
ar
X

iv
:2

00
5.

04
61

3v
1

 [
cs

.C
V

]
 1

0
M

ay
 2

02
0

Variational Clustering: Leveraging Variational

Autoencoders for Image Clustering

Vignesh Prasad*

TU Darmstadt

Germany

vignesh.prasad@tu-darmstadt.de

Dipanjan Das*

Embedded Systems and Robotics

TCS Innovation Labs, Kolkata, India

dipanjan.da@tcs.com

Brojeshwar Bhowmick

Embedded Systems and Robotics

TCS Innovation Labs, Kolkata, India

b.bhowmick@tcs.com

Abstract—Recent advances in deep learning have shown their
ability to learn strong feature representations for images. The
task of image clustering naturally requires good feature rep-
resentations to capture the distribution of the data and subse-
quently differentiate data points from one another. Often these
two aspects are dealt with independently and thus traditional
feature learning alone does not suffice in partitioning the data
meaningfully. Variational Autoencoders (VAEs) naturally lend
themselves to learning data distributions in a latent space. Since
we wish to efficiently discriminate between different clusters in
the data, we propose a method based on VAEs where we use a
Gaussian Mixture prior to help cluster the images accurately. We
jointly learn the parameters of both the prior and the posterior
distributions. Our method represents a true Gaussian Mixture
VAE. This way, our method simultaneously learns a prior that
captures the latent distribution of the images and a posterior
to help discriminate well between data points. We also propose
a novel reparametrization of the latent space consisting of a
mixture of discrete and continuous variables. One key takeaway
is that our method generalizes better across different datasets
without using any pre-training or learnt models, unlike existing
methods, allowing it to be trained from scratch in an end-to-end
manner. We verify our efficacy and generalizability experimen-
tally by achieving state-of-the-art results among unsupervised
methods on a variety of datasets. To the best of our knowledge,
we are the first to pursue image clustering using VAEs in a purely
unsupervised manner on real image datasets.

Index Terms—Unsupervised Learning, Clustering, Variational
Inference

I. INTRODUCTION

Image Clustering is a fundamental, challenging and widely

studied problem in machine learning [3]–[8]. with variety of

applications in image retrieval [9], fast 3D reconstructions [10]

[11] [12] etc. Some classical examples are K-means [13],

Gaussian Mixture Models [14] and Spectral clustering [6]

which are promising, but require a robust feature represen-

tation for good clustering. In recent years, Deep Learning has

made huge progress in learning robust feature representations

of images. These learned representations help cluster the data

more accurately when used with traditional methods like K-

means for example [15]. One way to use deep representations,

off the shelf, is to extract the feature representation of an

image from a pre-trained model and use them directly in any

This work was done when Vignesh Prasad worked at TCS Innovation Labs.
* - Equal Contribution

clustering algorithm [16]. The problem with such approaches

is that they don’t fully exploit the power of deep neural

networks. Song et al. [17] learn a representation to accurately

cluster the images in the dataset by integrating K-means

into the bottleneck layer of an Autoencoder. This association

enables the model to learn a meaningful clustering-oriented

representation.

With the motivation to pursue a robust and generalizable

methodology in a principled way, we aim to make inferences

in a latent space learned specifically for a clustering task. The

idea is that it would be easier to group the data in this space,

compared to an arbitrary space defined by pre-trained features.

Off late, the use of generative methods for clustering has been

on the rise as their expressive power helps efficiently capture,

represent and recreate sampled data points. As we wish to

experiment with data distributions in a latent space that can

accurately represent the input data, the paradigm of Variational

Autoencoders (VAEs) lends itself directly to the task at hand.

We build on the ideas of GMVAE [1] and VaDE [2]

addressing their fallacies while maintaining the underlying

motivation of using a Gaussian Mixture Model as the latent

space distribution. Instead of deriving the prior from a random

variable, as in GMVAE, our prior is deterministic. This is

similar to VaDE however, we learn the parameters for the prior

and posterior jointly, unlike in VaDE which uses a pre-training

phase to initialize the parameters of the prior.

To illustrate the differences between our process, GVMAE

[1] and VaDE [2] we visualize the graphical models in Fig. 1.

In GMVAE, the Gaussian prior z2 depends on a noise variable

z1 & varies for a given cluster, as shown in Fig. 1a. Ours is

more intuitive as it depends only on the cluster, as shown in

Fig. 1c. Secondly, GMVAE expresses the categorical posterior

q(k|z1, z2) with the prior pβ(z2|z1, k) using Bayes’ rule. This

applies to VaDE too, along with fixing the GMM prior during

pre-training. We learn it during training, giving more flexible

learning, the effectiveness of which is seen in the results in

Table I. This can also be seen on a toy dataset, compared to

GMVAE, where our method learns a more compact cluster

representation as compared to GMVAE, as shown in Fig. 3.

Our method is more principled as we directly learn the

cluster assignment probabilities q(k|z) instead of performing

a Bayesian classification, as done in both GMVAE and VaDE.

Once the cluster predictions q(k|z) become closer to a one-

http://arxiv.org/abs/2005.04613v1

(a) GMVAE Gen (b) GMVAE Inf (c) Ours Gen (d) Ours Inf

Fig. 1: Graphical representation of the inference and generative models used by us and GMVAE [1]. VaDE [2] also has a

similar generative model as ours but differ in their inference model. Grey nodes represent data nodes. White ones represent

latent nodes, where z, z1 and z2 are normally distributed variables are k is a discrete variable. Black nodes represent the

network parameters. (Gen - Generative, Inf- Inference)

hot vector, it, in turn, minimizes the loss for just a given

cluster instead of over all clusters leading to a more effective

clustering. This process is shown in Fig. 2.

Along with this, we propose a novel augmentation loss as

a mixture of L2 distance between the cluster predictions and

2-Wasserstein distance [18] between the predicted posterior

distributions. We do so to ensure consistency in the cluster

predictions and also in the predicted posteriors thereby en-

forcing a similarity among samples from a given cluster. The

idea behind this is to achieve invariance to marginal variations

in the data and predict an accurate mapping for both real as

well as augmented data. It would be counter-intuitive to map

an augmented version of an input to a different distribution

Therefore, our novelty is in modelling a GMM prior whose

parameters are learnt during training, which is more flexible

than fixed distributions like in other methods. This is too rigid

a constraint mainly in complex datasets (CIFAR/STL). Due

to our principled & effective modelling, coupled with our

novel incorporation of an augmentation loss, our accuracy is

significantly better than others and is very coherent on similar

datasets. We perform well even in a cross-dataset transfer.

The main contributions of this paper are:

• A novel unsupervised image clustering algorithm by

combining VAEs with a true Gaussian Mixture prior

learnt without any pre-training in an end-to-end manner.

• More principled latent space priors that subsequently lead

to a simpler inference model.

• A novel augmentation loss making our method robust and

leading to strong intra-cluster relations.

In contrast to other methods, our method performs consistently

well over all datasets using only raw pixel inputs, showcasing

the generalization capability of our method. To the best of our

knowledge, we are the first to do so using VAEs in a purely

unsupervised manner, especially on real image datasets.

II. RELATED WORKS

Tian et al. [16] explore the use of deep methods in clas-

sical clustering by first learning a feature representation and

subsequently performing clustering in the feature space. Nina

et al. [19] follow a similar approach by using a triplet loss

between positive and negative anchor images from the dataset

and perform K-means on the learnt latent space. Similarly,

Das et al. [20] propose a novel method for selecting images

for calculating a triplet loss, which however depends on the

quality of the pre-training. Yang et al. [21] follow a similar

approach for learning a latent space but follow a graph-based

spectral clustering approach with the learnt representation.

Song et al. [17] take a step further by integrating K-means

into the bottleneck of an Autoencoder. This enables the model

to learn meaningful clustering-oriented representations. Deep

Embedded Clustering (DEC) [22] builds on a similar idea by

minimizing the KL Divergence between cluster assignment

probabilities and an auxiliary target distribution derived from

the current predictions. However, this causes the auxiliary

distribution to change as the predictions do during training.

Deep Adaptive Clustering (DAC) [23] uses a pairwise

classification approach to distinguish between image pairs.

It learns features that correspond directly to predicted class

labels and achieve reasonable accuracy. Similarly, Ji et al.

[24] propose a method that tries to preserve pair-wise semantic

mutual information in the data. Deep Embedded Regularized

Clustering (DEPICT) [25] uses a convolutional autoencoder

to jointly learn representations and cluster predictions by

constraining clusters to have similar no. of samples. Their

performance deteriorates when data is not distributed well

across clusters. To this end, RDEC [26] uses adversarial train-

ing to improve performance on imbalanced datasets. Along

similar lines, Joint Unsupervised Learning (JULE) [7] learns

representations and cluster assignments simultaneously using

agglomerative clustering. Though it gets good results, their

method is computationally intensive and has a heavy memory

usage [27]. Sarfaraz et al. [28] also develop an agglomerative

clustering method but with lower overheads in computing

distances by partitioning the data points more efficiently.

Haeusser et al. [29] attempt to enforce intra-class similarity

with associative constraints between images and their aug-

mented versions to ensure similarity in predictions. However,

the robustness and generalization capability of their method

are questionable since they show vastly differing results on

CIFAR10 [30] and STL-10 [31], both of which are real-world

datasets having 9 same classes out of 10.

Information-Maximizing Self-Augmented Training (IM-

SAT) [32] learn a probabilistic classifier using Regularized In-

formation Maximization (RIM) [33]. For feature-rich datasets

(CIFAR10 and CIFAR100 [30]), they use ResNet [34] features

as input. Thus, it is difficult to properly gauge their perfor-

mance as results without pre-trained models are unavailable.

Coming to Deep Generative methods, ClusterGAN [35] is a

Generative Adversarial framework for unsupervised clustering

using a discrete-continuous mixed approach for clustering.

Ghasedi et al. [36] build on this idea by introducing a self-

paced learning algorithm that helps guide the learning, similar

to a curriculum learning framework, to get better results. Vari-

ational Deep Embedding (VaDE) [2] and Gaussian Mixture

VAEs (GMVAE) [1] use VAEs with GMMs simultaneously to

model the inference process. Yang et al. propose DGG [37]

along similar lines with the additional constraint of minimizing

the graph distances between embeddings of data points.

Both ClusterGAN and VaDE require pre-training to ini-

tialize cluster centroids, and DGG requires pre-training to

initialize the graph embeddings. Their success relies on the

success of the initial pre-training. In this context, GVMAE

learns the prior and posterior parameters jointly. However,

their prior representation seems counter-intuitive as they use a

sample from a normal distribution to generate the parameters

(mean and variance) of the prior for each of the clusters. This

implies that the prior for each class is dependent on a random

variable rather than the class itself and hence would vary each

time one would want to sample a latent for a class.

III. VARIATIONAL AUTOENCODERS

Variational Autoencoders (VAEs) [38], [39] are an appli-

cation of Autoencoders for performing Variational Bayesian

Inference over a set of data points. The main idea of Varia-

tional Inference is to learn a distribution in a latent space that

can accurately capture the true distribution of the dataset. In

particular, we wish to represent the joint probability p(x, z)
for points in dataset x and their latent space representations z.

This joint probability can be written as p(x, z) = p(x|z)p(z)
where p(z) is a prior distribution from where latent variables

are drawn and p(x|z) is the conditional likelihood of a data

point x conditioned on the drawn latent variable z. The goal

of variational inference is to infer the latent distribution from

observed samples i.e. to accurately calculate p(z|x). Using

Bayes theorem, we can write this posterior distribution as:

p(z|x) =
p(x, z)

p(x)
=
p(x|z)p(z)

p(x)
(1)

The problem is in approximating the evidence p(x), inthe
denominator, which requires an expensive marginalization
over the latent variables. Therefore, Variational Inference seeks
to approximate the posterior with a parameterized distribution
qθ(z|x) and minimize the KL-divergence between the true and
approximated posterior w.r.t. to data distribution pD(x).

EpDKL(qθ(z|x)||p(z|x)) = Eq,pD log
qθ(z|x)

p(x, z)
+EpD log p(x) (2)

This can be re-written as

EpD log p(x) = EpDKL(qθ(z|x)||p(z|x))+Eq,pD log
p(x, z)

qθ(z|x)
(3)

By Jensen’s inequality [40], the KL Divergence is always

non-negative. Hence, the expectation in Eq. 3 acts as a lower

bound for the evidence log-likelihood, and is hence called the

Evidence Lower Bound (ELBO), given in Eq. 4.

ELBO = Eq,pD log
p(x, z)

qθ(z|x)
(4)

This allows us to write Eq. 3 as:

EpD log p(x) = EpDKL(qθ(z|x)||p(z|x)) + ELBO (5)

Therefore, minimizing the KL Divergence and hence, max-

imizing the log-likelihood of the evidence can be done by

maximizing the ELBO. Since deep networks have strong

representational abilities, Autoencoders have shown to perform

well in approximating the distributions, leading to the birth

of Variational Autoencoders (VAEs). Further information on

Variational Inference and VAEs can be found in [39].

IV. PROPOSED APPROACH

VAEs traditionally model the prior as a single multivariate

Gaussian. Since our objective is to cluster the data accurately,

we use a Gaussian mixture prior for the latent space rep-

resentation such that each Gaussian represents a cluster in

the data. We aim to learn these Gaussians and an effective

representation of the probability models, thereby learning the

distribution a given data point belongs to, which corresponds

to learning the clustering of the data.

An overview of our approach is shown in Fig. 2. Given a set

of input images, we first predict their cluster probabilities. For

each cluster, we infer a posterior latent distribution given the

input and generate an independent prior distribution as well.

We sample a latent from the posterior of each class from which

we generate image samples which are used in computing the

ELBO, along with the prior and the cluster probabilities.

A. Generative Process

We first select a cluster k, from a categorical distribution

characterized by π. we draw a sample z from the latent distri-

bution p(z|k) of that cluster parameterized by a neural network

β, to generate the conditional distribution p(x|z), which is

parameterized by another neural network θ. In mathematical

terms, our generative model can be seen as

pβ,θ(x, z, k) = pθ(x|z)pβ(z|k)p(k) (6)

p(k) = Cat(π) (7)

pβ(z|k) = N (z|µβ(ek), diag(σ
2
β(ek))) (8)

pθ(x|z) = N (x|µθ(z), diag(σ
2
θ(z))) or B(x|µθ(z)) (9)

where π = 1
K

is the categorical probability, ek is a one-

hot vector with a 1 at the kth position, N (.) refers to a

Normal distribution & B(.) refers to a Bernoulli distribution.

µβ , σβ
2, µθ, σθ

2 are the means & variances, characterized by

deep networks with parameters β & θ respectively.

Fig. 2: A flow chart of our training process. Given a set of input images x and its augments x̂, the posterior distribution

qω(k|x) is first calculated, followed by qψ(z|x, k) and prior pβ(z|k), where k is represented as ek, a one-hot vector having

the kth position is 1. We sample a latent from the posterior and generate a conditional prior pθ(x|z). We then calculate the

ELBO according to Eq. 13. Given the predictions for the images and its augments, we calculate the augmentation loss Laug
according to Eq. 14 and subsequently, calculate the final loss as given in Eq. 18. (Picture best viewed in colour)

Our process differs from GVMAE [1] & VaDE [2] in the

following ways. In GMVAE, a neural network samples a

standard normal distribution as an input (z1 in Fig. 1a) &

generates a mean & variance for each cluster (z2 in Fig. 1a).

Therefore, the latent distribution for any given cluster depends

on a normally distributed variable & not just on the cluster it

represents. Out of these, the kth mean & variance is selected

from which they sample their latent.

In VaDE, the process is similar to ours however, they first

train a stacked autoencoder with the input data & then learn

a GMM over the predicted latent representations from the

encoder’s bottleneck. This learnt GMM is used as the prior

from which the latent variables are sampled. The performance

of VaDE depends on how well the pre-training & GMM

initialization go, which would lead to a bad performance in

case the initial learning doesn’t properly converge.

B. Inference Model

We perform variational inference by maximizing the Evi-

dence Lower Bound (ELBO), which in turn leads to max-

imizing the log-likelihood of the evidence log p(x). With a

slight abuse of notation, the ELBO can be written as:

ELBO = Eq,pD log
pβ,θ(x, z, k)

qω,ψ(z, k|x)
(10)

where Eq,pD is the expectation with respect to

qω,ψ(z, k|x)pD(x). Here, qω,ψ(z, k|x) is the approximate

posterior of the inference model, which we factorize as:

qω,ψ(z, k|x) = qω(k|x)qψ(z|x, k) (11)

such that
∑K

k=1 qω(k|x) = 1 and qψ(z|x, k) =
N (z|µψ(x, ek), diag(σ2

ψ(x, ek))) where µψ, σψ
2 refer to the

mean and variance of the posterior parameterized by a deep

network ψ.

Our inference model is more straight-forward than GMVAE

[1] since they calculate their categorical posterior based on

their latent’s prior which, as mentioned towards the ending

of Sec. IV-A, depends on a sample from a standard normal

distribution. This implies that the probability of a given

category being assigned to a fixed category is stochastic in

nature, which ideally shouldn’t be the case. A latent variable

is a representation of a sample data point. Therefore, the

categorical posterior that depends on the latent, it should

directly be inferred from the sampled data point itself. Our

method directly predicts the categorical posterior qω(k|x)
directly from the sampled data point x.

C. Evidence Lower Bound

Eq. 10 can be factorized using Eq. 6 & 11 as:

ELBO = Eq,pD [log
pθ(x|z)pβ(z|k)p(k)

qω(k|x)qψ(z|x, k)
] (12)

Since log p(k) is a constant, we drop it from Eq. 12 for ease

of notation. Eq. 12 can then be re-written as:

ELBO = Eq,pD [log pθ(x|z)] − Eqω(k|x)pD(x)[log qω(k|x)]

−Eqω(k|x)pD(x)[KL(qψ(z|x, k)||pβ(z|k))]
(13)

In Eq. 13, the first term Eq,pD [log pθ(x|z)] is the like-

lihood of a sampled data point x w.r.t. the generated

distribution. It is similar to ensuring a proper recon-

struction of the sampled input. It is further written as
1
N

∑N

i=1

∑K

k=1 qω(k|xi)Ez∼qψ(z|xi,k)[log pθ(xi|z)], where N
is the batch size. This expansion allows us to circumvent the

issue of having to sample from a discrete distribution which in

turn would involve a discrete reparametrization. This expan-

sion leaves us with having to sample a continuous latent z for

each cluster k, which can easily be reparametrized for each

k. The second term Eqω(k|x)pD(x)[log qω(k|x)] is the expected

entropy of the posterior distribution of k w.r.t. the sampled data

point x, written as −1
N

∑N

i=1

∑K

k=1 qω(k|xi) log qω(k|xi).
The third and final term is the z KL term

Eqω(k|x)pD(x)[KL(qψ(z|x, k)||pβ(z|k))], which refers to

the Kullback-Leibler Divergence of the prior w.r.t. the

posterior distribution of z. Since they are both Gaussians, the

KL Divergence has a closed form solution.

One interesting point to note in the formulation is the anti-

clustering nature of the ELBO, caused by the maximization

of the entropy of qω(k|x). This regularization forces the infor-

mation stored in qω(k|x) to be distributed among the clusters,

rather than learning a one-hot prediction for the cluster labels.

This is however mitigated by the reconstruction term, which

would force the data to belong to a particular cluster. One

advantage of this entropy maximization is that it prevents the

trivial solution where all inputs are mapped to a single cluster,

also known as ”mode collapse” which is a common problem

associated with VAEs. In our implementation, we found that

the scale of the reconstruction term is exponentially larger than

the KL term on real image data. Hence, to ensure numerical

stability, we multiply the reconstruction term in Eq. 13 with

a scale-factor, λrecons.

D. Augmentation Loss

To make our model robust to input variations, we add aug-

mented images along with the original images. The advantage

of this is two-fold. Firstly, it allows the network to learn from

a larger number of samples. Secondly, it allows us to use

predictions of the original images to guide the predictions of

the augmented images, resulting in a form of self-supervision.

Different augments used are given in Sec. V-A.

Let x be an input image and x̂, its augmented image. In-

tuitively, both should belong to the same cluster and posterior

distribution. This enforces a strong constraint on the posterior

predicted for x̂ by providing a form of supervision. Therefore,

to ensure similarity in the predictions, we minimize the L2
distance between the predicted clusters and the expectation of

the Wasserstein distance [18] between the posteriors.

Laug =

K∑

k=1

||qφ(k|x)− qφ(k|x̂)||
2
2

+Eqφ(k|x)[W2(qψ(z|x, k), qψ(ẑ|x̂, k))]

(14)

where W2 is the 2-Wasserstein distance. The expectation in

the latter allows us to give a higher weight to the predicted

cluster and a lower weight for clusters that are not associated

with the given image. This has a closed form solution [41],

due to their Gaussian form, given by

W2(qψ(z|x, k), qψ(ẑ|x̂, k)) = ||µψ(x, ek)− µψ(x̂, ek)||
2
2

+ trace(C1 + C2 − 2(C
1

2

2 C1C
1

2

2)
1

2)
(15)

the trace in Eq. 15 can be simplified as:

C1 + C2 − 2(C
1

2

2 C1C
1

2

2)
1

2 = diag(σ2
ψ(x, ek))+

diag(σ2
ψ(x̂, ek))− 2diag(σψ(x, ek)σψ(x̂, ek))

= diag(σ2
ψ(x, ek)) + σ2

ψ(x̂, ek)− 2σψ(x, ek)σψ(x̂, ek))

= diag((σψ(x, ek)− σψ(x̂, ek))
2)

(16)

Substituting Eq. 16 in Eq. 15, we get

W2(qψ(z|x, k), qψ(ẑ|x̂, k)) = ||µψ(x, ek)− µψ(x̂, ek)||
2
2

+ trace(diag(σψ(x, ek)− σψ(x̂, ek)
2))

= ||µψ(x, ek)− µψ(x̂, ek)||
2
2 + ||σψ(x, ek)− σψ(x̂, ek)||

2
2

(17)

To prevent the augmentation from driving the initial learning

phases, we anneal the effect of this loss so as to bring about its

significance once a suitable amount of learning has progressed

by modifying its weight λaug . Our final loss can be written as

L = −ELBO + λaugLaug (18)

V. EXPERIMENTAL DETAILS

Details about the datasets used are given in Sec. V-A and

about the network architecture is given in the appendix in Sec.

V-B. We implement the system using Tensorflow [42] using

Adam [43] as our optimizer with beta1 = 0.9, beta2 = 0.999
and the learning rate as 10−3 for MNIST & Fashion-MNIST

and 10−4 for the rest. The value of λaug is 0.01 for the first

40 epochs, followed by 0.5 till 80 epochs and 1 thereafter.

We use a batch-size of 100 for MNIST and Fashion-MNIST

and 30 for the others. The value of the scale-factor for the

reconstruction term, λrecons, is kept at 0.5 for 40 epochs after

which we keep it as 0.1 for CIFAR10 and STL-10.

A. Datasets

• Toy Data used in the GMVAE paper, which is a 2D

dataset consisting of 10000 points from the arcs of 5

circles. No augmentation is used for this.

• MNIST [45] consists of 70000 black and white images

of handwritten digits of size 28x28 split into 60000

training images and 10000 testing images. We use random

rotations between 3◦ to -3◦ for the augmentation.

• Fashion MNIST [46] consists of grayscale images of

fashion items like sandals, T-shirts, handbag etc. It has the

same size and split as MNIST but a greater complexity,

making it more challenging. We add random brightness

variations within a delta factor of 0.2 followed by an

image binarization by checking if the pixel value is

greater than a uniform random value.

Method Remarks MNIST Fashion-MNIST STL-10 CIFAR10 CIFAR100 FRGCv2

k-means on pixels - 53.49 47† 22.0 20.4 - -

IMSAT [32] use ResNet [34] 98.4 - 94.1* 45.6* 27.5* -

VaDE [2]
Generative, use ResNet [34]

94.46 57.8‡ 84.5* - - -
Sarfaraz et al. [28] 91.89 - 95.24* - - -

DDG [37] 97.58 - 90.59* - - -

Das et al. [20]
Unsupervised, Pre-training

98.93 - - 44.19 25.4 47.28
Yang et al. [21] 98 66.2 - - - -
Nina et al. [19] 96.8 70.98 - 30.9 - -

JULE [7]

Purely Unsupervised

96.1 56.3‡ - - - 46

DEC [22] 84.3 61.8† 35.9 - 14.3* 37.8

DEPICT [25] 96.3 39.2‡ - - - 47
RDEC [26] 98.41 - 21.27 - - -

DEC-DA [44] 98.6 58.6 - - - -
Haeusser et al. [29] 98.7 - 38.9 26.7 - 43.7

GMVAE [1]

Generative, Purely Unsupervised

96.92 59.56† 25.36† 24.74† 10.10† 21.24†

ClusterGAN [35] 95 63 - - - -
Ghasedi et al. [36] 96.4 - 42.3 41.2 - 47.6

Ours

98.2
71.72 43.9 44.5

25.6
(k = 100)

56.2
(k = 20)

95.4 (k = 8)
98.4 (k = 20)

TABLE I: Clustering accuracy (%). * - Use pre-trained features as input. † - Results reported using source code. ‡ - Results

reported in [44]. We put a ”-” where results are unavailable. For our results, we use k = 10 except when specified. The

methods above the red line, although unsupervised, use pre-trained features as input which itself boosts their performance be

a big margin. Our main comparison is with unsupervised methods, shown below the red line. (Best viewed in colour)

• STL-10 [31] consists of 13000 labelled and 100000

unlabelled colour images of real world objects from

ImageNet like cats, trucks, birds, ships etc. of size 96x96.

The 13000 labelled images are split into 5000 training

images and 8000 testing images. It is highly complex

compared to MNIST and Fashion-MNIST. We augment

the data using random shifts within a factor of 0.2 times

the image dimensions, random rotations between 3◦ to

-3◦, random shears within a factor of 0.2 and random

vertical and horizontal flips.

• CIFAR10 and CIFAR100 [30] are diverse datasets of

real world images. 9 classes in CIFAR10 are similar to

STL-10. Achieving good clustering accuracy on them in

an unsupervised manner is truly challenging. They consist

of 50000 training and 10000 testing images each with 10

classes in CIFAR10 and 100 in CIFAR100. We use the

same augmentations as in STL-10.

• FRGCv2 consists of 2462 images having 20 face sam-

ples. It’s a subset of the larger FRGC dataset. We use

the subset provided by the authors of [7], which is what

other methods report their results on as well.

B. Network Architechture

The network architectures for the prior and posterior net-

works are given in Tables IIa and IIb respectively. The z prior

consists of fully connected networks as there aren’t any images

involved. The convolutional part of the posterior networks for

CIFAR10, STL-10, CIFAR100 entail complex representations

which are thereby, captured better by weight-sharing.

VI. RESULTS

A. Clustering Results

Firstly, to see the representation capability of our method,

we show the latent space learnt by our method & GMVAE

on the synthetic dataset given in their paper. As seen in Fig.

3, our clusters are tightly packed individually & more spread

overall compared to GMVAE. Good latent space separation is

key for clustering as it can partition the data in a better way.

Furthermore, to see how well the clusters are separated in

the latent space, we visualize the means of the posterior and

the prior using t-SNE [47]. The posterior representation of a

subset of testing images can be seen in Fig. 4. For the prior,

we randomly generate 500 samples from each cluster, to see

how well the prior has been learnt. This can be seen in Fig.

5. Evidently, we can see a clear separation between clusters

from the beginning itself (11 epochs), which gets refined as

the iterations go on. This not only shows the discriminatory

nature of the learnt representations, but also the speed with

which it becomes a characteristic of the latent space.

For evaluating our method, we use the unsupervised clus-

tering accuracy (ACC) [22], which can be given as

ACC = max
m∈M

∑N

i=1 1(li == m(ci))

N
(19)

where N is the total no. of images, li and ci are the label

and cluster for the ith image respectively and M is the set of

possible one-to-one mappings between clusters and labels.

Our accuracy can be seen in Table I. It is important to note

that we only lag behind methods which use pre-trained ResNet

[34] features as input, which itself is an extremely informative

representation, giving them a large advantage as it has already

covered thousands of samples of the classes present in STL-

10 and CIFAR10 in a supervised manner. In comparison with

Das et al. [20] who use a lot of epochs for pre-training,

we perform better especially on more complex datasets like

Fashion-MNIST, STL-10, CIFAR10 and CIFAR100.

Our main comparison is with unsupervised methods, shown

below the red line in Table I. Our performance significantly

Dataset Type of Layer pβ(z|k) pθ(x|z)
Input Input ek [batch, K] Input z [batch, 2]

Toy Data
Hidden FCN 120

FCN 120
FCN 120

Output
µβ , FCN 2, No activation

σ2

β
, FCN 2, softplus activation

µθ , FCN 2, No activation

σ2

θ
, FCN 2, softplus activation

Input Input ek [batch, K] Input z [batch, 32]

MNIST
Fashion Mnist

Hidden –

FCN 512
FCN 2304, reshape [3,3,256]

UpConv 128 [3x3]
UpConv 128 [3x3], stride=1, padding=valid
UpConv 128 [3x3], stride=1, padding=valid
UpConv 64 [3x3], stride=1, padding=valid

UpConv 64 [3x3]
UpConv 64 [3x3], stride=1, padding=valid

Output
µβ , FCN 32, No activation

σ2

β
, FCN 32, softplus activation

µθ , UpConv 1 [3x3], stride=1, padding=valid, No activation

Input Input ek [batch, K] Input z [batch, 32]

CIFAR10
STL-10

CIFAR100

Hidden
FCN 64
FCN 64

FCN 3072, reshape [4,4,192]
UpConv 192 [3x3], padding=valid

UpConv 192 [3x3], stride=1, padding=valid
UpConv 96 [3x3], stride=1, padding=valid

UpConv 96 [3x3], padding=valid,
UpConv 96 [3x3], stride=1, padding=valid
UpConv 96 [3x3] stride=1, padding=valid

Output
µβ , FCN 32, No activation

σ2

β
, FCN 32, softplus activation

µθ , UpConv 3 [3x3], stride=1, padding=valid, No activation

σ2

θ
, UpConv 3 [3x3], stride=1, padding=valid, softplus activation

Input Input ek [batch, K] Input z [batch, 32]

FRGCv2
Hidden FCN 64

FCN 512, reshape [4,4,32]
UpConv 64 [3x3]
UpConv 32 [3x3]

Output
µβ , FCN 32, No activation

σ2

β
, FCN 32, softplus activation

µθ , UpConv 1 [5x5], No activation

σ2

θ
, UpConv 1 [5x5], softplus activation

(a) Network architecture for the prior probabilities pβ(z|k) & pθ(x|z).
Dataset Type of Layer qω(k|x) qψ(z|x, k)

Input Input x [batch, 2] Input x [batch, 2], ek [batch, K]

Toy Data
Hidden

FCN 120
FCN K No activation

FCN 10
concat ek
FCN 10

Output êk , softmax activation
µψ , FCN 2, No activation

σ2

ψ
, FCN 2, softplus activation

Input Input x [batch, 28, 28, 1] Input x [batch, 28, 28, 1], ek [batch, K]

MNIST
Fashion Mnist

Hidden

Conv 64 [3x3], stride=1, padding=valid
Conv 64 [3x3], stride=1, padding=valid
Conv 64 [3x3], stride=1, padding=valid

Conv 128 [3x3], padding=valid
Conv 128 [3x3], stride=1, padding=valid
Conv 128 [3x3], stride=1, padding=valid

Conv 256 [3x3], padding=valid
Flatten

FCN 512, Dropout 0.8
FCN 512, Dropout 0.6
FCN K, No activation

Flatten, concat ek
FCN 256
FCN 512

Output êk , softmax activation
µψ , FCN 32, No activation

σ2

ψ
, FCN 32, softplus activation

Input Input x [batch, 32, 32, 3] Input x [batch, 32, 32, 3], ek [batch, K]

CIFAR10
STL-10

CIFAR100

Hidden

Conv 96 [3x3], stride=1, padding=valid
Conv 96 [3x3], stride=1, padding=valid

Conv 96 [3x3], padding=valid
Conv 192 [3x3], stride=1, padding=valid
Conv 192 [3x3], stride=1, padding=valid

Conv 192 [3x3], padding=valid
Flatten

FCN 128, Dropout 0.8
FCN 64, Dropout 0.99
FCN K, No activation

Flatten, concat ek
FCN 512
FCN 512

Output êk , softmax activation
µψ , FCN 32, No activation

σ2

ψ
, FCN 32, softplus activation

Input Input x [batch, 32, 32, 3] Input x [batch, 32, 32, 3], ek [batch, K]

FRGCv2
Hidden

Conv 32 [5x5]
Conv 64 [3x3]

Conv 128 [3x3]
Conv 32 [1x1]

Flatten
FCN 64, Dropout 0.9
FCN 64, Dropout 0.7
FCN K, No activation

Flatten, concat ek
FCN 512
FCN 512

Output êk , softmax activation
µψ , FCN 32, No activation

σ2

ψ
, FCN 32, softplus activation

(b) Network architecture for the prior probabilities pβ(z|k) & pθ(x|z).

TABLE II: Network architectures for (a) posterior probabilites and (b) prior probabilities. All the Conv and UpConv layers

have a stride of 2 with padding as ’same’ unless specified otherwise. For MNIST and Fashion MNIST, all layers have ReLU

activations unless specified. For others, all layers have leaky ReLU activations unless specified. K - number of clusters (Toy

Data - 5, MNIST, Fashion MNIST, STL-10, CIFAR10 - 10, FRGCv2 - 20, CIFAR100 - 100)

(a) Data Points (b) GMVAE Latent space (c) Ours Latent space

Fig. 3: Toy dataset & learnt latent spaces

(a) Epoch 0 (b) Epoch 22 (c) Epoch 44 (d) Epoch 66

Fig. 4: t-SNE Visualization of posterior latent representation of MNIST samples during training

(a) Epoch 0 (b) Epoch 22 (c) Epoch 44 (d) Epoch 66

Fig. 5: t-SNE Visualization of samples drawn from the learnt prior latent distribution of MNIST during training

exceeds them in all the complex real world datasets achieving

state-of-the-art results among unsupervised methods. Our per-

formance exceeds that of generative methods [35], [36] on all

datasets, showing that the inference power of VAEs is greater

than GANs for clustering, where a strong representation of the

data distribution is important. We perform better than GMVAE

[1] and VaDE [2] on all datasets showing the effectiveness of

our approach to using a Gaussian Mixture latent space.

B. STL-CIFAR Transfer Learning

CIFAR10 and STL-10 are inherently similar, having 9 same

classes out of 10 and has some scope for transfer learning.

To show such a capability of our method, we test the model

trained on CIFAR10 using STL-10 and vice-versa on these

common classes. The results of this are shown in Table III.

Trained on Tested on Accuracy

STL-10 CIFAR10 38.8

CIFAR10 STL-10 41.03

TABLE III: Transfer learning between CIFAR10 and STL-10

Method
rmin 0.1 0.3 0.5 0.7 0.9

k-means 47.14 49.93 53.65 54.16 54.39
AE+k-means 66.82 74.91 77.93 80.04 81.31

DEC 70.10 80.92 82.68 84.69 85.41

Ours 89.6 90.3 96.1 96.9 97.1

TABLE IV: Clustering accuracy (%) for MNIST with imbal-

anced clusters using different min. retention rates rmin.

C. Imbalanced Clusters

To study our performance on imbalanced data, we follow the

imbalanced sampling mechanism as in DEC [22] for MNIST.

We define which is the probability of retaining samples of

class 0 is defined as a minimum retention rate rmin, for class 9

the retention probability is 1 and the for other classes, it varies

linearly from rmin to 1. The ratio of the sizes of the largest and

smallest clusters is 1/rmin. We perform significantly better

than other methods as shown in Table IV.

D. Generated Samples

In order to see the effectiveness of our latent space repre-

sentation, we generate images to see if captures the underlying

data distribution in a meaningful manner. Since our approach

is inherently a generative one, it should be able to extrapolate

samples from the latent space, as is the case with any genera-

tive approaches. The ability to generate high quality samples

is the true test for any generative approach.

As it can be seen in Fig. 6, our learned model is able to

generate realistic samples from each cluster. Moreover, one

more important inference that can be drawn is that our method

learns to distinguish properly between classes since it is able

to generate distinct samples from each of the clusters. This

shows that our generative approach works well not only in

distinguishing between different clusters but also in being able

to generate realistic samples given latent data.

(a) MNIST (b) Fashion MNIST

Fig. 6: Images generated from each learned cluster. Each

row represents a cluster and each column is an independent

Bernoulli distribution pθ(x|z) given a z sampled from the

Gaussian Distribution pβ(z|k) of the kth cluster.

E. Latent Space Interpolation

To see how well the learning has progressed, we visualize

how variations in the latent space correspond to variations in

generated samples. We perform 2 types of interpolations, one

in the continuous z space and one in the k space. Though k
is a discrete variable, we vary it continuously to see how data

generation for unknown inputs looks like. In our model, we

have two sets of variables on which the output of the generative

model depends on. The first is the categorical distribution for

k, followed by a Gaussian distribution corresponding to the kth

cluster, for obtaining z. We generate samples by interpolating

in both these spaces to see how the generated samples are,

giving us further insight into the extent to which each of these

variables influence the generation process.

1) z-Interpolation: We choose two clusters k1 & k2 and

sample latents z1 & z2 from their respective Gaussians. We

calculate our interpolated latent as z̃ = αz1 + (1 − α)z2 by

varying α from 0 to 1, from which we generate our output.

As shown in Fig. 7a, smooth variations in the latent space

generate smooth transitions in the image space. This shows

that our distributions in the latent space capture the data

distribution accurately. This is an important result showing

the ability of our method to accurately capture changes in the

latent space and reflect them in the input space.

2) k-Interpolation: We choose two clusters k1 and k2 and

linearly interpolate between their one-hot vector representa-

tions ek1
and ek2

. We generate ẽ = αek1
+ (1 − α)ek2

by

(a) z-Interpolation (b) k-Interpolation

Fig. 7: Images generated by interpolating z and k. The first

column is for α = 0 and the last for α = 1.

Method MNIST Fashion-MNIST CIFAR-10

VAE with GMM prior 96.8 65.3 37.1
With λrecons = 0.4 - - 38.5
With λrecons = 0.5 - - 39.1

With λrecons = 0.65 - - 41.8
With λrecons = 0.7 - - 39.2

With L2 augmentation 97.2 66.4 42.7
With W2 augmentation 97.7 67.6 43.8

Ours-final k = 8 95.4 - -
Ours-final k = 10 98.2 71.72 44.5
Ours-final k = 20 98.4 - -

TABLE V: Ablation study of our proposed method done by

incorporating each of our proposed additions individually. We

report the clustering accuracy (%) of each variant.

varying α from 0 to 1. From ẽ, we generate the parameters of

the prior for sampling z from which we generate our output.

From Fig. 7b, it can be said that our method is able to

extrapolate data not just from continuous variations in the

latent space but more importantly from continuous variations

in a discrete space. The main takeaway is that though we

train our model using only one-hot vectors, our method is able

generate meaningful images representing the the interpolated

vector ẽ. This result shows that our model is able to learn a

truly effective representation for each cluster, where the data

distribution is preserved not just in the latent space (z) but in

the categorical space (k) as well. The k-interpolation is not as

smooth as the z-interpolation mainly because the former is a

discrete space whereas the latter is a smooth continuous one.

F. Ablation study

We perform an ablation study to understand the effect of

different parts of our loss where we compare the following:

• A vanilla implementation of our proposed VAE.

• Adding a scale factor to the reconstruction term.

• Adding just the L2 loss for the cluster predictions.

• Adding just the W2 loss for the predicted posteriors.

• The final proposed loss function.

The results for this study are given in Table V. As it can be

seen, our vanilla method itself performs decently. Adding just

the scale-factor for STL-10 helps improve the accuracy. Just

adding the L2 loss increases the accuracy by a small margin,

while adding the W2 loss increases it by a larger margin. This

shows that enforcing a consistent latent space representation

helps make the learning more robust. Finally, we get the best

performance by combining all our additions together.

VII. CONCLUSION AND FUTURE WORKS

We propose an image clustering method using VAEs with a

GMM prior where each component represents a cluster. The

prior is learned jointly with the posterior, which in turn learns a

strong latent representation that leads to accurate clustering, as

shown in extensive experiments. Our method doesn’t require

any pre-training and can be trained from scratch in and end-

to-end manner. We show results on a variety of datasets

ranging from simple handwritten digits to complex real world

objects, achieving state-of-the-art clustering accuracy among

purely unsupervised methods. To the best of our knowledge,

we are the first to achieve such significant results on real

world datasets in a purely unsupervised manner. Moreover,

we achieve comparable accuracy between similar datasets

(CIFAR10/STL-10) in a transfer learning scenario. With the

rise in the popularity of GANs, one way to move forward

could be to replace the generator network in a GAN with our

VAE model, thereby leading to a hybrid VAE-GAN model, that

can has the strong latent representational powers of a VAE and

the realistic generative powers of a GAN. Furthermore, adding

explicit inference constraints on the GAN prior, somewhat as

an increment along the lines of ClusterGAN [35], could be

another way to approach the VAE-GAN hybrid architecture.

REFERENCES

[1] N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salim-
beni, K. Arulkumaran, and M. Shanahan, “Deep unsupervised clus-
tering with gaussian mixture variational autoencoders,” arXiv preprint

arXiv:1611.02648, 2016.

[2] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: an unsupervised and generative approach to clustering,” in
International Joint Conference on Artificial Intelligence, 2017.

[3] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing

Systems, 2002.

[4] J. Ye, Z. Zhao, and M. Wu, “Discriminative k-means for clustering,” in
Advances in Neural Information Processing Systems, 2008.

[5] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang, “Image clustering using
local discriminant models and global integration,” IEEE Transactions on

Image Processing, 2010.

[6] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and

computing, 2007.

[7] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep
representations and image clusters,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[8] Y. Gdalyahu, D. Weinshall, and M. Werman, “Self-organization in
vision: stochastic clustering for image segmentation, perceptual group-
ing, and image database organization,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2001.

[9] P. J. Dutta, D. K. Bhattacharyya, J. K. Kalita, and M. Dutta, “Clustering
approach to content based image retrieval,” geometric modeling and
imaging,” in Geometric Modeling and Imaging, 2006, pp. 183–188.

[10] S. M. Sawyer, K. Ni, and N. T. Bliss, “Cluster-based 3d reconstruction
of aerial video,” in IEEE Conference on High Performance Extreme

Computing, 2012, pp. 1–6.

[11] B. Bhowmick, A. Mallik, and A. Saha, “Mobiscan3d: A low cost
framework for real time dense 3d reconstruction on mobile devices,”
in Intl Conf on Ubiquitous Intelligence and Computing, 2014, pp. 783–
788.

[12] A. Mallik, B. Bhowmick, and S. Alam, “A multi-sensor information
fusion approach for efficient 3d reconstruction in smart phone,” in
International Conference on Image Processing, Computer Vision, and
Pattern Recognition, 2015.

[13] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” Berkeley Symposium on Mathematical

Statistics and Probability, 1967.

[14] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[15] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-
means-friendly spaces: Simultaneous deep learning and clustering,” in
International Conference on Machine Learning, 2017.

[16] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep
representations for graph clustering.” in AAAI Conference on Artificial
Intelligence, 2014.

[17] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based
data clustering,” in Iberoamerican Congress on Pattern Recognition,
2013.

[18] L. N. Vaserstein, “Markov processes over denumerable products of
spaces, describing large systems of automata,” Problemy Peredachi

Informatsii, 1969.

[19] O. Nina, J. Moody, and C. Milligan, “A decoder-free approach for unsu-
pervised clustering and manifold learning with random triplet mining,”
in IEEE International Conference on Computer Vision Workshops, 2019.

[20] D. Das, R. Ghosh, and B. Bhowmick, “Deep representation learning
characterized by inter-class separation for image clustering,” in IEEE

Winter Conference on Applications of Computer Vision (WACV), 2019.

[21] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, “Deep spectral
clustering using dual autoencoder network,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2019.

[22] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in International Conference on Machine Learning,
2016.

[23] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep adaptive
image clustering,” in IEEE International Conference on Computer

Vision, 2017.

[24] X. Ji, J. F. Henriques, and A. Vedaldi, “Invariant information cluster-
ing for unsupervised image classification and segmentation,” in IEEE

International Conference on Computer Vision, 2019.

[25] K. G. Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep
clustering via joint convolutional autoencoder embedding and relative
entropy minimization,” in IEEE International Conference on Computer

Vision, 2017.

[26] Y. Tao, K. Takagi, and K. Nakata, “Rdec: Integrating regularization into
deep embedded clustering for imbalanced datasets,” in Asian Conference

on Machine Learning, 2018.

[27] C.-C. Hsu and C.-W. Lin, “Cnn-based joint clustering and representation
learning with feature drift compensation for large-scale image data,”
IEEE Transactions on Multimedia, 2018.

[28] S. Sarfraz, V. Sharma, and R. Stiefelhagen, “Efficient parameter-free
clustering using first neighbor relations,” in IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019.

[29] P. Haeusser, J. Plapp, V. Golkov, E. Aljalbout, and D. Cremers, “Asso-
ciative deep clustering: Training a classification network with no labels,”
in German Conference on Pattern Recognition (GCPR), 2018.

[30] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Citeseer, Tech. Rep., 2009.

[31] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in
unsupervised feature learning,” in International Conference on Artificial

Intelligence and Statistics, 2011.

[32] W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama, “Learning
discrete representations via information maximizing self-augmented
training,” in International Conference on Machine Learning, 2017.

[33] A. Krause, P. Perona, and R. G. Gomes, “Discriminative clustering by
regularized information maximization,” in Advances in Neural Informa-

tion Processing Systems, 2010.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2016.

[35] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan: Latent
space clustering in generative adversarial networks,” in AAAI Conference
on Artificial Intelligence, 2019.

[36] K. Ghasedi, X. Wang, C. Deng, and H. Huang, “Balanced self-paced
learning for generative adversarial clustering network,” in IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2019.

[37] L. Yang, N.-M. Cheung, J. Li, and J. Fang, “Deep clustering by
gaussian mixture variational autoencoders with graph embedding,” in
IEEE International Conference on Computer Vision, 2019.

[38] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” arXiv

preprint arXiv:1401.4082, 2014.

[39] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[40] J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités entre
les valeurs moyennes,” Acta mathematica, 1906.

[41] D. Dowson and B. Landau, “The fréchet distance between multivariate
normal distributions,” Journal of Multivariate Analysis, 1982.

[42] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, 2016.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[44] X. Guo, E. Zhu, X. Liu, and J. Yin, “Deep embedded clustering with
data augmentation,” in Asian Conference on Machine Learning, 2018.

[45] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

[46] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[47] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal

of Machine Learning Research (JMLR), 2008.

	I Introduction
	II Related Works
	III Variational Autoencoders
	IV Proposed Approach
	IV-A Generative Process
	IV-B Inference Model
	IV-C Evidence Lower Bound
	IV-D Augmentation Loss

	V Experimental Details
	V-A Datasets
	V-B Network Architechture

	VI Results
	VI-A Clustering Results
	VI-B STL-CIFAR Transfer Learning
	VI-C Imbalanced Clusters
	VI-D Generated Samples
	VI-E Latent Space Interpolation
	VI-E1 z-Interpolation
	VI-E2 k-Interpolation

	VI-F Ablation study

	VII Conclusion and Future Works
	References

