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Abstract—Atrial fibrillation (AF) is the most common heart
arrhythmia. It affects between 1% and 2% of the world popu-
lation over 35 years old. This disease is linked to an increased
risk of stroke and heart failure. AF is a progressive disease and,
at first, paroxysmal AF episodes occur, last from seconds up to
a week and then stop. The disease evolves to permanent state,
where the heart is always in fibrillation and can’t be corrected.
Forecasting paroxysmal AF episode a few seconds or minutes
before its onset remains a hard challenge, but could lead to
new treatment methods. For this study, we constructed a new
long-term electrocardiogram (ECG) database (24 to 96 hours),
composed of 10484 ECG. As a result of a careful analysis by a
cardiologist, 250 AF onsets of paroxysmal AF have been detected
in 140 ECG. We developed a deep neural network (DNN) model,
composed of convolutional neural network (CNN) layers and
bidirectional gated recurrent units (GRU) as recurrent neural
network (RNN) layers. The model was trained for a supervised
binary classification distinguishing between heartbeats series (RR
intervals) that precede an AF onset and series distant from any
AF. The model achieved an average area under the receiver
operating characteristic (ROC) curve of 0.74. We evaluated the
impact of heartbeat window size given as input, and the time
period between the heartbeats window and the AF onset. We
found that an input window of 300 heartbeats gives the best
results and, not surprisingly, the closer the window is from the
AF onset, the better the results. We concluded that RR intervals
series contains information about the incoming AF episode, and
that it can be exploited to forecast such episode.

Index Terms—atrial fibrillation, heart rate variability, RR
intervals, deep learning, deep neural network, convolutional
neural network, recurrent neural network

I. INTRODUCTION

Atrial fibrillation (AF) is the most common heart arrhythmia
and the second most common heart disease after hypertension.
This disease is characterised by irregular contractions of the
atria, the two upper chambers of the heart. Between 30 and
50 million people are affected worldwide. The prevalence is
estimated between 1% and 2% for the population over 35 years
old, and AF is more frequent for people aged over 80 years
old, for whom it is estimated between 10% and 17% [1] [2].
The number of affected patients continues to rise due to the
global ageing of the world population. Indeed, the part of the
population aged over 60 years old is expected to double by
2050 and is growing faster than all younger age groups [3].

AF is a progressive disease, and three types can be dis-
tinguished: paroxysmal AF, persistent AF and permanent AF.

The disease will first be present in paroxysmal state, where AF
episodes start randomly and last from seconds up to a week.
The heart recovers to normal sinus rhythm (NSR) without
the need for a medical intervention. The disease then evolves
to persistent state, where episodes last more than 7 days. A
medical intervention, either drugs or surgery, is required to
help the heart to recover to a normal state. Finally, the last
state of the disease is permanent AF. When the disease reaches
this state, the heart is continuously in AF, and never recovers
to AF.

One major danger of this disease is that it can be present
but asymptomatic for years, before being revealed by one of
its consequences. AF can lead to stroke, as blood clots can
form in the heart and then be expelled into the body during AF
episodes [4]. Patients with AF have an increased risk of stroke
by a factor of 5. Other AF consequences are an increased risk
of heart failure and death.

AF is diagnosed by a cardiologist using an electrocar-
diogram (ECG), in which signs of AF can be detected. In
addition to ECG analysis, heart rate variability (HRV) was
also studied for AF detection, as heartbeats become irregular
during AF (Figure 1). HRV can be derived from the ECG and it
corresponds to the series of time duration between heartbeats.
This time duration is called RR interval and measured between
two successive R waves, i.e. the most significant part of one
ECG wave.

For AF detection purpose, cardiologists can record ECG on
an opportunistic basis (e.g. during regular cardiac check), or
a systematic ECG records can be made for a given population
(e.g. for all patients over 70 years old). In clinical practice,
if there exists a suspicion of AF for a patient, a long-term
ECG is recorded using an Holter monitor. The patient will
carry the portable electrocardiograph for several days, and
the whole ECG will be analysed afterward by a medical
software and a cardiologist to detect signs of AF. In addition,
cardiologists can also rely on risk scores (e.g. CHA2DS2VASc
[5] or CHARGE-AF [6]) to identify at-risk patients in the
population. These scores are based on the combination of
multiple clinical parameters of the patient (e.g. age, sex,
diabetes, hypertension).

In recent years, machine learning (ML) algorithms and
in particular deep learning (DL) algorithms have been used
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Figure 1. Heart rate transition from regular rhythm (normal sinus rhythm) to
irregular rhythm (atrial fibrillation episode)

for automated detection of AF. These models have produced
promising results, sometimes achieving a better accuracy than
an average detection rate of cardiologists [7]. In addition, due
to the increasing available computation power, the models are
able to analyse several days of ECG in seconds, where it would
take minutes or hours of diligent work for a cardiologist to per-
form similarly. In the coming years, artificial intelligence (AI)
models could assist medical professionals in such repetitive
tasks, to create a first analysis and detection of AF episodes
that would then be confirmed by the cardiologist.

Studies for AF detection have been based on various ML
and DNN models, composed of convolutional neural network
(CNN) and/or recurrent neural network (RNN). Some studies
are focusing on high-quality ECG (e.g. 200 Hz) [7], while
other are focusing on HRV series [8] [9]. The datasets used
are either public or private. The MIT-BIH Atrial Fibrillation
Database [10] is one of the most used public datasets. It con-
tains 25 long-term ECG with the corresponding annotations.
It is available on Physionet [11] website.

Multiple companies are also offering AF detection features
embedded in wearables, such as smartwatches [12] or portable
ECG devices [13]. The device records ECG regularly or on
user demands and analyses them to search for any sign of
AF. The user is notified in case of abnormal heart rhythm
and is invited to visit a cardiologist for further medical tests
to refute or confirm the presence of AF. This type of use of
new technology opens a new era for medical research where
large-scale studies could be conducted using data collection
from wearables. This could also lead to personalised medicine
where models are trained for the needs of a specific patient.
Special attention must be given to the model accuracy and false
positive rate. Indeed, inducing extra workload for cardiologist
instead of reducing it must be avoided.

Additionally to AF detection, other AF related tasks have
been realised in the last years. Researchers have been looking
for an AF signature in normal ECG signal as an alternative
to AF risk score, to identify patients with a high likelihood
to develop AF in the future. A deep CNN model was able to
distinguish normal ECG from patients with AF from normal

ECG from healthy patients up to a month before an AF
crisis [14]. The area under the receiver operating characteristic
(ROC) curve (AUC) for this classification equals 0.87. As a
comparison, the CHARGE-AF risk score achieved an AUC of
0.75 [15].

Other researchers have been studying the possibility to
forecast an oncoming AF using the seconds and minutes of
ECG previous to the onset. The PAF prediction challenge [16]
proposed by Physionet in 2001 made public a dataset for this
task. It is composed of 100 pairs of 30 minutes ECG, half
of the pairs are from healthy patients and the other half from
patients with AF. The first goal was to make the distinction
between pairs from healthy patients and patients with AF. The
second goal is only for pairs from AF patients, and it was to
determine which of the two ECG precedes the AF and which
of the two is distant. For the second task, the winner of the
challenge correctly identified the ECG preceding the AF in
22 of the 28 pairs of the test set, using an algorithm based on
the premature atrial complex count (APC) [17]. More recently,
a study proposed a feed-forward neural network model able
to classify features extracted from the ECG. It was able to
classify 55 of the 56 ECG from the 28 AF patients pairs [18].
A limitation of these results is the small training and testing
dataset size. It makes it difficult to evaluate if the proposed
models would generalise correctly when applied to a larger
patients sample.

In summary, three AF related tasks can be distinguished in
the literature:

• AF detection,
• patient identification,
• AF forecast.

The three tasks require the analysis of ECG or HRV, but the
window of interest is different, as shown in Figure 2. For AF
detection, this window in composed of all ECG records, with
or without AF episodes. For patient identification, the windows
of interest are the weeks before the first signs of AF episodes
and the objective is to predict if an AF episode will occur or
not in the following weeks or months. Finally, the windows of
interest for AF forecast are the minutes and hours just before
the AF onset.

In this research, we study the AF forecast but with a
different goal than the one proposed for the PAF prediction
challenge. Our model does not distinguish pairs of ECG but
aims to predict if an individual ECG is before the onset or far
from any AF.

In addition, we have chosen to limit the treated signal to
the HRV time series just composed of RR intervals.

II. MATERIALS AND METHOD

A. Dataset

A new database of long-term Holter ECG has been consti-
tuted. They were recorded from December 2009 to December
2018 in an outpatient clinic. All patients were included in the
dataset, at the except of those with Cardiovascular Implantable
Electronics Devices (CIED). It represents a total of 10484



Figure 2. Windows of interest for AF tasks

Figure 3. Complete Holter record with the RR intervals (top) and correspond-
ing labels established by the cardiologist (bottom)

ECG. They were recorded using 2-channel Spiderview (200
Hz) Holter monitors. Each record lasts for at least 24 hours
and up to 120 hours.

All the ECG were first analysed by a medical software and
then by a cardiologist, to determine if the record presents signs
of AF. If signs were found, the whole ECG was analysed to
accurately establish, within 5 milliseconds, the starting and
ending time of AF episodes. For each ECG with AF signs,
a precise label file containing a value (AF or NSR) for each
heartbeat was created (Figure 3). A medical software was used
to extract the RR intervals and eliminate outliers from the
records.

Only the RR intervals windows preceding the AF onset
were used to construct the dataset, and not the whole Holter
monitoring. Three parameters were used to extract relevant
windows from the Holter database (Figure 4).

• The first parameter is the window size. It corresponds to
the number of RR intervals in the window that will be
given as input to the DNN model.

• The second parameter is the distance. It corresponds to
the number of RR intervals between the window and the
AF onset.

Figure 4. The three parameters used for RR intervals windows choice during
dataset creation from Holter monitorings

TABLE I
MODEL LAYERS AND CORRESPONDING PARAMETERS. TOTAL NUMBER OF

WEIGHTS IN THE NETWORK IS 151 901.

N° Type Parameters Output shape
1 Input layer 300 x 1
2 1D convolution filers: 100 298 x 100

kernel size: 3
stride: 1

3 1D convolution filers: 100 296 x 100
kernel size: 3
stride: 1

4 Max pooling pooling size: 2 148 x 100
stride: 2

5 Bidirectional GRU units: 200 200
6 Dense units: 1 1

activation: softmax

• Finally, the third parameter is the tolerance. Rather than
attempting to predict if a given RR intervals window will
or not lead directly to an AF onset, the tolerance is the
number of RR intervals in which the AF crisis onset can
take place.

The tolerance was fixed to 30 RR intervals. Therefore,
instead of forecasting if a given window leads directly or not
to an AF, the model forecasts if an AF will start or not in
the next 30 beats after the window. For each AF onset, 30
windows can therefore be considered.

The impact of the variation of the distance and window
size parameters on the model performance were studied. Three
window sizes were chosen:

• a short window (60 RR intervals before AF),
• a medium window (300 RR intervals before AF),
• a large window (900 RR intervals before AF).

The distance was first set to 0 RR interval and then increased
to 30, 60, 90 and up to 300 RR intervals before the AF onset.

For each case of the three chosen parameters, a dataset is
created and balanced with negative examples, i.e. RR intervals
windows distant from any AF signs and chosen randomly in
the Holter monitoring. The corresponding task is therefore a
supervised binary classification problem, where for a given RR
intervals window, the model should be able to forecast whether
or not an AF onset is likely to occur after the window.



Figure 5. DNN model architecture. The RR intervals window is extracted from the ECG and is then analysed by a CNN composed of two 1 dimension
convolution layers and a max pooling layer. A bidirectional GRU treats the output of the CNN and the final classification is done by a dense layer with a
softmax activation.



B. Model architecture

The DNN model consists of several layers, as presented in
Figure 5 and Table I. The input is a RR intervals window.
The first two layers of the DNN are 1 dimension CNN layers,
with a kernel of size 3 and a stride of 1. The number of filters
is 100 and therefore 100 output features maps are produced.
A max pooling layer with a pooling size of 2 is then used
to reduce the dimension of the output before the next layer.
A bidirectional gated recurrent unit (GRU) [19] layer is used
to process the output. The bidirectional layer provides a rich
context for the network. Indeed, at each time step in the series,
the forward GRU contains all the past information while the
backward one contains all future information from the series.
GRU were preferred over long short-term memory (LSTM)
[20] as they provided similar results and faster training due to
the reduced number of parameters. The forward and backward
results are concatenated and, finally, a dense layer is used for
the final classification. The binary classification is either AF
onset or NSR, depending on whether the model predicts that
the RR intervals window precedes an AF onset or is very
distant from any AF.

C. Model training

For each set of parameters (distance, tolerance and window
size), a new dataset is constructed from the ECG database, and
a new model is trained on this dataset. The process is repeated
200 times and the final metrics are averaged over the metrics
from all runs.

The dataset is split into train, validation and test sub-datasets
using a 7:1:2 ratio. It is important to note that the split is
done at a patient level, i.e. if a patient Holter record contains
multiple AF onsets, they can only be contained in the same
split. Indeed, we wanted to test patients on completely new
records to ensure the model generalisation capacity.

During the training phase, an early stopping mechanism
was used to avoid overfitting. At the end of each epoch,
the validation set is used to determine whether the model
still improves and if the training should be continued or
not. If the metrics did not improve for a certain number of
epochs, the training is stopped and the best model weights are
restored. This number of epochs is determined by the patience
parameter, set to 25 epochs in our study.

The model was trained using the Adam optimizer [21],
with a learning rate of 0.0001. The batch size was set to 128
samples. The model was implemented using Python 3.6 , Keras
and Tensorflow. It was trained using a NVIDIA GeForce RTX
2080ti.

III. RESULTS

A. Database composition

From the 10484 Holter monitorings, 550 show signs of AF.
From those, 140 records show signs of paroxysmal AF, 391
records show signs of permanent or persistent AF and 19
records were rejected because of insufficient data quality or
active pacemaker during the record (Figure 6). Most records

Figure 6. Composition of the Holter database (10484 recorded Holter
monitorings). 140 show signs of paroxysmal AF and were used for the model
training and testing.

Figure 7. Distribution of the number of AF episodes in Holter recordings

presented only one (81 patients) or two (28 patients) AF
episodes, but some contained up to 11 episodes (Figure 7).

In total, 308 AF episodes and 287 AF onset were recorded.
The fact that the number of onsets is smaller than the number
of episodes is due to the fact that some episodes had already
begun before the monitoring was started. From theses 287
onsets, only 250 do not contain any sign of AF in the 300 RR
intervals preceding the AF crisis and could be used for the
study.

B. Window size parameter

The impact of the window size was studied. The three
chosen window sizes (60 RR intervals, 300 RR intervals and
900 RR intervals) were tested on datasets with the distance
parameter set to 0 RR intervals and the tolerance parameter
set to 30 RR intervals. For each window size, the ROC curves
for the test set was created and AUC we computed. Table II
presents the results of the three choices and the 300 RR



TABLE II
METRICS FOR AF FORECAST WITH VARYING WINDOW SIZE (SMALL,

MEDIUM AND LARGE WINDOWS)

Window size Distance AUC 95% CI
60 0 0.7152 0.7003 - 0.7300

300 0 0.7427 0.7279 - 0.7572
900 0 0.7123 0.6960 - 0.7284

Figure 8. Average ROC on 200 runs with distance parameters set to 0 and
window size parameter set to 300. Each blue line corresponds to one ROC
for an independent run.

intervals window size gave the best performance. Therefore,
this window size was selected for the tests of the distance
parameter.

C. Distance parameter

The distance parameter was studied and we found, not so
surprisingly, that the closer the RR intervals window is from
the AF onset, the better the results become. The AUC equals
0.74 when the windows are next to the AF onset, i.e. distance
of 0 (Figure 8), so just at the frontier. The AUC decreases as
the window moves further away from the AF onset. As shown
in Table III, the AUC is 0.62 at a distance of 300 RR intervals
before the AF onset. The ROC evolution is presented in Figure
9. So even at such a time distance, there is still some weak
signal of AF next appearance, and most of our future efforts
will be to improve this prediction accuracy.

IV. DISCUSSION

In this study, we implemented, trained and evaluated a DNN
composed of a 1 dimension CNN layers and a bidirectional
GRU. We showed that the model was able to distinguish
RR intervals windows preceding AF onset and RR intervals
windows distant from any AF onset.

TABLE III
METRICS FOR AF FORECAST WITH VARYING DISTANCES

Window size Distance AUC 95% CI
300 0 0.7427 0.7279 - 0.7572
300 30 0.7115 0.6958 - 0.7269
300 60 0.7023 0.6866 - 0.7179
300 90 0.6818 0.6655 - 0.6979
300 300 0.6271 0.6099 - 0.6443

Figure 9. Evolution of the ROC with respect to the distance

We have built a new ECG database, which is larger than
the one available on Physionet (250 AF onsets vs 28 AF
onsets). During the ECG windows choice process, the tol-
erance parameter allowed us to considerate more of them
for each AF onset and therefore to increase the dataset size.
Indeed, for a tolerance set to 30 RR intervals, 30 windows
can be considered for each AF onset. In total, each dataset
with positive and negative examples is composed of about
15000 samples. However, it remains small for usual DNN
model training, where a large number of parameters have to
be optimised, based on a much bigger training set.

A second limitation is the reduced information, due to the
use of RR intervals series in place of high quality ECG.
Despite this, the model performance and its ability to derive
features to distinguish between the two types of windows
were already quite impressive. In the future, we aim to study
the same dataset but with higher quality signal. The medical
parameters of the patients, used to compute risk scores, could
also be given as an input to the model to consider more insights
about the patients.

Finally, it should be noted that the use of DNN for medical
applications raises questions about results interpretation and
explainability, a quite critical constraint in medicine. The



size of the networks and the number of parameters makes
it very difficult to interpret. Looking for simpler and more
understandable ML classifiers, using well-known time and
frequency features, could also be a way forward for this
research.

V. CONCLUSION

Being able to forecast AF episodes a few seconds, minutes
or hours before the onset is challenging, but could be a very
important path to new treatments. Currently, patients with
AF are put under anticoagulant treatment to reduce the risk
of blood cloths formation, and therefore reduce the risk of
potential stroke.

Implementing a ML model trained to recognise AF signa-
tures in normal ECG before AF onsets could help to prevent
the crisis before it happens, and reduce the risks and possible
consequences induced by this AF episode. One key aspect
to train this ML model is the number of records in the
dataset. This dataset construction is still in progress, as we
continue to increase the number of ECG. In addition, record-
ings from healthy patients and patients with other cardiac
conditions should be included in the database. Randomly
selected windows from those Holter monitorings should be
included in the samples as negative examples to increase the
model generalisation.

Nowadays, as we enter the new era of personalised
medicine, the long-term view would be to enable smart wear-
ables and pacemakers to be trained for a specific patient. The
device could therefore be able to forecast the next AF onset
and apply a preventive treatment to avoid the crisis and protect
the patient in the best way.
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