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Abstract

Recently generative models have focused on combining
the advantages of variational autoencoders (VAE) and gen-
erative adversarial networks (GAN) for good reconstruc-
tion and generative abilities. In this work we introduce a
novel hybrid architecture, Implicit Discriminator in Varia-
tional Autoencoder (IDVAE), that combines a VAE and a
GAN, which does not need an explicit discriminator net-
work. The fundamental premise of the IDVAE architecture
is that the encoder of a VAE and the discriminator of a
GAN utilize common features and therefore can be trained
as a shared network, while the decoder of the VAE and the
generator of the GAN can be combined to learn a single
network. This results in a simple two-tier architecture that
has the properties of both a VAE and a GAN. The qualita-
tive and quantitative experiments on real-world benchmark
datasets demonstrates that IDVAE perform better than the
state of the art hybrid approaches. We experimentally vali-
date that IDVAE can be easily extended to work in a condi-
tional setting and demonstrate its performance on complex
datasets.

1. Introduction

Deep Variational Autoencoders(VAE[15]) and Genera-
tive Adversarial Networks(GAN[12]) are two recently used
approaches in the generative modeling world. VAE is more
stable in training but generates blurry samples. While GAN
has the appealing property of generating realistic images;
training a GAN is well known to be challenging leading to
problems such as mode collapse.

Several recent approaches have proposed hybrid models
of autoencoder and adversarial networks with a joint objec-
tive of achieving stable training like VAE and inferencing
ability like GAN. In order to introduce the adversarial loss
component in the objective functions most of the recent hy-
brid approaches include an adversary network that results

∗Authors with equal contribution

Figure 1. Flow diagram of traditional hybrid approaches(left) and
our proposed approach(right). We introduce the adversarial loss
by collapsing the encoder into the discriminator, which we term as
Implicit Discriminator. The output of discriminator is denoted by
y ∈ [0, 1] where 0 and 1 represent fake and real respectively.

in a three-tier architecture i.e. an encoder, a decoder, and
an adversary network. We hypothesize that the encoder and
discriminator networks can share common layers encoder
itself can be reused as a discriminator, thereby assuming an
overlap in the knowledge learned by the encoder and the
discriminator network.

The key idea behind our approach is that we would like
the discriminator to provide the useful gradients to the gen-
erator if it misses any mode in the true data distribution.
The traditional GAN learning does not explicitly encour-
age such a property in the discriminator and therefore, we
suspect that it is vulnerable to the issue of mode collapse.
Further, we note that the traditional L2 loss used for learn-
ing the encoder can be seen as minimizing the forward-KL
divergence. The forward-KL divergence comes with the
mode inclusive property (i.e. it never misses a mode in the
true data distribution). Therefore, to make the discriminator
aware of all the modes in the true data we propose to share
the forward-KL information with the discriminator by ex-
plicitly sharing the parameters between the encoder and the
discriminator network. We restrict the sharing of the pa-
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rameters between the encoder and discriminator networks
until the penultimate layer to facilitate the modelling of the
different outputs.

Figure 1 illustrates our proposed two-tier architecture
and contrasts it against the traditional hybrid (V)AE/GAN
approaches. We propose an adversary free two-tier archi-
tecture i.e. an encoder and decoder network that has the ca-
pabilities of both a discriminator and a generator. In the
proposed model the decoder network collapses into the gen-
erator, while the encoder network is merged with the dis-
criminator resulting in a two tier architecture. We term our
two tier architecture as Implicit Discriminator in Variational
Autoencoder (IDVAE). VAE-GAN is a special case of ID-
VAE where there is no sharing of parameters between the
encoder and the discriminator.

In this work we show that our proposed simpler hy-
brid VAE/GAN model, IDVAE outperforms the prior ap-
proaches in terms of visual fidelity measured in terms of
FID score. We also show that our model sustains both re-
construction and generation ability without training an un-
necessary adversary network that would result in learning
more parameters. Overall the main contributions of the
work are as follows :

• We introduce a novel two-tier architecture, IDVAE,
which sustains the abilities of both reconstruction
(VAE) and generation (GAN) without learning a sepa-
rate discriminator or a generator.

• We present a training schedule that facilitates the en-
coder to act as as implicit discriminator while main-
taining the tight coupling between encoder and de-
coder network.

• Empirical evaluations of IDVAE performed on bench-
mark datasets show that IDVAE achieves better gen-
erative ability than prior approaches. We also show
that Fréchet Inception Distance, a common measure to
evaluate the quality of the generations has inconsistent
outputs and thereby propose an ensemble of experts for
conducting quantitative evaluation.

2. Related Work

Variational Autoencoder (VAE) introduced by Kingma et
al.[15] minimizes the KL divergence between the real distri-
bution (Px) and the generated distribution (Pg) through the
variational bound. Detailed analysis of VAE by Doersch[9]
shows that VAE works well in practice and is considered
to model the true data distribution quite well but often gen-
erates poor quality samples i.e. the images produced by the
decoder are blurred. On the other hand GAN’s [12] generate
samples that are visually more realistic through an adversar-
ial game play between the generator and the discriminator.

However, GAN’s suffer from problems like instability dur-
ing training and mode collapse. Recently Bang and Shim
[4] proposed RFGAN that uses pre-trained encoder features
(representative features) to regularize the training of the dis-
criminator to alleviate the problem of mode collapse. Sim-
ilarly, MR-GAN[6] also proposes to use autoencoder fea-
tures as regularizer in GAN training. Inspired from these
architectures, we propose IDVAE that exploits the comple-
mentary properties of forward KL and reverse KL to capture
the data distribution. While these approaches make use of
a pre-trained encoder, our approach jointly and simultane-
ously trains a VAE and GAN achieving both the reconstruc-
tion and generation capabilities.

There has also been some efforts towards utilizing the
advantages of VAE for training GANs. Larsen et al. [17]
proposed VAE-GAN that collapses the decoder of the VAE
into the generator of the GAN. VAE-GAN achieves sharp
generations using a similarity metric learned by the in-
termediate representations of an explicit adversary. VAE-
GAN requires an explicit discriminator, while our proposed
approach overcomes this necessity by converting the en-
coder of the network into a discriminator. ALI[11] and
BiGAN[10] also propose to use three networks: the en-
coder, the decoder and the adversary. Unlike IDVAE, both
the ALI and the BiGAN discriminator differentiates be-
tween samples from the joint distribution of observed data
and latent codes. However, the reported reconstructions are
of poor quality [21]. Akin to BiGAN discriminator setting,
the AVB[21] model uses an additional discriminator to fa-
cilitate learning without explicitly assuming any form for
posterior distribution. However, the samples generated by
AVB for the CelebA dataset are observed to be blurry [3]. In
contrast, the simpler IDVAE model is able generate higher
quality samples with lesser parameters.

Li et al. [19] propose ALICE that improves upon ALI
by alleviating certain undesirable solutions (saddle points).
Unlike a two tier approach of IDVAE, ALICE requires three
networks and proposes to regularize the objective with cy-
cle loss (an upper bound for conditional entropy). While in
IDVAE, there is an implicit regularization on the discrimi-
nator by sharing its parameters with the encoder. The AS-
VAE model of Pu et al. [23] focuses on both reverse and
forward-KL between the encoder and decoder joint distri-
butions with an objective to maximize the marginal likeli-
hood of observations and latent codes. AS-VAE also needs
two adversaries to circumvent the need of assuming an ex-
plicit form for the true intractable distribution (eqn 8 and 9
in [21]). IDVAE also focuses on forward-KL and reverse-
KL but in a very novel way by sharing the parameters of
the encoder (forward-KL) and discriminator (reverse-KL)
resulting in a simpler model. α-GAN [24] fuses VAE and
GAN exploiting the density ratio trick by constructing two
additional discriminators for measuring the divergence be-



tween the reconstructions and the true data points, and the
latent representations and the latent prior. The first discrim-
inator minimizes the reverse-KL divergence, and the recon-
struction error term minimizes the forward-KL divergence
to discourage mode collapse. Training α-GAN is difficult
as it requires learning a large set of parameters (for the 4
networks). In contrast to previous approaches, Ulyanov et
al. [28] propose a two tier adversary free approach, AGE,
where the encoder network is responsible for the adversarial
signal. While the architectures of AGE and IDVAE appear
to be similar, there are some fundamental differences in the
process of learning the discriminator. The AGE discrimina-
tor compares (via divergence) the encoded real and fake dis-
tributions against a fixed reference distribution (typically, a
prior in latent space). Whereas the IDVAE discriminator di-
rectly compares the real and fake data using a simple cross
entropy loss, where both the reconstructions and randomly
generated samples are treated as fake examples. We em-
pirically show that IDVAE learns better as its discriminator
relies on reconstructed samples as well. Importance of re-
constructed samples in adversarial learning is supported in
literature[7].

3. Methodology

Notations Let x be the data point in the input space X
and z be the code in the latent space Z . The output of the
encoder and the discriminator network for an input x is rep-
resented as Enc(x) and Dis(x) respectively. Similarly the
output of decoder network i.e. x̃ for a latent code z is de-
noted by Dec(z). The output at the lth layer of the encoder
network for an input x is denoted as Encl(x). This is same
as the output at the lth layer of the discriminator network for
an input x which is denoted as Disl(x). Encl(x) and Disl(x)
are used interchangeably depending on the context. In refer-
ence to Figure 2, we denote the encoder specific parameters
by θenc where θenc = {θµ, θΣ}.

We start with some preliminaries on VAE[15] and
GAN[12] before describing our proposed model, which
combines both of them.

3.1. Variational Autoencoder

A VAE comprises of learning two networks, namely, the
encoder and the decoder network. In contrast to traditional
autoencoders, VAE views the encoder and the decoder net-
works as probabilistic functions. The encoder learns a con-
ditional distribution on the latent code z conditioned on the
input x. Similarly decoder learns a distribution on x̃ condi-
tioned on the latent code z.

z ∼ Enc(x) = q(z|x) (1)

x̃ ∼ Dec(z) = p(x|z) (2)

Figure 2. The proposed architecture for IDVAE. The parame-
ters θµ and θΣ denote a single fully connected layer learning
the encoder specific parameters, θenc. θdis also represents a sin-
gle fully connected layer which denotes discriminator specific pa-
rameters. Similarly θshared denotes the shared parameters between
the encoder and the discriminator whereas θdec denotes the de-
coder/generator specific parameters.

Vanilla VAE jointly trains over the encoder and the
decoder network parameters by minimizing negative log-
likelihood (reconstruction term) and divergence between
prior and learned distribution in latent space Z . The prior,
p(z), over the latent space is typically assumed to be a unit
Normal distribution, i.e. z ∼ N (0, I). Thus training a VAE
would mean minimizing the following loss:

LVAE = Lrecons + Lprior (3)

where,
Lrecons = −Eq(z|x)[log p(x|z)] (4)

Lprior = KL(q(z|x)‖p(z)) (5)

and KL(q(z|x)‖p(z)) is the Kullback-Leibler divergence
between the distributions q(z|x) and p(z).

3.2. Generative Adversarial Network

A GAN consists of two networks, namely, the discrim-
inator and the generator that are learned through an adver-
sarial game play. The generator network maps a point z in
some arbitrarily low dimensional latent space Z to a point
in a high dimensional data space X . We denote Gen(z) as
the output of the generator network when z is the input.
In a similar vein, the discriminator network maps a data
point x in the data space to a probability value y ∈ [0, 1].
The objective of the discriminator is to assign the proba-
bility y = Dis(x) that x is a sample from true distribution
and the probability 1 − y that x is a generated sample i.e.
x = Gen(z), with z ∼ p(z). Thus, in this adversarial game
play, the objective of the generator is to synthesize samples
that can fool the discriminator i.e. learning the true data dis-
tribution, while the goal of the discriminator is to recognize
the samples coming out of the generated(fake) distribution



and the true distribution. Adversarial game play between
the discriminator and the generator is formally defined by
the GAN loss as

LGAN = log(Dis(x)) + log(1− Dis(Gen(z))) (6)

We want to maximize the binary cross entropy loss with
respect to the discriminator (D) while minimizing it for the
generator (G). Thus, the minimax objective is defined as

min
G

max
D
LGAN (7)

3.3. IDVAE

Our proposed approach, Implicit Discriminator in
Variational AutoEncoder (IDVAE), exploits the properties
of both VAE and GAN. IDVAE sustains the stable training
properties of VAE while generating samples of quality ap-
proaching GAN. We borrow the encoder and decoder net-
works from VAE with slight modifications. In particular,
we collapse the VAE decoder network into the generator of
the GAN and the VAE encoder network partially into the
discriminator of the GAN.

We partially collapse the encoder into the discrimina-
tor following the assumption that there exists an overlap in
the knowledge of encoder and discriminator network. As
the encoder’s objective is to learn representational features,
while the discriminator’s objective is to learn discriminative
features, we restrict the weight sharing to the penultimate
layer (say some lth layer of encoder represented as Encl)
in encoder of the VAE. Further to encourage the encoder to
learn the features of discriminator we add a single fully con-
nected layer from Encl to a single sigmoid node that acts as
the discriminator’s output. Figure 2 illustrates the proposed
IDVAE network architecture.

Thus, in our model we have four sets of parameters that
need to be learned, namely; θdec - the shared parameters be-
tween the decoder and the generator, θshared - the parameters
shared between the encoder and the discriminator, θenc - the
encoder specific parameters of the VAE, and θdis - the dis-
criminator specific parameters of the GAN. These are up-
dated based on the loss incurred by each of the individual
networks.

The loss incurred by the encoder is used to update both
θshared and θenc. The encoder loss in the IDVAE consists
of two components similar to a standard VAE. The first
component is the reconstruction loss - Lrecons and the sec-
ond component is the prior discrepancy loss - Lprior. It
is well known that minimizing the forward-KL divergence
i.e. KL(Pdata‖Pmodel) achieves mode coverage for gener-
ative models. Thus, we minimize forward-KL divergence
by minimizing Lrecons for helping IDVAE to learn the dif-
ferent modes in the data. The shared parameters between
the encoder and the discriminator encode the forward-KL
divergence information. Thus using Lrecons in the encoder

reduces the extent of mode collapse as the gradients from
the discriminator to the generator implicitly contain the in-
formation about multiple modes. Thus the overall encoder
loss (Lenc) is defined as follows

Lenc = αLrecons + βLprior (8)

where α and β are hyper parameters controlling the con-
tribution of each of the loss terms.

It has been shown that GAN [12] achieves sharper im-
ages by minimizing the reverse-KL divergence. Thus, we
use the implicit adversary (encoder as a shared discrimi-
nator) of IDVAE as a way to propagate reverse-KL diver-
gence information. The discriminator loss is used to update
both θshared and θdis. The generated (fake) examples that
are presented to the discriminator of IDVAE are the output
of the decoder when viewed as a generator Dec(z), where
z ∼ p(z). In addition to this, we also present the synthe-
sized sample through reconstruction, Dec(Enc(x)), for an
input x. As Dec(Enc(x)) is more likely to be similar to
x than Dec(z), for an arbitrary z ∼ p(z), we hypothesize
that the discriminator loss corresponding to Dec(Enc(x))
encourages the generator to learn the properties of the de-
coder. Similarly the discriminator loss corresponding to
Dec(z) encourages the decoder to learn the properties of
the generator i.e. be able to generate realistic examples from
the prior distribution p(z). Therefore using both the terms,
Dec(z) and Dec(Enc(x)) encourages the model to learn a
blend of both the generator and the decoder. Intuitively in
equation 9 to maintain the ratio of real and fake samples
shown to the discriminator the loss terms for the fake sam-
ples should be scaled by a factor of 0.5 or the real term
i.e. log(Dis(x)) by 2. We observed no significant change in
the performance of IDVAE when these factors are dropped,
thereby giving rise to the following loss function

Ldis = −
[
log(Dis(x)) + log(1− Dis(Dec(z)))

+ log(1− Dis(Dec(Enc(x)))
]

(9)

As we have collapsed the decoder of the vanilla VAE into
the generator, the loss incurred by both the decoder and gen-
erator is used to update the shared parameters between the
decoder and generator (θdec). The decoder/generator loss in
IDVAE consists of two components. The first component
(Ldis

recons) is a learned similarity metric motivated by VAE-
GAN [17]. Specifically, we learn a similarity metric(Ldis

recons)
using an intermediate representation ( lth layer) of the dis-
criminator (equivalent to the lth layer of the encoder) by as-
suming a Gaussian observation model on Disl(x̃) with mean
Disl(x) and unit covariance :

p(Disl(x̃)|z) = N (Disl(x̃)|Disl(x), I) (10)

where for a given sample x, x̃ = Dec(z) and z = Enc(x).
Ldis

recons is defined as a Gaussian observation model:

Ldis
recons = −Eq(z|x)[log p(Disl(x)|z)] (11)



The second component is the adversarial loss which encour-
ages the decoder to learn the properties of a generator. The
adversarial loss, (LGAN), is defined as

LGAN = −log(Dis(Dec(z′)))− log(Dis(Dec(Enc(x))))
(12)

where z′ ∼ p(z).
Therefore the presence of both the reconstruction loss

and the adversarial loss in objective function of decoder
makes it learn a blend of the two models. The overall loss
function for the decoder/generator (Ldec) is defined as:

Ldec = ωLGAN + λLdis
recons (13)

where ω and λ used inLdec are hyper-parameters that are
learned empirically.

3.4. Training Schedule

The lth shared layer between the encoder and the dis-
criminator outputs representations for learning the param-
eters of the encoder’s distribution and for discriminating
between samples from the true distribution and generated
samples simultaneously. We need to ensure that the shared
weights (θshared) of the encoder and discriminator network
gets the learning signal corresponding to both the encoder
and discriminator objective function. In theory θshared, θdis,
and θenc can be updated in a single step using the joint loss
of both the encoder and discriminator. However, in practise
we observed training using the joint loss to be challenging
in terms of hyper-parameter fine tuning. Hence, we update
the shared weights (θshared) in two iterations, once each with
the encoder and discriminator losses respectively. In the
first iteration θshared and θdis are updated while in the second
iteration θshared and θenc are updated. Algorithm 1 presents
the overview of the training procedure. Thus the parameters
θshared learn the information of both reverse-KL (first itera-
tion) and forward-KL (second iteration), which is leveraged
by the decoder/generator in the third step of the algorithm.
The parameters, θshared, can be updated in any arbitrary or-
der, we empirically found that using first the discriminator
loss helps in better learning. We present the qualitative re-
sults on the other two variants (using the joint loss, and up-
dating θshared with respect to the encoder first followed by
the discriminator) in the supplementary material.

4. Experiments
We investigate the proposed IDVAE architecture for the

quality of both reconstructions and generations. We eval-
uate the performance of IDVAE on the following two real
world benchmark datasets: i) CIFAR10 [16], which con-
tains 60k images of which 50k are used for training and
the remaining 10k for testing. (ii) CelebA [20], which con-
sists of 202,599 images. We use 1-162,770 images for train-
ing, 162,771-182,637 for validation and rest for testing. In

Algorithm 1 IDVAE Training Schedule
1: P (z)← N (0, I)
2: θshared, θenc, θdec, θdis ← Initialize parameters
3: X ← random mini batch from dataset
4: Z ← Enc(X)
5: X̃ ← Dec(Z)
6: Z ′ ← samples from prior P (Z)
7: X ′ ← Dec(Z ′)
8: while not convergence do
9: θdis, θshared

+←− −∇(θdis,θshared)(Ldis)

10: θenc, θshared
+←− −∇(θenc,θshared)(Lenc)

11: θdec
+←− −∇θdec(Ldec)

12: end while

our implementation pipeline we crop and scale the images
to 64x64 for faster training. The details of encoder and
decoder network architecture along with fine tuned hyper-
parameters for each of the dataset are provided in the sup-
plementary material. For generating instances over the dif-
ferent datasets we randomly sample z from the assumed
prior distribution (on the latent space Z) N (0, I). We also
conducted experiments on a synthetic 2D Gaussian dataset
and the MNIST digits dataset. These details can be found
in the supplementary material.

We compare the performance of IDVAE against ap-
proaches that have both generative and reconstruction abil-
ities, namely; VAE[15], VAE-GAN[17], AGE [27], and
α-GAN[24]. We use the pre-trained models available for
AGE, while we train all the other models from scratch us-
ing the best hyper-parameters reported in the literature.

5. Results and Discussion
We conduct both qualitative and quantitative comparison

of IDVAE for generations and reconstructions against all the
prior approaches.

5.1. Quantitative Analysis

The reconstruction quality is objectively quantified using
the standard square loss Lrecons. We obtain an unbiased esti-
mate of the loss using a large test set consisting of 10k sam-
ples for both the CelebA and the CIFAR10 datasets. Thus
even a small improvement on such a large set is significant
considering the complexities of the dataset. It is evident
from the results presented in Figure 3 that for the recon-
struction task IDVAE performs better than or is at par with
VAE-GAN, AGE and α-GAN. However the lowest recon-
struction error is obtained by VAE. This is understandable
as there is no explicit penalty on the decoder for reconstruct-
ing unrealistic images. On the other hand both VAE-GAN
and IDVAE strike a balance between the reconstruction loss
and the generative ability. We also modify IDVAE to ex-



Figure 3. Comparing reconstruction loss (lower is better) among
different generative models.

plicitly minimize Lrecons in the decoder, which we term as
IDVAE(R). The reconstruction loss of IDVAE(R) is the best
among all the variants of VAE, However, this comes at the
cost of quality of the generations.

There are two popular measures for qualitatively evalu-
ating generative models, namely the Inception Score (IS)
[25] and Fréchet Inception Distance (FID) [14]. It has
been shown that IS closely follows human scoring of im-
ages synthesized by generative models for the CIFAR 10
dataset[16]. The IS uses the Inception v3 model pre-trained
on ImageNet. The IS is a statistic on the Inception model’s
output when applied to the synthesized images. This statis-
tic captures two desirable qualities of a generative model -
the synthesized images should contain an object (the image
is sharp and not blurry) that is reflected in a low entropy
output of the Inception model[26] and; there must be diver-
sity in the generations that is reflected in the high entropy
output of the Inception model over the entire generated set.
Barratt and Sharma [5] have recently shown that the IS
suffers from suboptimalities and is an appropriate measure
only for datasets that are trained on ImageNet. Thus, it is
not advisable to measure the quality of generations on the
CelebA dataset. The FID improves upon the IS by compar-
ing the statistics of both the generated and true samples, in-
stead of evaluating the generated samples in isolation. The
FID is the Fréchet distance between two multivariate Gaus-
sians estimated from the 2048-dimensional activations of
the Inception-v3 pool3 layer for real and generated sam-
ples. Lower FID scores correspond to more similar real and
synthetic samples.

Table 1, presents the Fréchet distance scores computed
using Inception-151 (FID15), Inception-162 (FID16), and

1weights used from 2015 year model [1]
2weights used from 2016 year model [2]

ResNet[13]. As all the three experts have the same knowl-
edge i.e. all the models are pre-trained on ImageNet[8] and
the representations extracted from the intermediate layer
have the same dimensions (2048), the relative performance
of the models with respect to each expert can be compared.
While the distance scores across the experts for the same
model may be different, we expect the order of the good-
ness among the generative models to be preserved. How-
ever, as can be observed from Table 1 on CIFAR10 dataset,
VAE-GAN appears to perform better than the AGE based
on FID15, while the trend reverses when comparing based
on both FID16 and FRD. Therefore, our results suggest
that a generative model should be compared across a battery
of experts rather than in isolation. IDVAE performs better
than all the other approaches on the CelebA dataset. The
result is statistically significant on both FID15 and FRD
scores. On the other hand both IDVAE and α-GAN result
in the best performance on the CIFAR10 dataset. There is
no significant difference between IDVAE and α-GAN with
each performing better than the other only according to a
single measure. However, from Figure 3, it is quite appar-
ent that α-GAN focuses less on reconstructions whereas in
IDVAE we do not observe such a bias. These results sup-
port our hypothesis that the encoder and discriminator can
be a shared network. IDVAE is able to perform at par or
sometimes better than VAE-GAN and α-GAN that require
a separate encoder/discriminator network. This is further
verified through our qualitative results. We also observe a
dip in the Fréchet distance for the IDVAE(R) model in com-
parison to IDVAE. As the decoder/generator of IDVAE(R)
focuses on reconstructions in the image space we observe
a drop in the Fréchet distance at the cost of a better recon-
struction loss. Therefore IDVAE(R) model has the potential
to fit within the required thresholds by tuning the hyper pa-
rameters ω, λ and γ.

5.2. Qualitative Analysis

We present the qualitative results obtained from the dif-
ferent models in the Table 2 on the CIFAR10 and CelebA
datasets. It is quite evident from the images that VAE results
in blurry reconstructions while the rest of the approaches
output sharp images, which is due to presence of adversar-
ial loss. On both CelebA and CIFAR10 datasets, we ob-
serve IDVAE and IDVAE(R) performing on par with VAE-
GAN and α-GAN, while significantly outperforming VAE
in terms of sharpness of the images. The images gener-
ated by the different models are also presented in Table 2.
The undesirable blurriness property in VAE is apparent on
the CIFAR10 dataset while the performance of IDVAE is
on par with both α-GAN and VAE-GAN. The images gen-
erated by IDVAE trained on the CelebA dataset appears to
capture a large diversity in background when compared to
α-GAN and VAE-GAN. We observe both IDVAE(R) and



Model FID15 FID16 FRD
CIFAR10

True Data 3.16±0.06 7.41±0.82 26.17±1.44
IDVAE 23.48±0.15 28.15±0.39 105.45±0.79
IDVAE(R) 43.38±0.15 49.9±0.85 191.32±5.88
VAE-GAN 27.04±0.12 33.12±0.73 139.95±2.71
VAE 85.74±0.3 130.38±3.47 626.67±8.61
AGE 32.19±0.3 29.3±0.54 122.43±2.61
α-GAN 20.61±0.12 27.87±0.7 121.88 ± 3.09

CelebA
True Data 1.58±0.02 2.67±0.15 5.77±0.35
IDVAE 8.53±0.12 9.52±0.72 34.47±2.41
IDVAE(R) 14.81±0.17 16.71±0.66 70.99±0.91
VAE-GAN 9.52±0.06 10.5±0.9 38.32±1.69
VAE 35.27±0.04 55.44±0.87 150.02±1.41
AGE 12.74±0.14 15.27±0.36 82.45±0.97
α-GAN 10.38±0.2 13.89±1.58 55.44±7.97

Table 1. Comparing Frechet Distance (lower is better) among dif-
ferent generative models. FID15,16: Inception Model with 2015,
2016 year weights respectively and FRD ResNet model.

α-GAN tend to focus more on faces than the background in
these images.

5.3. Conditional IDVAE

We extend IDVAE to a conditional setting where our ob-
jective is to learn a generator/decoder whose output is con-
trolled by some conditional information, y. We term this
variant as Conditional-IDVAE (C-IDVAE). We qualitatively
analyze the C-IDVAE model using MNIST[18] and CelebA
datasets. We follow the recent work of Perarnau et al. [22]
to provide the conditional information to the generator at
the input layer, while for the discriminator this is provided
after the first convolution layer. To the best of our knowl-
edge the encoder of VAE is never made aware of the con-
ditional information but as we have our encoder acting as a
discriminator we add this conditional information after the
first convolution layer.

We use the one hot encoding of the MNIST class labels
as the conditional information to evaluate C-IDVAE. Figure
4 illustrates the samples generated by C-IDVAE, where each
row illustrates the images generated by conditioning on a
unique label. We observe a large diversity in the generations
in each row implying the diverse generative ability of the
conditional decoder/generator.

Following the work of Perarnau et al. [22] we use 13
attributes that have clear visual impact out of the total
40 attributes as conditioning information while training C-
IDVAE on the CelebA dataset. Figure 4 presents the images
generated by C-IDVAE for different conditioning informa-
tion. Each row in the figure represents the images generated
by C-IDVAE with the conditioning information provided in
the top row, and the original image that is modified in the

Figure 4. Conditional-IDVAE on MNIST followed by celebA con-
ditioned on visual attributes.

first column. It can be observed that the changes in each of
the generations with respect to the original image are a re-
sult of the model imagining the original image on different
attributes. For example, consider third and fifth rows in the
Figure 4, where the original image is a female face. The
generations in the columns 2, 5, and 6 that are conditioned
on the male attribute actually contain a face that resembles
a male. Similarly in the last column the model does reason-
ably well in adding eyeglasses to all the generated images.
Thus considering the generative ability matching with the
human imagination and the complexity of the real world
CelebA dataset, C-IDVAE shows the potential to model the
complex distributions.

6. Summary and Future Work
In this work we introduce a novel hybrid of the varia-

tional autoencoder and the generative adversarial network,
IDVAE, which does not need an explicit discriminator net-
work. IDVAE shares a common decoder and generator net-
work, and partially shares the encoder and the discrimina-
tor network. The qualitative and quantitative experiments



Approach
CIFAR10

Reconstructions
CIFAR10

Generations
CelebA

Reconstructions
CelebA

Generations

Original

VAE

IDVAE

IDVAE(R)

VAE-GAN

α-GAN

Table 2. Qualitative experiments comparing different generative models.

on real-world benchmark datasets demonstrates that IDVAE
(and its variant IDVAE(R)) performs on par and sometimes
better than the state of the art hybrid approaches. We also
show that IDVAE can be easily extended to work in a con-
ditional setting, and experimentally demonstrate its perfor-
mance on complex datasets. Further, our results present

inadequacies of the Fréchet Inception Distance and sug-
gests an ensemble of experts for evaluating the quality of
the generations. This can be further explored to derive a
measure that does not require a model that is pre-trained on
data from a different domain as that of the training sam-
ples.
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