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Abstract—Transfer learning is gaining increasing attention
due to its ability to leverage previously acquired knowledge
to assist in completing a prediction task in a similar domain.
While many existing transfer learning methods deal with single
source and single target problem without considering the fact
that a target domain maybe similar to multiple source domains,
this work proposes a multi-source domain adaptation method
based on a deep neural network. Our method contains common
feature extraction, specific predictor learning and target predictor
estimation. Common feature extraction explores the relationship
between source domains and target domain by distribution fusion
and guarantees the strength of similar source domains during
training, something which has not been well considered in ex-
isting works. Specific predictor learning trains source tasks with
cross-domain distribution constraint and cross-domain predictor
constraint to enhance the performance of single source. Target
predictor estimation employs relationship extraction and selective
strategy to improve the performance of the target task and to
avoid negative transfer. Experiments on real-world visual datasets
show the performance of the proposed method is superior to other
deep learning baselines.

I. INTRODUCTION

Transfer learning [1], [2] has been explored for many years
and gained success in a variety of applications in real-world
scenarios, such as nature language processing, computer vision
and biological problems. The main goal of transfer learning
is to improve the performance of the target task using the
knowledge learned from a similar source domain, since the
target training data is often difficult to collect or expensive
to label, especially where medicine is involved. Employing
different transfer information, it can be divided into four cat-
egories: instance-based method [3], feature-based method [4],
parameter-based method [5] and relationship-based method
[6].

Based on feature and parameter transformation, one popular
technique to achieve transfer learning is domain adaptation
[7]–[9], which aims to tackle domain shift by reducing the

This work was supported by the Australian Research Council under grant
FL190100149.(Corresponding author: Jie Lu.)

discrepancy of distributions between the source and target
domains in a latent feature space, including adaptations of
marginal distribution [10], conditional distribution [11] and
joint distribution [12].

Zellinger et al. [13] proposed a novel metric function
named central moment discrepancy to measure the distance
between probability distributions which can be solved without
highly complex and costly kernel matrix computations. Zuo
et al. [14], [15] used fuzzy system and granular computing
to achieve regression transfer in homogeneous and hetero-
geneous feature spaces. Benefiting from the development of
deep learning, recent surveys employed deep neural networks
to extract common features of source and target domains.
Based on adversarial learning, Long et al. [16] proposed
joint adaptation networks which used joint maximum mean
discrepancy to align the joint distributions across domains in
hidden specific layers. Liu et al. [17] and Jang et al. [18]
explored the transferability of deep feature representations and
provided experiments and theory analysis on what and where
to transfer in deep networks.

However, all these studies focused on single source domain
adaptation while, in practice, a target domain can be similar
to multiple source domains, and they may be different from
each other but could provide richer information for transfer.
It is easy to see why multi-source domain adaptation now
attracts greater attention. Zhao et al. [19] and Wen et al. [20]
measured the discrepancy by H-divergence and proposed an
adversarial strategy based deep framework to solve multiple
sources domain adaptation both for classification and regres-
sion problems. Guo et al. [21] proposed a mixture-of-experts
method to do text classification and speech tagging with
multiple sources, where Mahalanobia distance and confidence
score were used to extract the relationship between each
source domain and target domain. Ding et al. [22] tried to
achieve domain adaptation with multiple incomplete source
domains via low-rank matrix which could recover missing
labels in source domains based on latent features from a target



domain. Redko et al. [23] and Xu et al. [24] solved multiple
sources domain adaptation under target shift and category
shift, where source labels might not completely share labels
of target domain or share labels with different proportions.
Zhu et al. [25] proposed a two-stage alignment framework for
multiple sources domain adaptation, in which domain-specific
distribution alignment was used to reduce discrepancy between
source domains and target domain; domain-specific classifier
alignment was used to reduce difference among all classifiers.

The main idea of all described multi-source domain adap-
tation begins with extracting common features of source do-
mains and target domain before training specific predictors of
each source domain, finally combining all specific predictors
as the target predictor. The popular combination rules include
the average of source predictors and weighted average of
source predictors. Although some of these approaches have
considered the connections between different source domains
and target domain, they still treat each source domain equally
during training. It has been proven that adding irrelevant
source samples may lead to negative transfer and reduce the
performance of the learning task [26]. Measuring relationship
among source domains and target domain is necessary to avoid
negative performance. In this paper, in order to learn weights
of multiple sources to get high performance of predictor in
target domain, following work [25] and domain matching
method proposed by Li et al. [27], we proposed a deep neural
network based multi-source domain adaptation approach with
distribution fusion and relationship extraction. This measures
relatedness among sources and target during training and
guarantees that more similar sources contribute more to target
task learning. Our main contributions are as follows:

• We propose a method using distribution fusion and re-
lationship extraction to guarantee the strength of similar
source domains during learning a target task, something
which is not well considered in existing methods;

• We use a selective strategy to choose the best perfor-
mance of the target task and to avoid negative transfer of
irrelevant sources.

The structure of this paper is designed as follows: Section
II describes the proposed model. Section III carries a series
of experiments on real-world datasets and analyses the results.
Our conclusion is given in section IV.

II. PROPOSED METHOD

The proposed method contains the following three parts:
(1) common feature extraction where pre-trained deep neural
network, fine-tuning operation and distribution fusion strategy
are employed to collect robust features; (2) specific predictor
learning where specific domain adaptation and predictor of
each source domain are learned with cross-domain constraints;
(3) target predictor estimation where relationship extraction
and selective strategy are used to obtain target predictor
without negative transfer. The whole procedure is showed in
Fig. 1.

A. Common Feature Extraction

In general, domain adaptation is an unsupervised learning
task. For single source domain adaptation, given source do-
main Ds = {(xis, yis)}

ns
i=1 and target domain Dt = {xjt}

nt
j=1,

where xs, xt ∈ X represent samples, ys ∈ Y indicates
corresponding label of xs and ns, nt indicate the number of
samples in source domain and target domain respectively. The
main step is mapping distributions of source domain and target
domain. One popular method to achieve this is maximum mean
discrepancy (MMD) [10] which can be formulated as:

MMD(Xs, Xt) =

∥∥∥∥∥∥ 1

ns

ns∑
i=1

φ(xis)−
1

nt

nt∑
j=1

φ(xjt )
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2

H

, (1)

where ‖·‖H is reproducing kernel Hillbert space (RKHS)
norm, φ is kernel-induced feature map.

In our setting, when there are K source domains {Dsk}Kk=1,
to map original samples into a common feature space where
domain adaptation can be achieved, we use a pre-trained deep
neural network Fp to collect latent features of all domains. At
the same time, fine-tuning block Ffc, which is optimized by
distribution fusion block Fd and specific domain adaptation
block (we will explain it in detail in section II-B), is added
to fine-tune convolution layers in order to extract more robust
latent representations. The extracted latent features are then
used to complete specific domain adaptation. Common feature
extraction can be formulated as:

f icsk
= Ffc(Fp(x

i
sk
)),

f jct = Ffc(Fp(x
j
t )),

i = 1, 2, . . . , nsk , j = 1, 2, . . . , nt.

(2)

Rewrite (1) according to the proposed common feature
extractor and express it as multi-source setting, that is:
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Before fine-tuning common features extracted by (2) using
specific domain adaptation block and estimating RKHS dis-
tance between each source domain and target domain, we first
add the distribution fusion block to optimize the parameters
of the common feature fine-tuning block. So, corresponding
loss function can be written as:
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=MMD(X̂s, Xt)
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(4)

where k is the kth source domain, X̂s means weighted
combination of source domains, which contributes the update



Fig. 1. The whole procedure of the proposed method (better view in color): the yellow dashed box shows common feature extraction; the red dashed box
shows distribution fusion; the purple dashed box shows specific feature extraction and the blue dashed box shows specific predictor learning. The rounded
dashed boxes which are in the same color as above mentioned dashed boxes represent corresponding losses. Gary boxes mean relationship extraction and
selective operation.

of parameters of common feature fine-tuning block and gives
more similar sources larger weights for subsequent training.

B. Specific Predictor Learning

After extracting latent features of all domains, which rep-
resent common knowledge of the sources and the target,
specific domain adaptation blocks are used to learn specific
features and predictors of each source domain simultaneously.
The specific domain adaptation block of each source domain
contains three fine-tuning layers and a fully connected layer.
The specific fine-tuning layers {F k

fs}Kk=1 are added to learn
specific latent features of corresponding kth source domain
and the target domain, which guarantee that the predictor
trained on the source domain can be used on the target
domain. The fully connected layer is employed to learn high
performance predictors of each source domain with cross-
domain constraints. The final specific features of each source
domain are:

f issk
= F k

fs(f
i
csk

),

f jstk
= F k

fs(f
j
ct),

i = 1, 2, . . . , nsk , j = 1, 2, . . . , nt.

(5)

fstk means feeding common representation fct into the spe-
cific feature extractor of kth source domain.

To optimize Ffs, here we use the same strategy proposed in
[25], cross-domain constraints contain two parts: cross-domain
distribution and cross-domain predictor. It can be expressed as:
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and
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where Fpres represents a specific predictor of the source
domain. By minimizing (6) and (7), specific domain-invariant
features can be learned by taking generated cross-domain
distributions into consideration. In addition, target samples
close to class edges are more probably to get the same
prediction results. It has been proven that adding these cited
cross-domain constrains brings positive effects [25].



The final specific predictor F k
pres of each source domain is

controlled by cross entropy, that is:

Lpres =

K∑
k=1

(−
nsk∑
i=1

yisk log
(
F k
pres(f

i
ssk

)
)
. (8)

The total loss function of proposed model is:

L = Lpres + λLFd
+ γLdc + µLcp. (9)

C. Target Predictor Estimation

After obtaining specific predictors of source domains, it
is important to choose an appropriate combination rule to
estimate the prediction function of the target domain. Since
we have learned a relationship between latent features of target
domain and the combination of weighted source domains using
distribution fusion block, here we use the learned weights
to extract the connection among source predictors and target
predictor. To further strengthen the performance of outputs,
the predictive accuracy of single source domain adaption is
taken into account. The final target predictor is:

Fpret =

K∑
k=1

αkF
k
pres, (10)

where

αk =
sigmoid(ωk) · wk∑K

k′=1 sigmoid(ωk′) · wk′
,

wk =
accuk∑K

k′=1 accuk′
.

(11)

ωk is the parameter of distribution fusion block which in-
dicates the similarity between kth source domain and target
domain and accuk means the prediction accuracy of kth source
domain predictor.

To avoid negative transfer, source selective strategy is em-
ployed to obtain a high performance of final outputs of the
target domain. Our proposed method compares single source
outputs directly with predictions of target predictor (10). If
there is negative transfer, the final target predictor equals to the
single source predictor which achieves the best performance.

The whole method is summarized as follows.

III. EXPERIMENTS

A. Datasets and Setting

To evaluate the efficiency of the proposed multi-source
domain adaptation method, we take a series of experi-
ments with some existing state-of-the-art baselines on datasets
ImageCLEF-DA and Office-31.

ImageCLEF-DA is a balanced dataset which contains 1800
images from 12 categories shared by datasets Caltech-256 (C),
ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P) and
each dataset is regarded as a domain. Every category contains
50 images and there are 600 images in each domain. We
test the proposed model by building three tasks: I, C → P ;
I, P → C; C,P → I .

Office-31 is an unbalanced dataset which comprises 4110
images from 31 categories shared by datasets Amazon (A),

Algorithm 1 Proposed multi-source domain adaptation
1: Input: Source domains {Dsk}

K
k=1, target domain Dt, training

iteration I, pre-trained model Fp, ground truth label Yt.
2: for ε = 1, ε < I, ε++, do
3: {(xisk , y

i
sk )}

m
i=1 ← randomly collect m batch pairs from each

source domain Dsk ;
{xit}mi=1← randomly collect m batch pairs from target domain
Dt;

4: {fcsk }
K
k=1 ← Ffc(Fp(xsk ));

fct ← Ffc(Fp(xt)) according to (2);
5: LFd ← MMD(X̂s, Xt) according to (4);
6: {fssk , fstk }

K
k=1 ← {F k

fs(fcsk ), F
k
fs(fct)}Kk=1 according to

(5);
7: {Ysk}

K
k=1← {F k

pres(fssk }
K
k=1, estimate labels of each source

domain;
8: Compute Ldc, Lcp and Lpres according to (6), (7) and (8);
9: {Ytk}

K
k=1 ← {F k

pres(fstk )}
K
k=1, estimate single source pre-

dictions of target domain respectively;
10: Compute target label Ytm with multiple sources according to

(10).
11: Compare accuracy of single source prediction and multi-

source prediction with ground truth label and use selective
strategy to return best performance.

12: Update common feature fine-tuning block Ffc, distribution
fusion block Fd, specific feature fine-tuning blocks {F k

fs}Kk=1,
specific predictors {F k

pres}Kk=1 by minimizing (9).
13: end for
14: Output: Feature fine-tuning block Ffc, distribution fusion block

Fd, specific feature fine-tuning blocks {F k
fs}Kk=1, specific pre-

dictors {F k
pres}Kk=1, predictive label Ŷt.

Webcam (W) and DSLR (D) and, again, each dataset is
regarded as a domain. Amazon contains 2817 images from
amazon.com, Webcam has 795 images taken by web camera
and DSLR holds 498 images taken by digital SLR camera.
The number of images in each category is different. We test
the proposed model by building three tasks: A,W → D;
A,D →W ; D,W → A.

Since there are few methods dealing with multi-source do-
main adaptation on real-world visual recognition, we compare
the proposed method with the two most recent multiple source
domain adaptation methods: Deep Cocktail Network (DCTN)
[24] and Multiple Feature Spaces Adaptation Network (MF-
SAN) [25], along with other efficient single domain adaptation
methods: ResNet [28], Deep Adaptation Network (DAN) [29],
Deep Coral (D-CORAL) [30] and Reverse Gradient (RevGrad)
[31]. For these single source domain adaptation models, we
use two standards which are the same as used in previous
surveys: simply combining all source domains as one domain,
that is “Source Combine”; returning the best single source
domain adaptation results, that is “Single Best”. For multi-
source domain adaptation models, the standard is labelled
“Multi-Source”, which indicates transfer results of multiple
sources.

We choose ResNet50 as a pre-train model; common feature
fine-tuning block contains 3 convolution layers, with kernel
sizes of 1× 1, 3× 3, 1× 1; distribution fusion block contains
1 fully connected layer; specific feature fine-tuning block
includes 3 convolution layers, with kernel sizes of 1×1, 3×3,



1×1; specific predictor comprises 1 fully connected layer. The
optimization algorithm is stochastic gradient descent (SGD),
training batch size is 32; learning rate is 0.01; momentum is
0.9 and weight decay is 5e−4. Trade-off parameters λ, γ and
µ are set as the common value 0.5.

B. Comparison and Analysis

Since all baselines reported in previous survey are best
performance, we also choose the best transfer results of the
proposed method for evaluation. Tables I and II show the
results on ImageCLEF-DA and Office-31 respectively. Tables
III and IV show the results of the proposed method trained
with and without distribution fusion or common feature fine-
tuning on the two datasets.

TABLE I
COMPARISON OF CLASSIFICATION ACCURACY (%) OF THE PROPOSED

WITH RESNET, DAN, D-CORAL, REVGRAD, DCTN AND MFSAN ON
IMAGECLEF-DA DATASET

Standards Method I, C-P I, P-C P, C-I Avg

Single Best

ResNet 74.8 91.5 83.9 83.4
DAN 75.0 93.3 86.2 84.8

D-CORAL 76.9 93.6 88.5 86.3
RevGard 75.0 96.2 87.0 86.1

Source Combine
DAN 77.6 93.3 92.2 87.7

D-CORAL 77.1 93.6 91.7 87.5
RevGard 77.9 93.7 91.8 87.8

Multi-Source
DCTN 75.0 95.7 90.3 87.0

MFSAN 79.1 95.4 93.6 89.4
Proposed 79.5 95.8 93.7 89.7

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY (%) OF THE PROPOSED

WITH RESNET, DAN, D-CORAL, REVGRAD, DCTN AND MFSAN ON
OFFICE31 DATASET

Standards Method A, W-D A, D-W W, D-A Avg

Single Best

ResNet 99.3 96.7 62.5 86.2
DAN 99.5 96.8 66.7 87.7

D-CORAL 99.7 98.0 65.3 87.7
RevGard 99.1 96.9 68.2 88.1

Source Combine
DAN 99.6 97.8 67.6 88.3

D-CORAL 99.3 98.0 67.1 88.1
RevGard 99.7 98.1 67.6 88.5

Multi-Source
DCTN 99.3 98.2 64.2 87.2

MFSAN 99.5 98.5 72.7 90.2
Proposed 99.6 98.7 73.1 90.5

It can be seen that the Source Combine results are better
than Single Best results generally, getting a higher average
accuracy than single source domain. Although the Single
Best results of transfer tasks I, P → C using RevGard and
A,W → D using D-CORAL outperform other methods and
standards, enriching data still has a positive influence on trans-
fer performance in most cases. Multi-Source results commonly
achieve greater degree than Source Combine except for DCTN.
That may result from different problem settings, where DCTN
is directly aimed at dealing with domain adaptation with

multiple sources and category shift. However, in most multi-
source domain adaptation surveys, there is no category shift
in source domains. The proposed method obtains the highest
classification accuracy than most baselines and standards.
This indicates that exploring any relationship between source
domains and target domain is important, and guaranteeing
the strength of more similar sources is worthy undertaking
to achieve the desired performance.

TABLE III
COMPARISON OF CLASSIFICATION ACCURACY (%) OF PROPOSED METHOD

ON DATASET IMAGECLEF-DA: M1: TRAINED WITH COMMON FEATURE
FINE-TUNING BUT WITHOUT DISTRIBUTION FUSION; M2: TRAINED WITH
DISTRIBUTION FUSION BUT WITHOUT COMMON FEATURE FINE-TUNING;

M3: TRAINED WITH COMMON FEATURE FINE-TUNING AND DISTRIBUTION
FUSION

Standards Method I, C-P I, P-C P, C-I Avg

Proposed
M1 77.5 92.2 93.3 87.7
M2 79.5 96.2 94.0 89.9
M3 79.5 95.8 93.7 89.7

TABLE IV
COMPARISON OF CLASSIFICATION ACCURACY (%) OF PROPOSED METHOD

ON DATASET OFFICE-31: M1: TRAINED WITH COMMON FEATURE
FINE-TUNING BUT WITHOUT DISTRIBUTION FUSION; M2: TRAINED WITH
DISTRIBUTION FUSION BUT WITHOUT COMMON FEATURE FINE-TUNING;

M3: TRAINED WITH COMMON FEATURE FINE-TUNING AND DISTRIBUTION
FUSION

Standards Method A, W-D A, D-W W, D-A Avg

Proposed
M1 99.6 97.9 72.0 89.8
M2 100.0 98.6 72.7 90.4
M3 99.6 98.7 73.1 90.5

Tables III and IV test the effects of common feature fine-
tuning and distribution fusion. It can be seen that training
the proposed method with distribution fusion always achieves
better performance than training the method with common
feature fine-tuning only. For dataset ImageCLEF-DA which
contains a small number of samples, adding depth of neural
network may harm the performance. In contrast, for large
scale dataset like Office-31, adding fine-tuning operation with
distribution fusion can improve the performance.

IV. CONCLUSION AND FUTURE STUDY

In this paper, we proposed a domain adaptation method with
multiple sources based on a pre-trained deep neural network.
Our method uses fine-tuning operation and distribution fusion
to explore the relationship between source domains and target
domain while simultaneously guaranteeing that more similar
sources contribute correspondingly more during training. Then
the cross-domain distribution constraint and cross-domain
predictor constraint are used to learn specific predictors of
source domains. Target predictor is estimated by combining
source predictors using relationship extraction. In conclusion,
the selective strategy is used to avoid negative transfer. A series
of experiments are designed and implemented on two real-
world datasets. For more vigorous examination, the effects of



distribution fusion and fine-tuning are also tested. The results
demonstrate the efficiency of our proposed.

The proposed method can still be improved and there are
remaining problems that should be solved in future study.
Initially, we currently use a fully connected layer to extract re-
lationships between source domains and target domain, which
requires significant memory space in a computer. Replacing
it with convolution layers may improve calculation efficiency.
This still needs to be explored in future research.
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