the input string is chosen from the language

whereas with probability 0.5 it is generated randomly.

2) Regular Languages: For the regular languages L1 and

L2, both Q-agent and G-agent achieved 100% correct predic-

tion. For the Q-agent, the average reward is higher and the

average episode length is smaller in each case which shows

that the Q-agent have learned more efficient solutions for these

languages.

Figure 3 and Figure 4 display prediction rates during

training for G-agents and Q-agents respectively. Note that

during training, the average correct prediction rates for Q-

learning algorithm can be lower as the agents perform random

actions with ǫ probability due to ǫ-greedy exploration.

0 10 20 30 40 50 60 70 80 90
0.45

0.5

0.75

0.8

0.9

0.95

1

Generation

C
o

rr
ec

t
P

re
d

ic
ti

o
n

R
at

e

Prediction rates of genetic algorithm for L1 and L2.

L1

L2

Fig. 3. Correct prediction rates of the best individuals in each generation
during the training of regular languages with genetic algorithm.

0 200 400 600 800 1,000 1,300 1,625
0.35

0.45
0.5

0.75
0.8

0.9
0.95

1

Timesteps (1k)

A
v

g
.

C
o

rr
ec

t
P

re
d

ic
ti

o
n

R
at

e

Prediction rates of Q-learning algorithm for L1 and L2.

L1

L2

Fig. 4. The change of the average correct prediction rates for the regular
languages during training with Q-learning algorithm.

As the head is allowed to stay or move in both directions

while processing the input string, moving the heads efficiently

reduces the time to reach the answer. Since L1 and L2 are

regular, by definition they can be recognized by a real-time

DFA in which the head always moves right. Looking at Figure

2, we see that Q-agent always moved the head right for L1

whereas the G-agent stayed at the same position for 25% of

the steps. This explains how the Q-agent can terminate earlier

for L1.

Early termination is another factor which reduces the so-

lution time. For instance, in L1 there is no string that starts

with a 1, and therefore it is possible to terminate immediately

if the automaton reads 1 at the beginning. However, in L2 the

automaton has to read all the input string to check whether the

length of string is even or not. In fact the results show that

the agents took less time to reach the answer for L1. Figure

5 displays the average episode length during training of the

Q-agents for both languages.

0 200 400 600 800 1,000 1,300 1,625
1

5

10

15

20

25

Timesteps (1k)

A
v

g
.

E
p

is
o

d
e

L
en

g
th

Avg. episode lengths during training of Q-learning.

L1

L2

Fig. 5. The change of the average episode lengths for the regular languages
during training with Q-learning algorithm.

3) Nonregular Languages: Even though Q-agent per-

formed better for regular languages, it was not successful

for the remaining languages. Nevertheless, for all languages

it gained more reward than the random agent and it is

possible to say that the agents managed to find sub-optimal

solutions. However, this does not necessarily imply higher

correct prediction rates. Q-agent has higher correct prediction

rate than random agent only for L3.

The reward function punishes heavily the agents which

answer wrong without reading the whole input string. So, for

an agent which can not find the correct answer, it is better

to reach the end of the string first before terminating. This

is how the Q-agents may have gained higher rewards than

random agents.

On the other hand, G-agents performed significantly better

for non-regular languages. For L3 G-agent achieved 100%
correct prediction rate and for L5 it rarely answers wrong.

There is an important detail in Fig. 2 for L5G. Even though

there are 3 heads, the second head is not used at all which

is expected for an efficient agent as theoretically L5 can be

recognized by a 2SMA(2).

Furthermore, there is a critical observation about the input

generation algorithm. As discussed earlier, half of the time

the input string is generated randomly and half of the time it

is chosen from the language, and the maximum length of the

generated strings is 20. So, if agents can understand if a string

is randomly-generated or not, then they can easily understand

whether it is a member string or not.

There is an important difference between L5, and L4 and

L6. In L4 and L6, first half of the string can actually be random

and only the second half must obey some format regarding the

first half. Therefore, it is possible to say that strings that are

in L4 and L6 look more random than L5. For instance, if a

string starts with 5 a’s and continues with 5 b’s, then it already

looks like a very organized string, thus an agent may assume

the rest of the string will contain 5 c’s. So, at that step the

agent may guess that the string is in the language and most

of the time makes a correct guess.

This can also explain why G-agents performed the worst in

L4 and L6. As determining if the input string is random or

not is harder for these languages, learning these languages is

harder for the agents.

VII. CONCLUSION

In this paper, two different algorithms are analyzed and

tested for training simple multi-head automata to recognize

several decision problems. According to the results, genetic

algorithm performed better overall.

A. Q-Learning vs. Genetic

Since Q-learning algorithm uses neural networks and ap-

plies gradient descent to optimize weights, it involves calcula-

tion with continuous values and calculus. On the other hand,

genetic algorithm involves integers and uses evolution-inspired

operations for optimization.

Running a neural network is more costly while in genetic

algorithm, integer arrays are used for simulating the automata

making it faster. Additional cost of the neural networks could

be justified with higher correct prediction rates whereas this

is not the case. In fact, agents that use neural networks only

learned to recognize regular languages. Thus, it is possible to

say that the genetic algorithm turned out to be more effective

and more efficient.

B. Future Work

In this paper, it is shown that a state of an automaton can be

represented with continuous values and the transition function

can map a state vector into another. This can also be done

for the alphabet. Currently, a head reads a symbol which is a

member of the finite set named alphabet. However, a symbol

can actually be a real number.

Continuous symbols are not necessarily useful for decision

problems but can be useful when there is an output tape. A

transducer automaton can write symbols on an output tape

[29]. In future work, a new transducer automaton model can be

defined which optionally uses continuous states or continuous

input/output symbols to learn different algorithms.

Furthermore, as genetic algorithm looks promising, more

advanced algorithms for population management and different

methods for creating new individuals can be investigated. Also,

testing with harder languages which require more than 3 heads

and changing the input generation algorithm in a way that

it tries to find corner cases for agents which they fail can

improve the effectiveness of training and thus help the agents

to generalize better.

REFERENCES

[1] E. M. Gold, “Language identification in the limit,” Information and

Control, vol. 10, no. 5, pp. 447 – 474, 1967.

[2] K. Fu, Syntactic Pattern Recognition and Applications, ser. Prentice-Hall
Advanced Reference Series: Computer Science. Prentice-Hall, 1982.

[3] D. Angluin and C. H. Smith, “Inductive inference: Theory and methods,”
ACM Comput. Surv., vol. 15, no. 3, pp. 237–269, Sep. 1983.

[4] L. Miclet, “Grammatical inference,” in Syntactic and Structural Pattern

Recognition—Theory and Applications. World Scientific, 1990, pp.
237–290.

[5] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179 – 211, 1990.

[6] A. Cleeremans, D. Servan-Schreiber, and J. Mcclelland, “Finite state
automata and simple recurrent networks,” Neural Computation - NECO,
vol. 1, pp. 372–381, Sep. 1989.

[7] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C.
Lee, “Learning and extracting finite state automata with second-order
recurrent neural networks,” Neural Computation, vol. 4, no. 3, pp. 393–
405, May 1992.

[8] S. Das, C. L. Giles, and G. Sun, “Learning context-free grammars:
Capabilities and limitations of a recurrent neural network with an
external stack memory,” in Proceedings of The Fourteenth Annual

Conference of Cognitive Science Society. Indiana University, 1992, p. 14.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[10] F. A. Gers and E. Schmidhuber, “Lstm recurrent networks learn simple
context-free and context-sensitive languages,” IEEE Transactions on

Neural Networks, vol. 12, no. 6, pp. 1333–1340, Nov. 2001.

[11] G. Weiss, Y. Goldberg, and E. Yahav, “On the practical computational
power of finite precision RNNs for language recognition,” in Proceed-

ings of the 56th Annual Meeting of the Association for Computational

Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume

2: Short Papers, I. Gurevych and Y. Miyao, Eds. Association for
Computational Linguistics, 2018, pp. 740–745.

[12] P. Fischer, A. Meyer, and A. Rosenberg, “Counter machines and counter
languages,” Theory of Computing Systems, vol. 2, pp. 265–283, Sep.
1968.

[13] K. Cho et al., “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv preprint

arXiv:1406.1078, 2014.

[14] H. Siegelmann and E. Sontag, “On the computational power of neural
nets,” Journal of Computer and System Sciences, vol. 50, no. 1, pp. 132
– 150, 1995.

[15] W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus, “Learning simple
algorithms from examples,” in International Conference on Machine

Learning, 2016, pp. 421–429.

[16] H. Zhou and J. J. Grefenstette, “Induction of finite automata by genetic
algorithms,” in Proceedings of the 1986 IEEE International Conference

on Systems, Man and Cybernetics, 1986, pp. 170–174.

[17] P. Dupont, “Regular grammatical inference from positive and negative
samples by genetic search: the gig method,” in Grammatical Inference

and Applications, R. C. Carrasco and J. Oncina, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1994, pp. 236–245.

[18] J. H. Holland, Genetic Algorithms and Adaptation. Boston, MA:
Springer US, 1984, pp. 317–333.

[19] M. M. Lankhorst, Genetic algorithms in data analysis. Rijksuniversiteit
Groningen, 1996.

[20] W. Huijsen, “Genetic grammatical inference,” in CLIN IV: Papers from

the Fourth CLIN Meeting. Citeseer, 1993, pp. 59–72.

[21] S. Lucas and T. Reynolds, “Learning deterministic finite automata with
a smart state labeling evolutionary algorithm,” IEEE transactions on

pattern analysis and machine intelligence, vol. 27, pp. 1063–74, Aug.
2005.

[22] J. Gómez, “An incremental-evolutionary approach for learning deter-
ministic finite automata,” in 2006 IEEE International Conference on

Evolutionary Computation. IEEE, 2006, pp. 362–369.

[23] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Active learning
approaches for learning regular expressions with genetic programming,”
in Proceedings of the 31st Annual ACM Symposium on Applied Com-

puting, 2016, pp. 97–102.
[24] A. Rosenberg, “On multi-head finite automata,” IBM Journal of Research

and Development, vol. 10, pp. 388–394, Sep. 1966.
[25] M. Holzer, M. Kutrib, and A. Malcher, “Multi-head finite automata:

Characterizations, concepts and open problems,” Electronic Proceedings

in Theoretical Computer Science, vol. 1, p. 93–107, Jun. 2009.
[26] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013.
[27] ——, “Human-level control through deep reinforcement learning,” Na-

ture, vol. 518, no. 7540, p. 529, 2015.
[28] A. Thengade and R. Dondal, “Genetic algorithm-survey paper,” in MPGI

National Multi Conference. Citeseer, 2012, pp. 7–8.
[29] A. Esmoris, C. I. Chesñevar, and M. P. González, “Tags: A software

tool for simulating transducer automata,” The International Journal of

Electrical Engineering & Education, vol. 42, no. 4, pp. 338–349, 2005.

This figure "fig1.png" is available in "png"
 format from:

http://arxiv.org/ps/2010.10141v1

http://arxiv.org/ps/2010.10141v1

	I Introduction
	II Simple Multi-head Finite Automata
	III Reinforcement Learning
	III-A Environment & Agent
	III-A1 Initial State
	III-A2 Observation
	III-A3 Processing the Action
	III-A4 Termination & Reward

	IV Q-Agents
	IV-A Deep Q-Learning
	IV-B GRU vs. LSTM
	IV-C Modeling SMA with Neural Networks
	IV-D Implementation

	V G-Agents
	V-A Genetic Algorithm
	V-B Representation of SMA with Chromosome
	V-C Fitness

	VI Results
	VI-A Languages
	VI-B Hyperparameters
	VI-C Discussion
	VI-C1 Random Algorithm
	VI-C2 Regular Languages
	VI-C3 Nonregular Languages

	VII Conclusion
	VII-A Q-Learning vs. Genetic
	VII-B Future Work

	References

