
BAYESIAN STRESS TESTING OF MODELS IN A CLASSIFICATION
HIERARCHY

A PREPRINT

Bashar Awwad Shiekh Hasan
Caspian Learning

Newcastle Upon Tyne, UK
bashar.hasan@caspian.co.uk

Kate Kelly
Caspian Learning

Newcastle Upon Tyne, UK
kate.kelly@caspian.co.uk

May 27, 2020

ABSTRACT

Building a machine learning solution in real-life applications often involves the decomposition of
the problem into multiple models of various complexity. This has advantages in terms of overall
performance, better interpretability of the outcomes, and easier model maintenance. In this work we
propose a Bayesian framework to model the interaction amongst models in such a hierarchy. We
show that the framework can facilitate stress testing of the overall solution, giving more confidence
in its expected performance prior to active deployment. Finally, we test the proposed framework
on a toy problem and financial fraud detection dataset to demonstrate how it can be applied for any
machine learning based solution, regardless of the underlying modelling required.

Keywords Bayesian modelling · machine learning · stress testing · model pipelines

1 Introduction

Machine learning has seen in the last 5-10 years an explosion in its growth from a research centered area of computer
science and mathematics to a driving force for innovation in every aspect of our lives [1, 2, 3]. This was driven mainly
by the success of deep learning and the significant investment of big technology firms in open source machine learning
research [4, 5, 6].

Real life machine learning based solutions often require a number of models to work together to achieve the business
goal of the product(s) [7]. Such models can be trained independently or as part of an optimised training pipeline [8, 9].

Breaking down the product into multiple models has several advantages: I) It allows for parallel model development
with model designers focused on solving relatively small and well-defined problems. II) It provides more transparency
on how the solution makes decisions by providing the end user with information about how the decision process has
been broken down and how individual sub-decisions were made. III) It allows the business to customise and variate
the product by replacing/adding models in the solution hierarchy to satisfy business or customer needs. However,
this comes at a cost: I) Error propagation between models can be a serious issue with errors propagating quickly to
undermine the performance of the overall solution [10, 11]. II) In a fast-paced production environment it is not clear
how to prioritise model improvement. III) An update of a model will have a cascading effect on the rest of the models
and will hence require re-training of all dependent models.

Building machine learning based solutions goes further beyond the performance of the individual models in the
solutions [12]. The authors in [13] discussed the different aspects of building machine learning solutions from a
software engineering point of view and concluded some of the unique challenges in building such solutions especially in
how to train and update the models. A rubric for machine learning production readiness is defined in [14] to help create
reliable, production-level machine learning systems. In [15] we presented a risk based approach to the use of machine
learning in anti money laundering which adds additional requirements to the solution including: model explainability,
bias, confounds, etc.

ar
X

iv
:2

00
5.

12
32

7v
1

 [
cs

.A
I]

 2
5

M
ay

 2
02

0

A PREPRINT - MAY 27, 2020

Surprisingly, there has been very little work in the literature on how to model and understand the interaction amongst
models within a solution. Some work focused on optimising the parameters of the pipeline [9, 16, 7]. Others focused
on the troubleshooting and diagnosis of faults and errors in a machine learning pipeline [17, 18, 19].

With the increased use of pre-trained models [20, 21], pipelining and putting models in a hierarchy has become the
norm in most machine learning solutions. This makes the need to stress test classification hierarchy in machine learning
solutions ever more pertinent to increase confidence in the solution and trust in the model predictions.

The authors in [10] proposed an architecture for modelling a pipeline as a Bayesian network. Their work is written
in the context of natural language processing (NLP), where the end-to-end performance of an NLP system is limited,
and potentially degraded, by the performance of the models and the error propagation through the pipeline. In their
proposed architecture, models within the pipeline are represented as variables in the network. By sampling the entire
distribution over the labels at each stage of the pipeline, a probabilistic output can be produced, smoothing the output of
the models and improving the end-to-end solution performance. This directly addresses the error propagation problem
in NLP, but does not cover the rest of the challenges of building a class hierarchy/pipeline.

In this paper we present a general purpose framework for building a Bayesian network that can be used to perform stress
testing on a set of models that are connected in a set hierarchy. The framework will help answer important questions not
only to understand the behaviour of the built model but also to assist in its maintenance and ongoing development (see
Section 2.1). The main contribution of this paper is not narrowly defined for a specific application area, e.g. NLP, but is
general and abstract enough to apply to any machine learning solution regardless of the underlying modelling approach
required.

After presenting the framework in Section 2, we present a toy problem to explain how the framework could be
implemented in Section 3.1. Section 3.2 presents the results of applying the framework on a sample fraud detection
dataset. Section 4 provides additional discussion on the framework and its potential use.

2 Methods

2.1 Problem Definition

Assume a machine learning based solution consisting of a hierarchy of N models M = {m1, ...,mN}. The models use
raw K data features X = {x1, ..., xK} and propagate sub decisions through the hierarchy towards a top model(s). The
input features X can be continuous or discrete, and each model takes as an input a subset of the features and the output
of a number of models, q ≥ 0. Each model produces either a class prediction or regression value.

The relationships amongst the models and the input features can be represented as a directed acyclic graph (DAG)
G = (V,E), where V = {vi : i ∈ [1, N +K]} is a node in the graph which can be either a model or an input feature,
and E = {eij : i 6= j and i, j ∈ [1, N +K]} is the directed link from vi to vj which represents information flow in
the edge direction.

We would like to be able to answer questions like:

(Q1) What is the impact of a change of the distribution of feature xk on the overall performance of the solution?

(Q2) What is the impact of updating a model mi on the overall performance of the solution?

(Q3) Which model in the hierarchy would be the most influential in improving the overall solution performance?

2.2 Model Definition

A Bayesian framework is best fit to answer the questions addressed in this work. It leads to a generative model of
the overall solution that allows for running simulations targeted at stress testing the solution. The hierarchy being
represented as a DAG makes it easy to model the solution as a Bayesian belief network, which in turn allows the use of
the full functionalities of the Bayesian framework - for example Bayes chain rule, prior distributions and sampling [22].

Under the Bayesian framework, it is not enough for a model in the hierarchy to produce predictions of the most
likely class, it must also produce a probabilistic output per class. A probabilistic output is intrinsic to Bayesian and
probabilistic based classifiers [22], but it can also be easily extended to most commonly used classification or regression
models in the literature [23, 24, 25, 26], and can even be extended to rule-based learning [27, 28].

The framework gives us the flexibility of defining prior information about the models within the hierarchy. Those
prior distributions help incorporate domain knowledge about the class distribution of the particular model within the
solution. It is common to model a classifier output as a multinomial or categorical distribution. Dirichlet distribution is a

2

A PREPRINT - MAY 27, 2020

conjugate prior to those distributions and hence is a good choice for a prior distribution for the models in our framework
[29, 22], although there is no restriction on using only Dirichlet. Similarly, prior distributions can also be defined for
the input features. We define Θ = {θi : i ∈ [1, N +K]} as the set of the prior distributions for all the models and the
features.

Following the Bayesian chain rule, the joint probability distribution of the models, features, and priors can then be
defined as:

P(M,X,Θ) = P(V,Θ) =

N+K∏
i=1

P(vi|Ai, θi)P(θi) (1)

where vi ∈ V and
Ai = {vj : ∃ eji ∈ E} (2)

is the set of the nodes that vi has dependency on. If Ai = ∅, then P(vi|Ai, θi) = P(vi|θi). If no prior is defined for vi,
then P(vi|Ai, θi) = P(vi|Ai) and P(θi) = 1.

The conditional probability distributions P(vi|Ai, θi) are usually difficult to estimate. However, given that we are
working with models that have already been trained, the conditional distribution is simply the prediction output of the
model. Using the known distributions of the input features, X , the framework becomes a generative model that can
propagate data through the models from the independent variables towards the top of the hierarchy.

2.3 Inference

Most classification models would have a relatively low number of classes. In which case, Equation 1 allows for an
exact inference. However, in some applications and especially those involving natural language processing pipelines the
number of possible values for the variables become too large that exact inference becomes intractable. For example,
parsing, part of speech tagging, and named entity recognition have a number of possible classes that is exponential to
the length of the input sentence. In which case approximate inference becomes a necessity [10]. We recommend the use
of a Markov chain Monte Carlo (MCMC) approach, e.g. Random Walk Metropolis [30].

Given a set of observable data D, the log posterior distribution can be defined as:

log(P(Θ|V,D)) ∝ log(P(D|V,Θ)P(Θ))

∝
N+K∑
i=1

log(P(D|vi, Ai, θi)) +

N+K∑
i=1

log(θi)
(3)

The only remaining piece to run MCMC is the ability to sample from the independent and joint distributions in the
model.

2.4 Sampling

Sampling from the independent variables, most likely the features X , is straightforward, as those are parameterized
by the relevant θi. The exception is when the space to sample from is exponentially large, e.g. the space of all parse
trees, or the words in the English language. To overcome this problem [10, 31] has proposed sampling approaches
for multiple examples of such cases. The details of those sampling methods are outside the scope of this paper, but
interestingly the changes required to support such sampling are minimal.

Sampling from the conditional distribution is straightforward. Given that those are the models M within our solution,
we only need to sample their input features and then run the model to obtain the output samples, which can be passed to
higher level model(s) in the hierarchy.

2.5 Stress testing

Once the model is built, stress testing the solution can be easily achieved. The model is general enough to support a
wide range of potential questions important for the solution operation in the live environment. In the following we
answer the questions raised in Section 2.1.

(Q1) To measure the impact of the change of a feature xk on the overall solution, we sample from the changed
distribution of xk. Kullback–Leibler (KL) divergence [22] would then be used as a measure of how the output
probability distribution of the solution changes accordingly. This is particularly helpful to gain understanding
of how the solution will react as a result of expected changes in the input data (e.g. due to data drift) or

3

A PREPRINT - MAY 27, 2020

sudden changes in the input data (e.g. due to a deployment of the solution in a new territory). We recommend
sampling repeatedly from the input feature distributions and calculating the joint distribution Eq. 1 so a more
robust measure is obtained.

(Q2) Similarly to (Q1), KL divergence can be used to measure the change in the distribution of the output model as
a result of changing a model using sampled data. Additionally, a change in the area under the curve (AUC) for
the model at the top of the hierarchy can be a very informative measure of impact of a given model change on
the overall solution performance.

(Q3) In order to decide which model is the most influential in the hierarchy, we retrain each individual model, one
by one, on randomly assigned labels. This forces the model to produce predictions at the experimental random
level, changing the output distribution of that single model. The AUC of the final solution with this updated
model is then obtained and compared to the previous AUC where that single model was not trained on random
labels. The resulting reduction in the AUC is then a strong indication of the importance of the targeted model
on the overall solution. When this process is repeated for each model in the hierarchy, we can then determine
which model should be focused on next when improving the solution.

2.6 Implementation Considerations

We implemented the framework using tensorflow probability [32]. In the current implementation we relied heavily on
tensorflow models whether linear or neural networks. If using direct inference, then the code can easily be extended to
none tensorflow models. However, when using MCMC, this is more challenging and requires further development. The
code used to produce the results in this paper is available at https://github.com/Caspian-Ltd.

3 Experiments and Results

To demonstrate the proposed framework and how it can be used to stress test a machine learning based solution, we use
a toy problem and a more realistic dataset for fraud detection in transactional banking data.

3.1 Toy Problem

The toy problem consists of three raw features X = {x1, x2, x3}, with each feature having a categorical distribution,
where x1 has two categories, and x2, x3 both have three categories. The three models in the hierarchy are M =
{m1,m2, y}, where m1 is a classifier with 3-class output, and m2, y are both 2-class classifiers. The priors associated
with those models are plotted in Fig 1 along with the DAG.

An equivalent DAG is built where the classifiers are replaced by categorical distributions, which are then used to
generate sample data for training the models in M . In a real scenario this would be the available training data.

To establish a baseline, m1,m2 and y are trained as linear classifiers and the joint probability is calculated following
Eq. 1 if we are using exact inference, or using MCMC as described in Section 2.

Experiment 1: Change the distribution of x3 by setting the category probabilities to [0.1, 0.2, 0.7]. The simulation, i.e.
sampling and joint probability estimation, is repeated 100 times. This results in KL-divergence of 0.21 indicating minor
change in the output distribution as can be seen in Fig. 2 top left panel.

Experiment 2: In addition to change in Experiment 1, the distribution of x1 is modified by setting the category
probabilities to [0.9, 0.1]. KL-divergence increases to 0.99 which is reflected in the shift from the baseline distribution,
Fig. 2 bottom left panel.

Experiment 3: Sets the category probabilities for x2 to [0.6, 0.3, 0.1]. KL-divergence is 0.35, Fig. 2 top right panel.

Experiment 4: Combines the changes in Experiment 2 and 3. KL-divergence is 1.135 which can be seen as a much
bigger change from the baseline distribution in Fig. 2 bottom right panel.

Experiment 5: Here the linear classifier in m1 is replaced by a two-layer feed forward Multi-Layer Perceptron.

Experiment 6: The linear classifier in m2 is replaced by a boosted tree classifier. Figure 3 demonstrates the outcome of
experiments 5 and 6. The MLP did not change the model performance compared to the linear model (<1% difference
in accuracy on testing set), but we can still see a change in the distribution of the final model output with KL-divergence
of ∼ 0.14. The boosted tree does actually increase the accuracy of the m2 by ∼ 10%. The AUC of the solution has
increased by 4% with KL-divergence ∼ 0.16.

4

A PREPRINT - MAY 27, 2020

Figure 1: A toy example of a machine learning solution that uses a set of models in a hierarchical configuration.
{x1, x2, x3} are the raw features feeding into two classifiers m1 and m2, which in turn feed into the top model y. Each
variable in the graph is represented with its categorical distribution.

Experiment 7: In order to test the impact of m1, and m2 on the overall performance of the solution, we separately
re-train them using randomly assigned labels and measure the respective KL-divergence and change in AUC. Figure
4 shows the impact of this test. Replacing m1 with an, essentially, random classifier does not seem to have made a
significant change to the output of the solution: KL-divergence ∼ 0.11 and a ∼ 2% drop in AUC. On the other hand
m2 has a significant influence on the solution output, KL-divergence is very large (∞) and the AUC showed a drop
to chance level at 50%. This clearly suggests that m2 is much more important for the overall solution performance
compared to m1, which is supported by the results of Experiment 6.

3.2 Fraud Detection Example

To test the framework on a more realistic dataset, we used the BankSim dataset [33]. BankSim is “an agent-based
simulator of bank payments based on a sample of aggregated transactional data provided by a bank in Spain”. The
simulator is designed to generate synthetic data that can be used for the study of fraud detection. The dataset contains
approximately six months worth of data and an average of two fraudulent transactions per day. In total there are 594,643
records with 587,443 normal payments and 7,200 fraudulent transactions.

There are 7 features in the data:

• step: time step
• customer: the customer ID
• age: a numeric value 0-7 representing the age category of the customer
• gender: the gender of the customer
• merchant: the ID of the merchant in a given transaction
• category: the nature of business of the merchant
• amount: transaction amount

To solve the challenge in fraud detection in Banksim we have applied some background knowledge of the AML
investigation process and developed a classification hierarchy that consists of three models:

• The Nature of Business Risk classifier (m1): assesses the risk of transacting with the merchant and rates the
transaction as low, medium, high risk.

5

A PREPRINT - MAY 27, 2020

Figure 2: Normalized histograms of the solution output in the toy example as a result of the experiments 1-4. Each
histogram is compared against the baseline distribution. In exp_1 the distribution of x3 is changed. exp_2 changes the
distributions of x1 and x3. exp_3 modifies the distribution for x2. exp_4 changes all the input features.

Figure 3: Normalized histograms of the solution output in the toy example as a result of the experiments 5-6 compared
against the baseline distribution. In exp_5 the linear classifier m1 is replaced by a neural network, while the linear m2

is swapped by a boosted tree in exp_6.

• Transaction Frequency classifier (m2): assesses the frequency of the transaction with the merchant in the
customer data. The classifier predicts whether the transaction is rare, infrequent, regular.

• Decision classifier (y): uses the engineered features and m1 and m2 to predict whether the transaction is
fraudulent or not.

To support the models several new features are engineered, in particular for the Transaction Frequency classifier. Table 1
summarizes the features X = {x1, ..., x9}, and Figure 5 demonstrates the DAG representing the classification hierarchy.

All models M = {m1,m2, y} are trained as linear classifiers. To reduce the impact of imbalanced data (98% of
transactions are not fraudulent) the majority class is down-sampled when training the Decision classifier so we have an
equal number of samples for both classes. To train m1 and m2 a randomly selected subset of the data is selected and

6

A PREPRINT - MAY 27, 2020

Figure 4: Normalized histograms of the solution output in the toy example as a result of experiment 7 compared against
the baseline distribution. In the top panel the m1 linear classifier is re-trained using randomly assigned labels. In the
bottom panel the same is repeated for m2.

manually labelled. Note that the choice of a linear classifier is not significant to the problem and may not necessarily be
the best choice for the problem, however this experiment was not to find the best classifier, but was to display how the
hierarchy of models can be utilised in a Bayesian framework.

y

m1 x1 x2 x3 m2

x4 x5 x6 x7 x8 x9

Figure 5: Bayesian network represented as a DAG for Fraud Detection Example

Similar to the toy example, we ran a number of experiments to demonstrate the potential use cases of the framework.
We will focus on the distribution of the “Fraud” class as, from our experience in the domain, this is a key factor for the
investigating banks. High number of predicted fraudulent transactions will lead to a large false positive rate which in
turn leads to significant operational overhead to the bank. On the other hand low predictions might lead to missing true
fraudulent activity. Naturally a high f1 score is the preference but if a compromise to be made then a higher recall is
usually preferred to high precision.

Experiment 8: The distribution of customer’s age (x2) is modified. We performed 100 repetition of the sampling (5000
samples) and joint probability estimation (Eq. 1). The difference in x2 distribution and the resulted distribution of the
“Fraud” class is shown in Fig. 6 (upper panel). KL-divergence is 0.024 between the baseline and the resulted “Fraud”
probability distribution.

Experiment 9: The distribution of the normalized transaction amount (x1) is modified to produce much smaller values.
As in Experiment 8, we performed 100 repetition of the sampling and joint probability estimation. The change in x1
distribution and the output “Fraud” probability is shown in Fig. 6 (lower panel). KL-divergence is 0.007 between the
baseline and the resulted “Fraud” probability distribution indicating little change in the predicted risk.

Experiment 10: Here we are trying to understand the relevant importance of the Nature of Business Risk classifier
m1 and the Transaction Frequency classifier m2 to the overall solution performance. Both models are retrained with
randomly assigned labels to the training data in order to produce experimental chance level results. The new models
are then, separately, replaced by the baseline models and a 100 repetition of the simulations are ran. Fig. 7 uses box
plots to show the resulted probability of “Fraud” in the three scenarios: baseline, m1 with randomly assigned labels,
and m2 with randomly assigned labels. It is clear from the figure that an unreliable Nature of Business Risk classifier
leads to an increase in the predicted fraudulent transactions as the median of the fraud probability significantly shifts

7

A PREPRINT - MAY 27, 2020

Table 1: Description of the node types in the Bayesian network of the fraud detection example

Node Details Distributions
x1 Normalized Transaction Amount Truncated Normal
x2 Customer Age Categorical
x3 Customer Gender Categorical
x4 Category OneHot Categori-

cal
x5 Average Time Between Transac-

tions with a merchant
Gamma

x6 Standard Deviation of Time Be-
tween Transactions with a mer-
chant

Gamma

x7 Average Transaction Amount with
a merchant

Gamma

x8 Standard Deviation of Transaction
Amount with a merchant

Gamma

x9 Ratio of the number of transac-
tions with a merchant to the num-
ber of transactions the customer
has

Truncated Normal

m1 Nature of Business Risk Classifier OneHot Categori-
cal

m2 Transaction Frequency Classifier OneHot Categori-
cal

y Decision Classifier OneHot Categori-
cal

upwards. This, however, results in a 9% reduction in recall indicating that the overall performance of the solution has
dropped significantly. On the other hand a random Transaction Frequency classifier results in a 6 % drop in the median
of the “Fraud” probability with a 9% reduction in recall. This implies that in this case the solution is significantly
underestimating risks.

Figure 8 demonstrates further the impact of changes in Experiment 10 on the output of the solution. It is clear from the
top panel that a poorly performing Nature of Business Risk classifier leads to an increase in reported fraud (mostly
incorrectly), while a poorly performing Transaction Frequency model has the opposite impact. This demonstrates the
power of the proposed framework as it allows a decision maker to understand the behaviour of their fraud detection
system. It also empowers the risk managers to define the types of risks that might occur as a result of adopting a
machine learning solution and then enforce the required measures and processes to mitigate those risks.

4 Discussion

In this work we proposed a general purpose framework for stress testing machine learning based solutions. The
framework takes a Bayesian approach to modelling a hierarchy of classifiers as a Bayesian network with directed links
between nodes indicating probabilistic dependencies. This allows the use of the full Bayesian framework for parameter
estimation and inference. After defining the model, we demonstrated how the framework can be used by applying it on
a simplified toy example, and then on a realistic problem: fraud detection in banking systems.

The main purpose of the framework is to increase the trust in the deployed machine learning solution before going
live and during the ongoing maintenance. In real-life applications, labelled data is very difficult to obtain and even
if labels are available they usually come after a lengthy labelling process. Subject matter experts are usually used to
evaluate periodically and retrospectively the outcome of the machine learning solution. This leaves a gap of uncertainty
regarding the performance of the solution especially in highly risky environments, for example, in fraud detection and
anti-money laundering.

The proposed framework provides decision makers with directional evidence of how their deployed solution will most
likely behave in extreme edge cases, or as a result of re-deploying the system in a different region with different data
distributions. This is extremely valuable information for risk stewards, operation managers, and data science teams, as
it provides insight to the solution performance in different scenarios whilst also minimising the risk involved.

8

A PREPRINT - MAY 27, 2020

Figure 6: Normalized histograms of demonstrating the change in the distributions of input features Age (x2) and
Transaction Amount(x1), and the resulted change in the output distribution.

Figure 7: Box plot of the fraud probability as a result of training the nature of business classifier m1 on randomly
labelled data and the training of the frequency classifier m2 on random labels. The median value of each case is overlaid
on the box plots.

9

A PREPRINT - MAY 27, 2020

Figure 8: The bi-variate distribution of the probability of fraud of baseline solution against the models in Experiment
10. Random m1 is the result of replacing m1 with a classifier trained on randomly permuted labels of nature of business
risk. Random m2 is the result of replacing m2 with a classifier trained on randomly permuted labels for frequency.

In the examples provided here we assumed, without loss of generality, that the input features X are independent, hence
no links between them in Fig. 1 and Fig. 5. During the engineering of the machine learning solution, features are
preferred to be independent. However this is not always possible, and in some situations dependencies are not very
clear. The framework presented here is not impacted by any dependencies among the features as they are treated as
any other node in the Bayesian network and the same Bayesian chain rule will apply. For highly complex problems, it
might be more efficient to simulate the features independently and provide the simulation data to the framework here.
This can be for example using agent-based simulations similar to [33].

The built Bayesian model can be used as a basis for a causal model [34]. This will help provide further stress testing of
the solution and potentially more robust interrogation of the models through interventions. In the future, this is the
direction where we want to drive and build upon this work.

References

[1] P Gainza, F Sverrisson, F Monti, E Rodolà, D Boscaini, MM Bronstein, and BE Correia. Deciphering interaction
fingerprints from protein molecular surfaces using geometric deep learning. Nature Methods, pages 1–9, 2019.

[2] Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan Godwin, Natasha Antropova, Hutan Ashrafian,
Trevor Back, Mary Chesus, Greg C Corrado, Ara Darzi, et al. International evaluation of an ai system for breast
cancer screening. Nature, 577(7788):89–94, 2020.

[3] Zhiyuan Chen, Ee Na Teoh, Amril Nazir, Ettikan Kandasamy Karuppiah, Kim Sim Lam, et al. Machine learning
techniques for anti-money laundering (aml) solutions in suspicious transaction detection: a review. Knowledge
and Information Systems, 57(2):245–285, 2018.

[4] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

[5] Mart’ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

[7] Mrinmaya Sachan, Kumar Avinava Dubey, Tom M Mitchell, Dan Roth, and Eric P Xing. Learning pipelines with
limited data and domain knowledge: a study in parsing physics problems. In Advances in Neural Information
Processing Systems, pages 140–151, 2018.

10

A PREPRINT - MAY 27, 2020

[8] Razvan C Bunescu. Learning with probabilistic features for improved pipeline models. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 670–679. Association for Computational
Linguistics, 2008.

[9] Yuyu Zhang, Mohammad Taha Bahadori, Hang Su, and Jimeng Sun. Flash: fast bayesian optimization for data
analytic pipelines. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 2065–2074. ACM, 2016.

[10] Jenny Rose Finkel, Christopher D Manning, and Andrew Y Ng. Solving the problem of cascading errors:
Approximate bayesian inference for linguistic annotation pipelines. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing, pages 618–626. Association for Computational Linguistics,
2006.

[11] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. Data lifecycle challenges in
production machine learning: a survey. ACM SIGMOD Record, 47(2):17–28, 2018.

[12] Jeremy Howard, Margit Zwemer, and Mike Loukides. Designing great data products. " O’Reilly Media, Inc.",
2012.

[13] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar, Nachiappan Nagappan,
Besmira Nushi, and Thomas Zimmermann. Software engineering for machine learning: a case study. In
Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice,
pages 291–300. IEEE Press, 2019.

[14] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D. Sculley. The ml test score: A rubric for ml
production readiness and technical debt reduction. In Proceedings of IEEE Big Data, 2017.

[15] B. Awwad Shiekh Hasan J. Faith and A. Enshaie. Trusting machine learning in anti-money laundering: A
risk-based approach. Technical report, Caspian Learning, Newcastle Upon Tyne, UK, 2019.

[16] Tomasz Marciniak and Michael Strube. Beyond the pipeline: Discrete optimization in nlp. In Proceedings of the
Ninth Conference on Computational Natural Language Learning (CoNLL-2005), pages 136–143, 2005.

[17] Zhao Zhang, Evan R Sparks, and Michael J Franklin. Diagnosing machine learning pipelines with fine-grained
lineage. In Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed
Computing, pages 143–153. ACM, 2017.

[18] Daniel Bruckner. Ml-o-scope: a diagnostic visualization system for deep machine learning pipelines. Technical
report, CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER
SCIENCES, 2014.

[19] Besmira Nushi, Ece Kamar, Eric Horvitz, and Donald Kossmann. On human intellect and machine failures:
Troubleshooting integrative machine learning systems. In Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[21] Marcel Simon, Erik Rodner, and Joachim Denzler. Imagenet pre-trained models with batch normalization. arXiv
preprint arXiv:1612.01452, 2016.

[22] David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.
[23] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization with robust

bayesian neural networks. In Advances in Neural Information Processing Systems, pages 4134–4142, 2016.
[24] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning, volume 2. MIT

press Cambridge, MA, 2006.
[25] John S Denker and Yann Lecun. Transforming neural-net output levels to probability distributions. In Advances in

neural information processing systems, pages 853–859, 1991.
[26] John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood

methods. Advances in large margin classifiers, 10(3):61–74, 1999.
[27] Jan-Nikolas Sulzmann and Johannes Fürnkranz. A study of probability estimation techniques for rule learning.

FROM LOCAL PATTERNS TO GLOBAL MODELS, page 123, 2009.
[28] Krzysztof Dembczyński, Wojciech Kotłowski, and Roman Słowiński. Maximum likelihood rule ensembles. In

Proceedings of the 25th international conference on Machine learning, pages 224–231. ACM, 2008.
[29] M Antónia Amaral Turkman, Carlos Daniel Paulino, and Peter Müller. Computational Bayesian Statistics: An

Introduction, volume 11. Cambridge University Press, 2019.

11

A PREPRINT - MAY 27, 2020

[30] Gareth O Roberts, Jeffrey S Rosenthal, et al. General state space markov chains and mcmc algorithms. Probability
surveys, 1:20–71, 2004.

[31] Mark Johnson, Thomas Griffiths, and Sharon Goldwater. Bayesian inference for pcfgs via markov chain monte
carlo. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association
for Computational Linguistics; Proceedings of the Main Conference, pages 139–146, 2007.

[32] Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton,
Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow distributions. arXiv preprint arXiv:1711.10604, 2017.

[33] Edgar Alonso Lopez-Rojas and Stefan Axelsson. Banksim: A bank payments simulator for fraud detection
research. In 26th European Modeling and Simulation Symposium, EMSS, pages 144–152, 2014.

[34] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic Books, 2018.

12

	1 Introduction
	2 Methods
	2.1 Problem Definition
	2.2 Model Definition
	2.3 Inference
	2.4 Sampling
	2.5 Stress testing
	2.6 Implementation Considerations

	3 Experiments and Results
	3.1 Toy Problem
	3.2 Fraud Detection Example

	4 Discussion

