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Abstract—An end-to-end solution for handwritten numeral
string recognition is proposed, in which the numeral string is
considered as composed of objects automatically detected and
recognized by a YoLo-based model. The main contribution of this
paper is to avoid heuristic-based methods for string preprocessing
and segmentation, the need for task-oriented classifiers, and also
the use of specific constraints related to the string length. A robust
experimental protocol based on several numeral string datasets,
including one composed of historical documents, has shown that
the proposed method is a feasible end-to-end solution for numeral
string recognition. Besides, it reduces the complexity of the string
recognition task considerably since it drops out classical steps,
in special preprocessing, segmentation, and a set of classifiers
devoted to strings with a specific length.

Index Terms—Handwritten Digit Recognition, Handwritten
Digit Segmentation, Pattern Recognition, Convolutional Neural
Networks

I. INTRODUCTION

Handwritten digit string recognition (HDSR) has been a
subject of research over the past few decades. Additionally, in
recent years, the information retrieval on historical documents
has recovered attention to this field since plenty of digitalized
historical document datasets were released [1], [2].

To deal with the HSDR task, most of the proposed works
segment the string into isolated digits and then apply a clas-
sifier capable of recognizing 10 classes (0, . . . , 9). However,
this approach becomes unfeasible in the presence of noise,
broken digits, and touching digits.

The literature provides several approaches to deal with the
presence of touching digits. Most of the algorithms are based
on contour and profile information to over-segment the numer-
ical string, thus generating components that may represent a
digit or parts of it. Next, a fusion method determines the best
combination according to the a posteriori probabilities. Even
though over-segmentation yields interesting recognition rates,
its computational cost is elevated.

The alternatives resort to segmentation-free based methods
[3], [4], [5], [6], [7] in which the string is recognized without
the need for its prior segmentation into isolated digits. Such an
approach has recovered the attention of the research commu-
nity in the last years with the recent advances in deep learning.
While over-segmentation methods demand (i) some specific

strategy to generate segmentation cuts, (ii) a robust isolated
digit recognizer, and (iii) a strategy for searching the best path
among the generated segmentation hypothesis; segmentation-
free approaches demand a significant amount of training data.
It is worth to remark that, despite the fact these approaches
boost the recognition rates, the background suppression and
the detection of connected components remain a bottleneck
since they are based on a set of heuristics.

Some of the aforementioned issues such as background
suppression, noise, and touching components, are also related
to the field of object recognition, which is maturing very
rapidly. Thus, there is a plethora of deep learning end-to-end
models available in the state-of-art [8], [9], [10]. In this paper,
we investigate the advances made in object recognition to push
the frontiers of handwriting recognition.

When discussing object recognition, one aspect that is very
often highlighted in the literature is the importance of the con-
text [11].Although the contextual information is more limited
in HDSR, it also plays an important role, as demonstrated in
[12].

In this paper, we defend that handwritten digits can be seen
as objects; hence a string of digits is a sequence of objects. The
architecture used in this work is the YoLo [9][10], which pro-
vides appropriate features for the digit context. Furthermore,
we demonstrate that when applicable, a synthetic dataset of
strings mimicking real datasets can provide reliable contextual
information, thus minimizing data annotation efforts.

The main contribution of this work is an elegant end-to-end
approach free of i) heuristic-based preprocessing, ii) heuristic-
based segmentation, iii) multiple task-specific classifiers, and
iv) constraints about the number of touching digits in the
strings. In order to validate the proposed approach we present
experiments on several datasets. First, we show the importance
of the synthetic dataset created to provide contextual informa-
tion. Second, we tested the limits of the proposed approach on
very large strings (up to 20 digits). Then, we define three real-
world applications to assess the method: (a) 11,585 numerical
strings, ranging from 2 to 6 digits, extracted from forms of
NIST SD19 [13], (b) the courtesy amount of bank checks of
ORAND-CAR datasets [14], and finally, the recent released
ARDIS dataset[1], composed of numerical strings extracted
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from Swedish historical documents.
The results in the aforementioned datasets show that the

proposed strategy compares favorably to the segmentation-
based and segmentation-free approaches published in the state-
of-art with the clear advantage of having a shorter pipeline that
minimizes the presence of heuristics-based modules, such as
preprocessing.

II. RELATED WORK

To avoid the burden of over-segmentation, some authors
have devoted efforts towards segmentation-free approaches.
In this vein, one of the first strategies was proposed in [3].
To avoid the segmentation of touching pairs, the authors
designed a framework based on 100 neural networks. Their
approach achieves 95.3% recognition rate of touching pairs
extracted from NIST-SD19 [13]. A decade later, the work of
[4] took advantage of Convolutional Neural Networks (CNNs).
Two CNNs were trained, one for isolated digits and one for
touching pairs. The authors combined these two networks
to recognize 3-digit strings of NIST database, achieving a
recognition rate of 93.4%. At that time, strings with three
connected digits were not considered.

Taking advantage of the advances of deep learning [15],
authors in [5] introduced a segmentation-free approach to
recognize digit strings of any size. In their work, the authors
combined four CNNs into a Dynamic Selection (DS) scheme
[16]. The first CNN works as a high-level classifier that
determines the size of the components, while the other three
operate in a low-level by classifying 1-digit, 2-digit, and 3-
digit components, respectively. This approach achieved the
state-of-the-art for NIST-SD19 [13] and TDP [17] datasets,
surpassing segmentation-based and segmentation-free meth-
ods.

In spite of the good performance, this approach has
bottlenecks. First, it is based on a hierarchical framework
composed of heuristic-based preprocessing and four clas-
sifiers, which means different sources of errors. Second,
the strategy recognizes strings of any size but limited to
3-digit touching. To mitigate some of these problems, in
[6], the authors reduced the number of classifiers by in-
troducing a single classifier (C1110) to classify those 1110
classes (0 . . . 9, 00 . . . 99, and 000 . . . 999). Although these
approaches achieve high recognition rates, they still embed
complex pipelines, surrounded by heuristic processes, prepro-
cessing modules, and fusion strategies.

In this work, we argue that handwritten digit string recogni-
tion can benefit from the recent advances in the field of object
recognition, where the main goal consists in detecting and
recognizing a set of predefined classes of objects in a given
input image. Until the last decade, a classical approach was
the sliding window based methods and its variants [18], [19],
[20]. This kind of approach repurposes a classifier trained with
handcrafted features at several spatial locations of the image.
A drawback is the elevated number of windows required to
search over multiple scales and aspect ratios, which lead to
increased computational costs.

Major breakthrough happened when large-scale datasets
[14], [21] arose and GPUs became popular, enabling the
efficient training of deep neural networks in the ILSVRC 2012
[14]. Consequently, this field had recovered the attention of the
research community, and several deep learning methods were
proposed and set the new standards for the area.

One of the first successful approaches was the Region-based
Convolutional Network (R-CNN) proposed by Girshick et al.
[22]. This architecture first extracts region proposals from
image space using the selective search algorithm [23]. Then,
each region is warped to a fixed size, and a CNN extracts
features. Finally, an SVM classifier determines a class, and a
bounding-box regressor refines the locations. The necessity to
extract features of each warped region is the main drawback
of this strategy, which is computationally expensive.

To overcome this obstacle, SPPnet [24] and Faster-RCNN
[8] have been proposed. These models predict region pro-
posals direct over feature maps. A spatial pooling layer was
introduced to produce fixed-length representations (wrapping
at feature level). Although those strategies speed up the whole
process, they still rely on a handcrafted region proposal
method. The work of [25] then presented a region proposal
network (RPN), which implicit produces the candidate loca-
tions. The features available in the last convolutional layer are
used for both (i) region proposal and (ii) region classification.

The above approaches still handle a two-stage pipeline once
they require a region proposal strategy, regardless of whether
it is implicit or not. A cleverer alternative was proposed in
[9][10] with the YoLo architecture, in which the authors intro-
duced a regression-based approach that encapsulates all stages
into a single network. With a single forward pass, the network
provides bounding box locations and class probabilities. An
important aspect of YoLo is that it can encode context and
appearance from the neighborhood of objects, which is a very
important feature for implicit digit segmentation. In light of
this, the YoLo model was selected as the object detector for
this work.

III. PROBLEM STATEMENT

As stated before, the traditional approaches group fore-
ground pixels into connected components and classifies them
individually. The issue is that this approach provides a local
view of the problem, thus ignoring contextual information.
Without this valuable information, the algorithms suffer from
the presence of noise and touching digits.

An end-to-end approach addresses this problem in a global
manner. Deep learning models can learn the interaction be-
tween digits in the context of an image, which contains
noise, touching, overlapping, and broken digits. Therefore,
the end-to-end approach features a quite short pipeline: the
object detector D (Section IV) receives as input an image
I containing n digits (objects) and produces as output the
location (bounding boxes) and the digit classes [0, . . . , 9]
associated with an estimation of the a posteriori probability.
Considering that the input image I may contain n connected
components, the most probable interpretation of the written



amount M is given by Equation 1, where ωi = {0 . . . 9} and
xi stands for the digit candidates.

P (M |I) =
n∏

i=1

P (ωj |xi) (1)

The simplicity of the proposed method is clear when we
compare both systems. First, the end-to-end solution cuts off
the preprocessing module to detect connected components.
Next, it is unnecessary to train specialized classifiers or to
design a fusion method to combine them. Since the digit
string is a string of objects, the end-to-end approach imposes
no constraints over the number of touching components. On
the other hand, this kind of approach demands a considerable
amount of data to fine-tune the network and hyper-parameters.
The Section V-C discusses a dataset tailored for efficiently
learning this type of representation via synthetic strings.

IV. YOLO FOR DIGIT STRING RECOGNITION

The YoLo [9] is a general-purpose object detector frame-
work trainable in an end-to-end manner. Using a single neural
network and looking at the entire image, it can predict bound-
ing boxes and classes with a single forward pass instead of
applying the model at every location, such as traditional sliding
window or region purpose-based methods [8]. The framework
is illustrated in Figure 1.

Figure 1. YoLo Framework: The system divides the image into a grid and
for each cell predicts bounding boxes and classes.

First, the convolutional layers (Section IV-1) extract features
from the entire image, and the detection layer divides the
image into a grid. Next, each grid cell predicts bounding box
coordinates with a confidence level that this box encloses an
object. To help the network to learn how to predict good
bounding boxes, handpicked anchor boxes (Section IV-2) are
previously defined. Moreover, it provides class probabilities
for those cells that belong to an object. Finally, to mitigate
confusion among overlapped boxes, the well-known Non-
Maximum Suppression (NMS) algorithm is used.

1) Convolutional Layers: The architecture of the network
(a.k.a. Darknet) is composed of 19 convolutional layers and
5 max-pooling layers. The input resolution of the Darknet
is 416 × 416 [9]. However, given that strings of digits are
usually wider than higher, we have used an initial input
size of 128 × 256 (height × width) for initial training. The
input size changes during training, as every 10 batches, the
network randomly chooses a new image dimension size, and

the training is resumed. This forces the network to learn to
predict well across a variety of input dimensions.

Section V-B depicts experiments that during recognition, the
input size can be defined as a function of the testing input im-
age. Since YoLo looks at the whole input, it implicitly encodes
contextual information about objects and their neighborhood.

2) Anchors: The dimensions of anchor boxes were defined
by authors using samples of Imagenet dataset[14], which is
composed of 1000 classes of real-life objects. To optimize
anchors for digits, we performed a k-means clustering over
10,000 ground-truth bounding boxes from training samples.
The resulting anchors have 0.5, 0.6, and 1.0 aspect ratios.

3) Training: Training is performed using Stochastic Gradi-
ent Descent (SGD) and back-propagation with mini-batches of
64 instances, a momentum factor of 0.9, and a weight decay of
5×10−4. The initial learning rate was set to 10−3, which allow
weights to quickly fit the long ravines in the weight space,
after which it is reduced over time (until 5 × 10−4) to make
the weights fit the sharp curvatures. The sum-squared error is
used as a loss function to optimize detection and classification
simultaneously.

In the present work, regularization was implemented
through early-stopping, which prevents overfitting as training
is interrupted as the performance of the network on a valida-
tion set deteriorates. The models were trained using NVidia
GeForce Titan X and V GPUs1.

V. EXPERIMENTS

This section reports the assessment of our proposal in
different scenarios. First, we discuss the impacts of contextual
information during the learning process, as YoLo models are
trained with isolated digits and strings composed of single
and touching digits. Next, we perform an experiment to find
out which input image size maximizes the performance of the
proposed model. Finally, our end-to-end approach is applied
to different real-world applications: (a) strings extracted from
forms of NIST SD19, (b) the courtesy amount of bank checks
of ORAND-CAR dataset and finally, (c) numeral strings
extracted from a Swedish historical dataset (ARDIS).

A. The importance of contextual information

Throughout this paper, we have advocated the importance of
the context for recognizing digits as objects. At this point, one
may ask if it is really necessary as chaining the recognition of
isolated digits has been used for the last three decades with
reasonable success.

We trained the YoLo model using 197k samples of isolated
digits from the hsf_0123 folder of the NIST SD19 dataset. As
a result, the model performs quite well recognizing isolated
digits, achieving a performance around 99% on a dataset
composed on 23,621 isolated digits from the hsf_7 folder of
NIST SD19. However, when digit strings are presented, the
model collapses in terms of both localization and recognition.
The model tends to find only one component per image

1All trained classifiers are available for research purposes at
https://web.inf.ufpr.br/vri/databases-software/touching-digits/



since they were trained with isolated objects. Some detection
samples are illustrated on Figure 2.

(a) (b) (c) (d)

Figure 2. Outputs of YoLo trained with isolated digits only: (a) and (b)
represent correct detections of isolated digits, while (c) and (d) are mis-
detections on digit strings caused by the lack of context learning.

Besides, the shape of the digits may be severely affected
by its neighbors. Consider for example the string depicted in
Figure 3a. Considering the ground-truth bounding boxes, the
shape of some digits are quite different from those observed
in the isolated digit datasets, especially those in the middle
of the string. This is why learning from strings rather than
isolated digits is important.

(a) (b)

Figure 3. (a) Ground truth for a 4-digit string (0256) and (b) Shape of digits
impacted by its neighbors.

B. Input Image Size

As aforementioned, the images have been resized to 128×
256 (height × width) for training. However, since YoLo
changes the input size every few iterations during training, the
network is able to recognize testing images of different sizes.
The question is how to properly resize the testing input image
to maximize the network’s performance. This is a relevant
issue since the image width may vary considerably according
to the number of digits in the string. For instance, a 20-digit
string is considerably longer than a 2-digit string, and thus,
resizing both to 128× 256 is not reasonable.

To address this issue, we performed an experiment on 5,000
strings ranging from 2 to 20 digits, which were synthetically
created by concatenating isolated digits from NIST SD19.
For each string length, we tested the input image width in
the following range: [128, 256, . . . , 1152, 1280]; whereas the
image height is 128. Table I summarizes the image input size
that maximizes the recognition rate according to string length.

Table I
IMAGE INPUT SIZE THAT MAXIMIZES THE RECOGNITION RATE FOR EACH

STRING LENGTH

String Average Input Image Recognition
Length String Width Size (IIw) Rate (%)

(Sw) (128× w)
2 75 128 98.6
6 228 384 97.6
10 381 640 94.8
14 524 896 91.0
20 750 1280 89.6

From Table I, we can notice that there is a quasi-linear re-
lation between the average string width of the testing images2

and the best input size for the YoLo. As a result, we derived
Equation 2 to compute the input size width of the YoLo based
on the width of the testing image. This rule is used for all
experiments reported in this paper.

IIw =

{
128 for Sw 6 75
Sw × 1.70 otherwise (2)

Figure 4 shows examples of 20-digit strings recognized by
the system using the aforementioned rule. These corroborate
the efficiency of the adopted resizing strategy and show that
the proposal performs well even for long strings composed of
broken, overlapping, and touching digits.

C. NIST SD19 Strings

The experiments using real-world strings are based on
11,585 numeral strings extracted from the hsf_7 series and
distributed into five classes: 2_digit (2,370), 3_digit (2,385)
4_digit (2,345), 5_digit (2,316), and 6_digit (2,169) strings,
respectively. The strings were cropped from original samples
leaving a border of 5 pixels. These data exhibit different
problems such as touching and fragmentation, and they were
also used as a test set in [5], [12], [26], [27], [28], [29], [30].
It is important to mention that at any moment, the writers of
hsf_7 series were not used for training.

To provide a sufficient amount of data to learn the repre-
sentation, we created a synthetic dataset composed of 365,000
numerical strings ranging from 2- to 6-digits, containing iso-
lated and touching components3. The rationale of this strategy
is to create a dataset with contextual information about the
neighborhood of isolated and touching digits that is not present
in traditional learning with single-digit samples.

An in-depth discussion about this is presented on Section
V-A. The strings are built by concatenating isolated digits of
the hsf_0123 folder of NIST SD19 [13] through the algorithm
described by Ribas et al. in [17]. Figure 5 depicts some
examples. To avoid potential biases, we used the information
of the authors available on the NIST SD19, such that digits
from different authors were used exclusively for training,
validation, and testing.

Table II summarizes the results for this experiment. We see
that there are two sources of errors: detection (when the digit
is mispositioned or not detected at all) and classification (when
the digit is correctly detected, but it is misclassified).

Regarding the detection errors, which the average error rate
is below 1%, we observed that most of the problems are related
to the digit “1”. The problem occurs when i) the height has a
variance with his neighbor (Figure 6a), or ii) the slant of the
image is big (Figure 6b). In these cases, the digits “1” were
undetected. Another source of errors is the digit “4” (very often
related to the digit “1”). In these cases, sometimes the model

2The number of pixels may vary depending on the image resolution. In
this work, all the images were acquired in 300dpi.

3All the synthetic data is available upon request for research purposes at
https://web.inf.ufpr.br/vri/databases-software/touching-digits/

https://web.inf.ufpr.br/vri/databases-software/touching-digits/


(a)

Figure 4. 20-digit strings correctly recognized by the proposed approach.

(a) (b) (c)

Figure 5. Synthetic data representing numerical strings ranging from 2 to 6
digits.

Table II
ACCURACY (%) FOR THE NIST STRINGS

Length Samples Accuracy (%) Error (%)
Classification Detection

2 2370 98.57 1.39 0.04
3 2385 97.61 2.32 0.08
4 2345 97.10 2.56 0.34
5 2316 96.50 2.59 0.91
6 2169 95.80 3.14 1.06

Average 97.12 2.40 0.49

detects two objects (“4” and “1” ) in the digit “4” (Figure 6c)
and sometimes just the digit “4” is detected, missing the digit
“1’ (Figure 6d). Finally, we have observed few samples similar
to under-segmentation 6e) and over-segmentation (Figure 6f).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Missed predictions: (a) to (f) representing missed detections and
(g) to (j) representing misclassifications

With respect to the misclassification, Table II shows an
average error rate of 2.4%. Performing an error analysis, we
noticed that most confusions are related to the variability of
the handwriting. From Figure 6g to Figure 6i are illustrated
some common mistakes involving classes “0” and “1”. In such
cases, these handwriting styles are poorly represented in the
training set (Figure 6j).

Table III compares the accuracy (%) of several systems
reported in the literature on NIST-SD19. For the sake of
completeness, we replicate the results compiled by the authors
in [5]. The works presented in [26], [12], and [28] use different
segmentation (implicit and explicit) and classification strate-
gies, such as Hidden Markov Models, Multi-layer Perceptrons
and Support Vector Machines.

The work presented by Sadri et al. [29] is reported in

Table III
COMPARISON OF THE ACCURACY (%) ON NIST SD19

L
en

gt
h

Sa
m

pl
es

[2
6]

[1
2]

[2
8]

[2
9]

*[
29

]

[3
0]

[5
]

[7
]

Yo
L

o

2 2370 94.8 96.8 97.6 95.5 98.9 99.0 97.6 98.8 98.6
3 2385 91.6 95.3 96.2 91.4 97.2 97.3 96.2 96.4 97.6
4 2345 91.3 93.3 94.2 91.0 96.1 96.5 94.6 95.0 97.1
5 2316 88.3 92.4 94.0 88.0 95.8 95.9 94.1 95.4 96.5
6 2169 89.0 93.1 93.8 88.6 96.1 96.6 93.3 95.0 95.8
Average 91.0 94.2 95.2 90.9 96.8 97.1 95.2 96.1 97.1

two columns. The authors proposed a system based on over-
segmentation, in which they used a genetic algorithm to
optimize their segmentation algorithm. As pointed out in [5],
the second set of experiments (marked with * in Table III)
is somehow biased since the heuristics were defined using a
subset of the testing set. Good performance was also reported
by Gattal et al. [30], yet, their segmentation thresholds have
been adjusted on the test set.

Finally, a straightforward comparison is possible with the
segmentation-free method proposed in [5] and recently im-
proved by [7], in which the fusion rule was eliminated by
a cascade architecture of PCA-SVMNet classifiers, however,
keeping the preprocessing steps and specific-task classifiers.
As discussed in Section III, the proposed approach improves
accuracy whilst cutting off all the heuristics used for prepro-
cessing, the necessity of training several deep learning models,
and the parameter used in the fusion strategy.

D. ORAND-CAR Datasets

This experiment was performed on real-world datasets built
for the ICFHR 2014 challenge on HDSR [31]. The ORAND-
CAR-2014 consists of digit strings of the courtesy amount
recognition (CAR) field extracted from real bank checks with
a resolution of 200 dpi. Besides the traditional challenges
in handwriting such as noise, broken, and touching digits,
this dataset presents samples with background and currency
symbols such as ‘#’, ‘$’, dots, commas, and dashes. It includes
variation in size as well as writing style. This database poses
new challenges to the community since it is harder than other
datasets, especially in terms of variance in writing style. Table
IV shows the amount of data used for training and testing and
some examples are depicted in Figure 7.

(a) 76210 (b) 60000

Figure 7. Sample data of (a) Car-A and (b) Car-B datasets.



Once this dataset has different handwriting styles than
NIST SD19, the use of models constructed with synthetic
data use so far would provide unreliable results. Thus, we
have trained all models using the data described in Table IV,
since it is the protocol suggested in the competition. We kept
the training parameters unchanged, following the description
provided in Section IV. To provide sufficient information
to object-detection approach, we have annotated the digits
bounding-boxes (ground-truths) of each training sample4. This
laborious task was necessary since most of the samples have
a complex background, noise, and symbols, which is difficult
to reproduce synthetically.

The performance of the end-to-end approach on the test set
is presented in Table V. Differently from the other bench-
marks, where the dynamic selection approach [5] performed
quite well, in these experiments, it struggled mostly because
of its heuristic-based preprocessing module. Since ORAND-
CAR provides a hard background and currency symbols, the
preprocessing module collapsed in detecting the connected
components.

A remarkable performance was achieved by the YoLo,
which reveals the robustness of the model in the task of encod-
ing context, noise, and background. The ORAND dataset also

Table IV
DISTRIBUTION OF ORAND-CAR

Car-A Car-B
Length Train Val Test Train Val Test

2 17 5 36 0 0 0
3 176 28 387 0 0 0
4 633 71 1425 60 3 5
5 819 84 1475 1080 120 69
6 127 18 363 1432 167 1241
7 27 2 87 127 10 1452
8 1 1 11 1 0 157
9 0 0 0 0 0 2

Total 1800 209 3784 2700 300 2926

Table V
COMPARISON OF THE ACCURACY (%) ON ORAND-CAR DATASETS

REPORTED BY [32]

Methods CAR-A CAR-B
Tebessa I[31] 37.05 26.62
Tebessa II[31] 39.72 27.72

Hochuli et al.[5] 50.10 40.20
Singapore[31] 52.30 59.30

Pernanbuco[31] 78.30 75.43
Beijing[31] 80.73 70.13
CRNN[33] 88.01 89.79
Saabni[34]∗ 85.80

ResNet-RNN[35] 89.75 91.14
ResNet-RNN[32] 91.89 93.79

YoLo 96.20 96.80
∗ Unified CAR-A and CAR-B datasets

4The annotated dataset is available upon request for research purposes at
https://web.inf.ufpr.br/vri/databases-software/touching-digits/

(a) (b)

Figure 8. Missed predictions of YoLo for ORAND dataset: (a) ‘7630500’ as
‘7030500’ and (b) ‘171448’ as ‘121498’

provides challenges in terms of overlapped digits, handwriting
variability, and different aspect ratios that severely impact the
performance of models. Figure 8 depicts these issues.

E. ARDIS Historical Dataset

The Swedish dataset of historical handwritten digits [1]
is composed of 4-digit image-based strings (years) extracted
from 15,000 Swedish church records, available in the Arkiv
Digital Sweden (ARDIS). The strings were written by different
priests with various handwriting styles in the nineteenth and
twentieth centuries, with different dip pens, and the alphabets
are scripted in various sizes, directions, widths, arrangements,
and measurements, which impose different challenges when
compared to modern datasets. The dataset also provides addi-
tional information about the city and the book type (category)
that the image was collected.

The dataset consists of one digit string dataset and three
single-digit datasets (Figure 9a). The digit strings dataset
includes 10,000 samples in RGB color space, whereas, the
other datasets contain 7,600 single-digit images in different
color spaces. Figure 9b depicts the string class distribution.

1) Single Digit Benchmark: The authors proposed a bench-
mark for single digits of Dataset IV reporting the accuracy
of several machine learning models using different training
protocols. The results are reported in Table VI. In Case I, the
models were trained with samples of the MNIST dataset and
tested on ARDIS. For Case II, the samples of the USPS dataset

(a)

(b)

(c) (d) (e) (f)

Figure 9. Ardis Dataset: (a) Data representation of each dataset, (b) the
class distribution for strings (years) and (c)-(f) representing the variety in
handwriting styles and backgrounds.



Table VI
BENCHMARK FOR ARDIS DATASET IV (SINGLE DIGITS) OF MODELS ON

DIFFERENT TRAINNING PROTOCOLS (REPORTED BY [1])

Accuracy (%)
Method Case I Case II Case III Case IV

YoLo 87.60 64.10 99.70 99.27
Hochuli et al.[5] 67.20 51.90 83.30 60.55

CNN 58.80 35.44 98.60 99.34
HOG-SVM 56.18 33.18 95.50 98.08

RNN 45.74 28.96 91.12 96.74
kNN 50.15 22.72 89.60 96.63
SVM 43.40 30.62 92.40 96.48

Random Forest 20.12 17.15 87.00 93.12

are used for training. These two scenarios show how different
is the representation of modern datasets from historical ones
provided from ARDIS since the handwritten style is quite
different (cursive gothic, high variance in the size and slant). In
Case III, the ARDIS dataset is used for training and testing,
while in Case IV, the MNIST and ARDIS training and test
sets are merged to evaluate the generalization of the model.
The YoLo surpasses the models of benchmark in all scenarios,
even that it has digit localization as an additional task. In
the worst performances, cases I and II, most of errors are
related to the poorly representation of the handwritten style of
the historical dataset (ARDIS) that is not present in modern
ones (MNIST/USPS). The dynamic selection proposed by [5]
suffers in the generalization of length and 1-digit classifier.

2) Digit String Benchmark: Besides a high-quality analysis
for single digits, the authors did not propose a benchmark for
digit strings (years). Thus, we evaluate the performance of
the proposed end-to-end solution on digit strings (Dataset I).
Moreover, we proposed a benchmark protocol for this dataset.

Data annotation. Data was initially annotated w.r.t. all the
locations (bounding boxes) of single digits into the strings
of Dataset I since these samples have particularities that
are difficult to reproduce synthetically and also there is no
information about authors. Furthermore, we have corrected 81
missing labels. A few of them have a different string size (!=4).
Figure 10 exemplifies samples that had their labels rectified5.

(a) 1897 to 1986 (b) 1909 to 190910 (c) 1907 to 11907 (d) 1892 to 92

Figure 10. Types of missed labels that were rectified in ARDIS dataset.

Experimental Protocol. We have used the information
about the city of origin to split the dataset. The samples of a
city that were selected for the training set are not present in
the test set. The rationale behind this strategy is to evaluate if
the model has the ability to generalize the backgrounds since
a book and authors will be present in only one of the datasets.
Thus, we split the 120 cities into 70% for training and 30%

5The annotated dataset is available upon request for research purposes at
https://web.inf.ufpr.br/vri/databases-software/touching-digits

for testing, which results in 7,055 samples and 2,945 samples
for each set, respectively.

Results. The performance of end-to-end approach and the
segmentation-free approach [5] is presented on Table VII.

We also presented a model named YoLo-TF-Orand, in
which we apply the transfer-learning from the model con-
structed for the Orand dataset (Section V-D). Since both data
have a hard background to encode, the rationale here is to
evaluate if the acquired learning in one dataset is valuable in
another dataset. Thus, we fine-tunned the weights providing
historical digit strings from the ARDIS dataset.

As expected, Hochuli et al.[5] suffer from the detection of
connected components since it is difficult to define a heuristic
that covers all the variety for the background suppression.
Moreover, the high variance in handwritten style impact the
performance of the length classifier (L) severely, thus mis-
leading the digit classifiers by attributing an isolated digit to
a touching digit class (length > 1). Figure 11 illustrates some
of missed length predictions.

Table VII
COMPARISON OF THE ACCURACY (%) ON ARDIS NUMERICAL STRINGS

(DATASET I)

Method Accuracy (%)
Hochuli et al.[5] 25.46

YoLo 96.80
YoLo-TF-Orand 95.78

(a) (b) (c)

Figure 11. Samples that had their length missed by L of Hochuli et al.[5].

The outstanding performance of YoLo corroborates to the
robustness presented in Section V-D in the efficiently encoding
of background information. An analysis reveals that most
of error sources are in handwriting styles that are poorly
represented in dataset (Figure 12a), noise samples (Figure 12b)
and highly slanted numerals (Figure 12c).

(a) (b) (c)

Figure 12. Missed predictions of YoLo for ORAND dataset: (a) ‘1898’ as
‘1892’, (b) ‘1912’ as ‘1913’, (c) ‘1917’ as ‘917’

VI. CONCLUSION

This paper described an end-to-end solution for handwritten
numeral string recognition in which the numeral string is
assumed to be composed of objects that can be automati-
cally detected and recognized. For this purpose, the YoLo
architecture [9] was used to detect and recognize the digits
(objects) inside the string, avoiding heuristic-based methods
for string preprocessing and segmentation, or even the need
of task-oriented classifiers, and the use of specific constraints
related to the string length.



A robust experimental protocol based on three real-world
numeral string datasets was used to validate the proposed
method: (a) the numeral strings available on the NIST SD19
which are composed of 2- to 6-digits, (b) the courtesy amount
of bank check of ORAND dataset and, (c) the recent released
ARDIS dataset composed of 4-digit numerals extract from
historical documents. The experimental results have shown
that the proposed method is a feasible solution that compares
favorably in terms of accuracy to the state-of-the-art in hand-
written numeral string recognition. Furthermore, the proposed
approach performs well on long strings composed of up to 20
digits.
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