
ar
X

iv
:1

90
8.

03
89

1v
1

 [
cs

.L
G

]
 1

1
A

ug
 2

01
9

Data-Driven Randomized Learning of

Feedforward Neural Networks⋆

Grzegorz Dudek1[0000−0002−2285−0327]

Electrical Engineering Department, Czstochowa University of Technology,
Czstochowa, Poland

dudek@el.pcz.czest.pl

Abstract. Randomized methods of neural network learning suffer from
a problem with the generation of random parameters as they are difficult
to set optimally to obtain a good projection space. The standard method
draws the parameters from a fixed interval which is independent of the
data scope and activation function type. This does not lead to good
results in the approximation of the strongly nonlinear functions. In this
work, a method which adjusts the random parameters, representing the
slopes and positions of the sigmoids, to the target function features is
proposed. The method randomly selects the input space regions, places
the sigmoids in these regions and then adjusts the sigmoid slopes to the
local fluctuations of the target function. This brings very good results
in the approximation of the complex target functions when compared to
the standard fixed interval method and other methods recently proposed
in the literature.

Keywords: Data-driven randomized learning · Feedforward neural net-
works · Neural networks with random hidden nodes · Randomized learn-
ing algorithms.

1 Introduction

The learning of feedforward neural networks (FNNs) is an optimization process
where the error function is highly nonconvex. Flat regions of the error function as
well as many local minima and saddle points hinder and slow down the learning.
This is because the gradient algorithms commonly used for FNN learning are
very sensitive to the surface of the objective function and fall into the traps of the
local minima. Moreover, the gradient calculations are time consuming, especially
for a complex target function (TF), a big training data set or for a network with
many hidden neurons and many layers. In randomized learning the gradient
descend methods do not have to be used. The learning process is split into two
stages. In the first stage, the parameters of the hidden neurons (single-hidden-
layer FNN is considered), i.e. the weights and biases, are randomly selected. They
are not trained at all and stay fixed. In the second stage, the output weights,

⋆ Supported by Grant 2017/27/B/ST6/01804 from the National Science Centre,
Poland.

http://arxiv.org/abs/1908.03891v1

2 G. Dudek

connecting the hidden layer with the output layer, are trained. The optimization
problem becomes convex and can be solved using a standard linear least-squares
[1], which is the simplest, most studied and scalable learning procedure to date.

The standard method of generating the parameters of the hidden neurons,
i.e. the weights and biases, is to select them randomly with a fixed interval. It
was theoretically proven that when the random parameters are selected from a
symmetric interval according to any continuous sampling distribution, the FNN
is a universal approximator [2]. The problem with selection of the appropriate
interval for the parameters has not yet been solved, and is considered to be one
of the most important research gaps in the field of randomized algorithms for
NN training [3], [4]. In many practical applications of FNN with random pa-
rameters this interval is set as [−1, 1] without any justification, regardless of the
problem type (classification or regression), data, and activation function type.
Some works have shown that such an interval is misleading because the network
is unable to model nonlinear maps, no matter how many training samples are
provided or what size networks are used [5]. So, the optimization of this interval
is recommended for a specified task [6], [2]. Such a way of improving the perfor-
mance of the FNN with random parameters has been used in many works, e.g.
[7].

In [8] it was noted that the weights and biases have different meanings, i.e.
weights represent the sigmoid slope and biases represent its shift, and therefore
they should not be generated from the same interval. The method proposed in
[8] generates the parameters of the hidden nodes in such a way that nonlinear
fragments of the activation functions are located in the input space regions with
data and can be used to construct a surface approximating a nonlinear TF.
The weights and biases are dependent on the input data range and activation
function type. This leads to an improvement in the approximation performance
of the network. Another approach for generating the random parameters was
proposed in [9]. This method, firstly, selects at random the slope angles of the
sigmoids from the interval adjusted to the TF fluctuations, then rotates the
sigmoids randomly and finally shifts them into the input space according to the
data distribution. This gives much better results than the standard approach
with fixed intervals.

In this work we do not select the hidden neurons parameters from specified
intervals. Instead, we propose to adjust them to the local features of the TF.
The proposed method selects the input space region by randomly choosing one
of the training points, then places the sigmoid in this region and adjusts the
sigmoid slope to the TF slope in the neighborhood of the chosen point. Combin-
ing linearly the randomly placed sigmoids in the input space, we obtain a fitted
surface which reflects the TF features in different regions.

Data-Driven Randomized Learning of Feedforward Neural Networks 3

2 Randomized Learning of FNNs

A single-hidden-layer FNN for a single output case and an input x = [x1, x2, ...,

xn]
T ⊂ R

n is defined by linearly combining m nonlinear transformations of the
input hi(x):

ϕ(x) =

m
∑

i=1

βihi(x) = h(x)β (1)

where βi is the weight between the i-th hidden neuron and the output neuron,
and hi(x) is represented by an activation function of the i-th hidden neuron, e.g.
a sigmoid:

hi(x) =
1

1 + exp
(

−
(

aTi x+ bi
)) (2)

In randomized FNNs, the weights ai = [ai,1, ai,2, . . . , ai,n]
T

and bias bi are
generated randomly for each neuron according to any continuous sampling dis-
tribution. Usually ai,j ∼ U(amin, amax) and bi ∼ U(bmin, bmax).

Note that the activation function (2) applies some nonlinearity on a random
linear combination of the input vector. As a result, the activation function is
randomly located in the space, has random slope and rotation.

The hidden layer output matrix for N training samples is:

H =







h(x1)
...

h(xN)






=







h1(x1) . . . hm(x1)
...

. . .
...

h1(xN) . . . hm(xN)






(3)

where the i-th column of H is the i-th hidden node output vector with respect to
inputs x1,x2, . . . ,xN , and h(x) = [h1(x), h2(x), . . . , hm(x)] is a nonlinear map-
ping from n-dimensional input space to m-dimensional feature space, wherein,
typically m ≫ n.

The parameters of the hidden neurons, ai,j and bi are fixed, so, the matrix
H is calculated only once and remains unchanged.

The output weights βi are determined by solving the following linear problem:

Hβ = Y (4)

where β = [β1, β2, . . . , βm]T is a vector of output weights andY = [y1, y2, . . . , yN]T

is a vector of target outputs.
A least mean squares solution of (4) can be achieved within a single learning

step by using the MoorePenrose pseudoinverse H+ of matrix H:

β = H+Y (5)

In the above described randomized learning there are five hyperparameters
which influence strongly on the approximation abilities of the network. They
are: the number of hidden nodes m and the bounds of the scopes for weights

4 G. Dudek

and biases, i.e. amin, amax, bmin and bmax. In most of the works on randomized
algorithms for FNNs, the bounds of parameters are selected as fixed, regardless of
the data and activation function types. Typically amin = bmin = −1 and amax =
bmax = 1. The hidden neuron sigmoids, whose linear combination (2) builds
the function fitting data, should deliver the nonlinear fragments, avoiding their
saturated fragments, and so achieve the required accuracy of approximation. As
demonstrated in [8] when using typical interval for random parameters, [−1, 1],
the sigmoids are not distributed properly in the input space and their steepness
does not correspond to the TF steepness. In some works, the authors optimize
the interval for the random parameters by searching for its bounds [−u, u].

To improve the randomized learning performance, the method proposed in [8]
randomly generates the weights and biases of the hidden nodes, depending on the
input data range and activation function type, in such a way so as to introduce
the nonlinear fragments of the activation functions in the input space region
containing the data points. Additionally the slopes of the activation functions are
adjusted to the TF complexity. According to the proposed method the weights
of the i-th hidden node are calculated as follows:

ai,j = ζj
Σi

n
∑

l=1

ζl

, j = 1, 2, ..., n (6)

where ζ1, ζ2, . . . , ζn ∼ U(−1, 1) are i.i.d. numbers and Σi is the sum of weights
of the i-th node, which is randomly chosen from the interval:

|Σi| ∈

[

ln

(

1− r

r

)

, s · ln

(

1− r

r

)]

(7)

There are two parameters which decide on the activation function slope: r ∈
(0, 0.5) and s > 1. Specifically, they determine two boundary sigmoids between
which the activation functions are randomly generated. These parameters are
adjusted to the data in cross-validation.

The biases of the hidden nodes are determined setting the inflection points
of the sigmoids at some points x∗ randomly selected from the input space or,
alternatively, randomly chosen from the training set. The bias of the i-th node
is calculated as follows:

bi = −aTi x
∗ (8)

From the above equations we can conclude that the new approach to selection
of the random parameters is a radical departure from the standard approach.
Instead of generating both weights and biases from the fixed interval, in the new
approach, we first generate the sum of the all node weights from the interval (7),
and then randomly generate individual weights from (6). In the next step, the
bias is generated from (8) on the basis of randomly chosen point x∗ and weight
vector ai. The derivations of the above equations and more detailed discussion
on this topic, including other activation function types, can be found in [8].

Data-Driven Randomized Learning of Feedforward Neural Networks 5

Another method for improving the performance of FNN randomized learning
was proposed in [9]. Firstly, it randomly choses the slope angles of the hidden
neurons activation functions from an interval adjusted to the complexity of the
TF. Then, the activation functions are randomly rotated around the y-axis and
finally, they are distributed across the input space according to data distribution.
For complex TFs, with strong fluctuations, the proposed method gives incom-
parably better results than the standard approach with the fixed interval for the
random parameters. This is because it adjusts the slopes of the activation func-
tions to the data and introduces their steepest fragments into the input space,
avoiding their saturation fragments.

In this approach, the weights of the i-th hidden node are calculated from:

ai,j = −4
a′i,j

a′i,0
, j = 1, 2, ..., n (9)

where a′i,j are components of the normal vector n to the hyperplane, which is
tangent to the sigmoid at their inflection points.

The angle between the normal vector n and the unit vector in the direction of
the y-axis, α, is randomly selected from the interval (αmin, αmax). The bounds of
this interval are adjusted to the TF in cross-validation. These bounds control the
slopes of the sigmoids and thus the flexibility of the model. The rotation of the
individual sigmoid is random, determined by choosing randomly the components
of the normal vector a′1, . . . , a

′

n ∼ U(−1, 1) and calculating component a′0 from:

a′0 = (−1)c
√

(a′1)
2 + ...+ (a′n)

2

tanα
(10)

where c ∼ U{0, 1}.
To distribute the sigmoids across the input space their biases are calculated

from (8), where x∗ are the randomly chosen training points. Details of this
method can be found in [9].

The methods proposed in [8] and [9] allow us to control the slope of the
sigmoids forming the fitted function, and hence the degree of generalization of
the network and bias-variance tradeoff of the model. In Fig. 1, the approximation
of the highly nonlinear function is shown for the standard method of generating
random parameters from the fixed intervals [−1, 1] and for the method proposed
in [9] (let us denote this method with the acronym RARSM, i.e. random sigmoid
slope angle, rotation and shift method). The TF is in the form:

g(x) = sin (20 · exp(x)) · x2 (11)

The FNNs learns from a training set containing 5000 points (xl, yl), where
xl are uniformly randomly distributed on [0, 1] and yl are calculated from (11)
and then distorted by adding the uniform noise distributed in [−0.2, 0.2]. The
test set of the same size expresses the true TF (11). The outputs are normalized
in the range [0, 1].

In both cases 35 hidden neurons were used. In RARSM αmin = 30◦ and
αmax = 90◦. The sigmoids distributed in the input interval, which is shown as

6 G. Dudek

a gray field, are shown in the middle panel of Fig. 1. After weighing them by
the output weights βi we obtain the curves shown in the bottom panel. The
sum of these curves gives the fitted functions, which are drawn with solid lines
in the upper panel. Note that the sigmoids generated from the fixed internal
[−1, 1] are too flat and their steepest fragments, around their inflection points,
do not correspond to the steep fragments of the TF. As a result, they cannot
be combined to obtain the TF, even when we increase the number of neurons
to several hundreds or even thousands. In a completely different manner the
sigmoids are generated by the RARSM. As we can see from the middle right
panel of Fig. 1, the sigmoids have their steepest fragments inside the input
interval. Their slopes are also fitted to the TF. This results in a reduction the
error from RMSE = 0.1454 for the fixed interval to RMSE = 0.0043.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

y

RMSE = 0.1454

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

y

RMSE = 0.004293

Fig. 1. Fitted curves (upper panel), hidden node sigmoids (middle panel) and weighted
sigmoids (bottom panel) for the standard method (left panel) and the RARSM method
(right panel).

3 Data-Driven Generation of Hidden Nodes Parameters

In the above described methods of FNN randomized learning, we can observe an
evolution. The first step of this evolution is the completely random generation of
the hidden node weights and biases, both from a fixed interval, typically [−1, 1],
according to any continuous sampling distribution, usually a uniform one. In the

Data-Driven Randomized Learning of Feedforward Neural Networks 7

second step, we try to find the best interval for the weights so as to match the
slopes of sigmoids to the TF complexity. After adjusting slopes, we calculate the
biases in order to distribute the sigmoids randomly across the input space. The
interval for the weights is dependent on the two hyperparameters, r and s, which
are searched in the cross-validation. In the third step of the evolution, we in-
troduce hyperparameters describing the sigmoid shape which are more intuitive
than r and s, i.e the limit slope angles of the sigmoids. These hyperparameters
can be adjusted to the TF complexity or their default values can be applied,
αmin = 0◦ and αmax = 90◦. The forth step of the evolution, proposed in this
work, is adjusting the sigmoids individually to the local complexity of the TF.
The weights and biases of the sigmoids are no longer random, but they are
adjusted to data in randomly chosen regions of the input space. So, each sig-
moid models locally the TF in the neighborhood of a randomly selected training
point. The fitted function is constructed typically as a linear combination of the
sigmoids (1). The weights in this combination are calculated according to (8)
using the MoorePenrose pseudoinverse. The idea behind the proposed method is
shown on the single-variable TF example in subsection 3.1, and its multivariable
extension is presented in subsection 3.2.

3.1 The Idea behind the Method

The idea behind the proposed method can be exemplified by the approximation
of the single-variable TF (11). Sigmoids are used as hidden nodes activation
functions:

h(x) =
1

1 + exp(−(ax+ b))
(12)

where a is a weight controlling a slope of the sigmoid and b is a bias shifting the
sigmoid along the x-axis.

It would be convenient to place the sigmoids in the input space and adjust
their slopes in such a way that they correspond to the TF fluctuations. To do so,
let us select randomly training point x∗ and find its k nearest neighbors. These
k + 1 points form the neighborhood of x∗, Ψ(x∗), and express the local features
of the TF around x∗. Now, let us fit to these points straight line T :

y = a′x+ b′ (13)

Note that coefficient a′ expresses the slope of the line which corresponds to the
slope of the TF in Ψ(x∗).

Let set some sigmoid S in the input space in such a way that its inflection
point P is in x∗. Remembering that the sigmoid value for the inflection point is
0.5, we get:

h(x∗) =
1

1 + exp(−(ax∗ + b))
= 0.5 (14)

8 G. Dudek

Let us assume that the slope of S at P is the same as the slope of the line T .
This means that the derivative of S at P = x∗ is equal to the derivative of the
line T , thus:

ah(x∗)(1− h(x∗)) = a′ (15)

Substituting h(x∗) = 0.5 from (14) into (15) we obtain:

a · 0.5 · (1− 0.5) = a′ (16)

and finally weight a of sigmoid S is:

a = 4a′ (17)

From (14) we also obtain:

b = −ax∗ (18)

So, the sigmoid which models locally the TF in the neighborhood of x∗ has
weight a dependent on slope parameter a′ of the line fitted to Ψ(x∗). Additionally
bias b is dependent on slope parameter a′ as well as on point x∗.

Fig. 2 shows an example sigmoids set according to the three randomly se-
lected points x∗ and their neighborhoods composed of x∗ and their ten closest
points. Note that the sigmoids reflect the slopes of the TF around points x∗.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

Fig. 2. Examples of setting the sigmoids to the neighborhoods (larger colored points)
of the three randomly selected training points.

Fig. 3 shows function (12) approximation when using the proposed method
with 25 hidden neurons and 100 nearest neighbors. Compare Fig. 3 with Fig. 1
and note the similar errors for the proposed method and RARSM. Note also
the different distribution of the the sigmoids which have different slopes in these
both cases. In the proposed method the steeper sigmoids are generated at the
right border of the input interval, where the fluctuations of the TF are stronger.
At the left border, where the TF is flat, the sigmoids are less steep. While in the

Data-Driven Randomized Learning of Feedforward Neural Networks 9

RARSM the steepness of the sigmoids does not depend on the local TF features
and is similar in each region of the input space.

It is worth mentioning that the proposed method needs only 25 hidden neu-
rons to obtain the same error level as the RARSM with 35 neurons. The RMSE
for the RARSM with 25 neurons was 0.031, which is almost seven times larger
than for the proposed method. The smaller number of neurons in the proposed
approach is due to the fact that the sigmoids are better fitted to TF fluctuations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1
y

RMSE = 0.004491

Fig. 3. Fitted curve (upper panel), hidden node sigmoids (middle panel) and weighted
sigmoids (bottom panel) for the proposed method.

3.2 Multivariable Function Fitting

In this subsection, the proposed method is extended to the general case of mul-
tivariable function fitting. In this case the TF is a function of n input variables
included in the vector x = [x1, x2, ..., xn]

T ⊂ R
n. Similarly to the single-variable

case, we place the sigmoids in the input space and adjust their slopes in such a
way that they correspond to the TF fluctuations. The slopes of the TF in some
point x∗ are approximated by hyperplane T fitted to the neighborhood Ψ(x∗)
which includes this point and its k nearest neighbors among the training points.
This hyperplane is of the form:

y = a′1x1 + a′2x2 + ...+ a′nxn + b′ (19)

10 G. Dudek

where coefficient a′j expresses a slope of hyperplane T in the j-th direction.
Let us consider a sigmoid S which has one of its inflection points, P , in the

randomly selected training point x∗:

h(x∗) =
1

1 + exp (− (aTx∗ + b))
= 0.5 (20)

where a = [a1, a2, ..., an]
T ⊂ R

n.
The slope of this sigmoid S at point x∗ in the j-th direction is expressed by

a partial derivative:

∂h(x∗)

∂xj

= ajh(x
∗)(1 − h(x∗)) (21)

We want the slope of sigmoid S at x∗ in the j-th direction to be the same
as the slope of the TF in this point, which is approximated by the hyperplane
T slope a′j . Thus:

ajh(x
∗)(1− h(x∗)) = a′j (22)

After substituting h(x∗) = 0.5 from (20) into (22) we obtain:

aj = 4a′j , j = 1, 2, ..., n (23)

Directly from (20) we also obtain:

b = −aTx∗ (24)

Note that the weights of the hidden neuron, aj , expressing the slopes of the
sigmoid in all n directions, are proportional to the hyperplane T coefficients
corresponding to these directions. These coefficients approximate the TF slopes
at the randomly selected point x∗. The bias of sigmoid S is a linear combination
of point x∗ and sigmoid weights a. The sigmoid S reflects the local features of
the TF around point x∗. Selecting randomly a set of points x∗ we generate a
set of sigmoids reflecting the local features of the TF in different regions. These
sigmoids are the basis functions which are linearly combined to get the fitted
function approximating the TF. The weights in this combination are calculated
using the MoorePenrose pseudoinverse (8).

The proposed method places the sigmoids in the input space setting their
inflection points on the randomly selected training points x∗ and adjusting the
sigmoid slopes to the slopes of the TF around these points. The TF slope is
approximated by hyperplane T fitted to the neighborhood of x∗, i.e. x∗ and its
k nearest neighbors. The TF is defined in (n + 1)-dimensional space. To define
hyperplane T in such a space at least n + 1 points are needed. So, the number
of nearest neighbors k should not be less than n.

The number of nearest neighbors controls the bias-variance tradeoff of the
model. The optimal value of k depends on the random error observed in the data
and the TF complexity. When the training points represent a TF with low error,
the number of nearest neighbors k should be lower. For higher errors a low value

Data-Driven Randomized Learning of Feedforward Neural Networks 11

of k leads to overfitting. On the other hand, a too large k causes underfitting.
This hyperparameter should be tuned in the cross-validation to the given data
as well as the second hyperparameter, the number of hidden nodes m. In the
experimental part of the work, the impact of the noise level in the data on the
hyperparameters is investigated.

Algorithm 1 summarizes the proposed method.

Algorithm 1 Data-Driven Generating the Parameters of FNN Hidden Nodes

Input:

Number of hidden nodes m
Number of nearest neighbors k ≥ n

Training set Φ = {(xl, yl)|xl ∈ R
n, yl ∈ R, l = 1, 2, . . . , N}

Output:

Weights A =







a1,1 . . . am,1

...
. . .

...
a1,n . . . am,n







Biases b = [b1, . . . , bm]

Procedure:

for i = 1 to m do

Choose randomly x∗ = xl ∈ Φ, where l ∼ U{1, 2, . . . , N}
Create the set Ψ(x∗) containing x∗ and its k nearest neighbors in Φ

Fit the hyperplane to Ψ(x∗):

y = a
′

1x1 + a
′

2x2 + ...+ a
′

nxn + b
′

Calculate the weights for the i-th node:

ai,j = 4a′

j , j = 1, 2, ..., n

Calculate the bias for the i-th node:

bi = −

n
∑

j=1

ai,jx
∗

j

end for

12 G. Dudek

4 Simulation study

This section reports some experimental results of the proposed method, including
the impact of the noise level in data on the hyperparameters and performance
evaluation. In the first experiment we analyze how the noise disturbing data
affects the hyperparameters of the proposed methods. Simulations were carried
out on a two-variable TF of the form:

g(x) = sin (20 · exp (x1)) · x
2
1 + sin (20 · exp (x2)) · x

2
2 (25)

On the basis of this function, training set Φ was created containing 5000 points
(xl, yl), where the components of xl are independently uniformly randomly dis-
tributed on [0, 1] and yl are generated from (25), then normalized to the range
[0, 1] and finally distorted by adding the uniform noise distributed in [c, c]. The
testing set represents the TF without noise normalized into [0, 1]. It contains
10,000 points distributed regularly on a grid in the input space.

To introduce the noise of different level to data we changed the noise bound-
ary c from 0 to 1 with steps of 0.1. This translates into a noise level from 0 to
100%, defined as the ratio of the noise range to the TF range. The TF and the
data points for two noise levels, c = 0.2 and c = 1, are shown in Fig. 4. For each
noise level we changed the neighborhood Ψ(x∗) size, k′ = 3, 5, 7, 10, 20, ..., 100,
where k′ = k + 1, keeping the fixed number of hidden nodes m = 300. For each
setting, 100 independent trials of FNN training were performed.

The left panel of Fig. 5 shows the test root-mean-square error (RMSE) for
a different noise levels and neighborhood size. On the right panel, the boxplots
are shown for three noise levels: c = 0.1, c = 0.5 and c = 1. The optimal neigh-
borhood size k′ was 20 for the lower noise levels (c 6 0.5) and 30 for the higher
noise levels (c > 0.5). The model tends to overfit for the lower than the optimal
values of k′, and for higher values it tends to underfit.

In the next step, for each noise level we changed the number of hidden nodes
m = 50, 100, ..., 500 keeping a fixed size of the neighborhood k′ = 20. Fig. 6
shows the test RMSE surface and the boxplots for this case. The optimal node
numbers were:m = 250 in the broad range of noise level from 0.1 to 0.7,m = 200
for c = 0.8 and c = 0.9, and m = 50 for c = 1. We can observe from Figs. 5 and 6
that when the noise level is small, the underestimation of both hyperparameters,
k′ and m, is more disadvantageous in terms of the error than overestimation.

In the next experiments, we compare the results of the proposed method with
the methods described in Section 2:

– FIM - fixed interval method, standard method with fixed interval for the
random parameters [−1, 1],

– OIM - optimized interval method, the method with the optimized interval
for the random parameters [−u, u], where u in our simulations was selected
from a given set {0.1, 0.5, 1, 2,
3, 4, 5, 10, 15, 20, 30, 40, 50, 100, 200, 300, 400, 500},

– rsM - the method proposed in [8] with two parameters, r and s, which were
selected from the sets: r ∈ {0.0001, 0.001, 0.01, 0.015, 0.02, 0.3, 0.4, 0.5} and
s ∈ {2, 4, 6, 8, 10, 20, 30},

Data-Driven Randomized Learning of Feedforward Neural Networks 13

-1
1

-0.5

0

1

0.5y
1

x
2

0.5

1.5

x
1

2

0.5

0 0

training points for c=0.2
taining points for c=1
target function

Fig. 4. Target function and the training points for c = 0.2 and c = 1.

1

0.80
0 0.6

c

20

0.05

0.440

k'

60 0.2

0.1

R
M

S
E

80
0100

0.15

0.2

 3 5 7 10 20 30 40 50 60 70 80 90 100

k'

0

0.05

0.1

0.15

0.2

0.25

0.3

R
M

S
E

c=1

c=0.5

c=0.1

Fig. 5. RMSE for different neighborhood size k′ and noise level c at m = 300.

1

0.80

100 0.6

c

0.05

200 0.4

m

300

0.1

0.2

R
M

S
E

400
0500

0.15

0.2

 50 100 150 200 250 300 350 400 450 500

m

0

0.05

0.1

0.15

0.2

0.25

R
S

M
E

c=0.1

c=0.5

c=1

Fig. 6. RMSE for different number of nodes m and noise level c at k′ = 20.

14 G. Dudek

– RARSM - random slope angle, rotation and shift method, proposed in [9]
with two parameters selected from the sets: αmin ∈ {0◦, 5◦, ..., 85◦} and
αmax ∈ {αmin + 5◦, αmin + 10◦, ..., 90◦},

– D-DM - data-driven method proposed in this work with parameter k′ which
was selected from the set {5, 10, ..., 50}.

For each method of random parameter generation, the number of hidden
nodes was selected from the set {50, 100, ..., 1000}. The selection of the optimal
hyperparameter values was carried out in the grid search procedure using 10-fold
cross-validation. For the optimal values of the hyperparameters 100 independent
trials of training were performed and test errors were calculated.

First, we use function (25) with error level c = 0.2 as the test function. The
left panel of Fig. 7 shows the cross-validation errors for different numbers of nodes
at optimal values of other hyperparameters. As you can see in this figure, both
FIM and OIM failed completely. Optimization of the interval bounds [−u, u] in
OIM brought only a slight improvement in accuracy when compared to FIM.
More sophisticated methods, rsM, RARSM and D-DM, are incomparably more
accurate. Note that the proposed D-DM needs the smallest number of neurons
to get the best performance when compared to other methods.

The right panel of Fig. 7 shows the boxplots of the test RMSE for 100 trials
of the learning sessions carried out at the optimal values of hyperparameters.
These simulations are summarized in Table 1. Clearly, from this table, D-DM
outperforms the other methods in terms of accuracy.

0 200 400 600 800 1000

Number of hidden nodes, m

0.12

0.13

0.14

0.15

0.16

0.17

0.18

R
M

S
E FIM

OIM
rsM
RARSM
D-DM

FIM OIM rsM RARSM D-DM

0.04

0.06

0.08

0.1

0.12

R
M

S
E

Fig. 7. RMSE for different number of nodes m (left panel) and distribution of the test
RMSE for the tested methods (right panel).

In the next experiments we use two multivariable datasets:

– Stock daily stock prices from January 1988 through October 1991, for ten
aerospace companies. The task is to aproximate the price of the 10-th com-
pany given the prices of the others (950 samples, 9 input variables, source:
http://www.keel.es/).

http://www.keel.es/

Data-Driven Randomized Learning of Feedforward Neural Networks 15

– Kin8nm a realistic simulation of the forward dynamics of an 8 link all-
revolute robot arm. The task is to predict the distance of the end-effector
from a target. The inputs are things like joint postions, twist angles, etc.
(8192 samples, 8 input variables, source: www.cs.toronto.edu/ delve/data/kin
/desc).

The data sets were divided into training sets containing 75% samples selected
randomly, and the test sets containing the remaining samples. The test RMSE
for both datasets at the optimal values of hyperparameters are visualized by the
boxplots in Fig. 8. Table 1 shows the mean RMSE and the optimal hyperpa-
rameters of the methods. Note that D-DM demonstrates the best performance
compared to other methods. Especially for Kin8nm the significant improvement
in accuracy is observed for D-DM. This may be due to the fact that in this case
the target function has variable fluctuations. The D-DM, which is designed to
deal with such cases, performs best.

FIM OIM rsM RARSM D-DM
0.024

0.026

0.028

0.03

0.032

R
M

S
E

Stock

FIM OIM rsM RARSM D-DM

0.05

0.055

0.06

0.065

R
M

S
E

Kin8nm

Fig. 8. Distribution of the test RMSE for the Stock and Kin8nm data.

5 Conclusions

The way in which the hidden node parameters are generated is a key issue
in the randomized learning of FNN. When these parameters are selected in a
standard way from the fixed interval the performance of the network can be
weak, especially for complex function fitting.

This work proposes a new approach to generating the parameters of a FNN in
randomized learning. The proposed method adjusts the hidden neurons weights
and biases, representing the slopes and positions of the sigmoids, to the target
function features. The method first randomly selects the input space regions by
drawing the points from the training set. Then, the hyperplanes are fitted to the
neighborhoods of the selected points and their coefficients are transformed into
the sigmoid weights and biases. This results in the placement of the sigmoids

16 G. Dudek

Table 1. Performance comparison of the proposed and comparative methods.

Method Test RMSE #nodes Parameters

Function (25)
FIM 0.1277 ± 0.00029 800 -
OIM 0.1157 ± 0.00088 1000 u = 3
rsM 0.0503 ± 0.00527 450 r = 0.4, s = 30

RARSM 0.0477 ± 0.00254 350 αmin = 55◦, αmax = 70◦

D-DM 0.0370 ± 0.00230 300 k′ = 35

Stock

FIM 0.0296 ± 0.00141 200 -
OIM 0.0296 ± 0.00141 200 u = 1
rsM 0.0289 ± 0.00138 200 r = 0.001, s = 2

RARSM 0.0285 ± 0.00156 200 αmin = 45◦, αmax = 70◦

D-DM 0.0277 ± 0.00150 250 k′ = 30

Kin8nm

FIM 0.0655 ± 0.00153 1300 -
OIM 0.0655 ± 0.00153 1300 u = 1
rsM 0.0643 ± 0.00157 1300 r = 0.4, s = 8

RARSM 0.0618 ± 0.00157 1300 αmin = 35◦, αmax = 55◦

D-DM 0.0523 ± 0.00081 900 k′ = 60

in the selected regions of the input space and the adjustment of their slopes to
the local fluctuations of the target function. As simulation research has shown,
such a method of generating random parameters brings very good results in the
approximation of the complex target functions when compared to the standard
fixed interval method and other methods proposed recently in the literature.

Future work will focus on further analysis and improvement of the proposed
method as well as rsM and RARSM, and their adaptation to classification prob-
lems.

References

1. Principe, J., Chen, B.: Universal approximation with convex optimization: gimmick
or reality? IEEE Comput. Intell. Mag. 10,68–77 (2015)

2. Husmeier, D.: Random vector functional link (RVFL) networks. In: Neural Networks
for Conditional Probability Estimation: Forecasting Beyond Point Predictions, chap-
ter 6, 87–97, Springer-Verlag London (1999)

3. Zhang, L., Suganthan, P.: A Survey of randomized algorithms for training neural
networks. Information Sciences 364, 146–155 (2016)

4. Weipeng, C., Wang, X., Ming, Z., Gao, J.: A review on neural networks with random
weights. Neurocomputing 275, 278–287 (2018)

5. Li, M., Wang, D.: Insights into randomized algorithms for neural networks: Practical
issues and common pitfalls. Information Sciences 382–383, 170–178 (2017)

6. Pao, Y.-H., Park, G.H., Sobajic, D.J.: Learning and generalization characteristics
of the random vector functional-link net. Nurocomputing 6(2), 163–180 (1994)

Data-Driven Randomized Learning of Feedforward Neural Networks 17

7. Li, M., Huang, C., Wang, D.: Robust stochastic configuration networks with maxi-
mum correntropy criterion for uncertain data regression. Information Sciences 473,
73–86 (2019)

8. Dudek, G.: Generating random weights and biases in feedforward neural networks
with random hidden nodes. Information Sciences 481, 33–56 (2019)

9. Dudek, G.: Improving randomized learning of feedforward neural networks by ap-
propriate generation of random parameters. In: 15th International Work-Conference
on Artificial Neural Networks, (2019) (in print)

	Data-Driven Randomized Learning of Feedforward Neural Networks

