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Abstract—A workpiece detection method based on fusion of 

deep learning and image processing is proposed. Firstly, the 

workpiece bounding boxes are located in the workpiece images 

by YOLOv3, whose parameters are compressed by an 

improved convolutional neural network residual structure 

pruning strategy. Then, the workpiece images are cropped 

based on the bounding boxes with cropping biases. Finally, the 

contours and suitable gripping points of the workpieces are 

obtained through image processing. The experimental results 

show that mean Average Precision (mAP) is 98.60% for 

YOLOv3, and 99.38% for that one by pruning 50.89% of its 

parameters, and the inference time is shortened by 31.13%. 

Image processing effectively corrects the bounding boxes 

obtained by deep learning, and obtains workpiece contour and 

gripping point information. 

Keywords—workpieces detection; deep learning; pruning 

filters; image processing 

I. INTRODUCTION 

As a classic task in industrial scenarios, workpiece 
detection is critical in many flexible assembly units, 
automated factories and other production environments. 
Under the background of Industry 4.0, the tasks of industrial 
production are gradually changing from large-scale 
production to personalized customization and single-piece/ 
small-batch production [1]. As a result, the workpiece 
detection becomes a multi-target and irregular detection, 
which places higher requirements on the automated detection 
technology. 

In terms of detection methods, machine vision has been 
widely used because of its non-contact and high efficiency. 
However, traditional machine vision algorithms have 
problems such as difficulty in feature definition and 
extraction,  and inaccurate multi-target positioning. In recent 
years, the rapid development of artificial intelligence such as 
deep learning has largely solved these problems. With the 
increasing demand and complexity of tasks, pure deep 
learning methods tend to continuously expand the scale of 
the network. For instance, ExtremeNet [2] draws an octagon 
by detecting the four poles and center point of the target 
object, making the bounding box more fit the target object, 
but the price is that its parameter scale is significantly larger 
than that of rectangular bounding box network YOLOv3 [3]. 
Using pure deep learning methods to improve the network 
output form in one step often requires larger parameter scale 
and more complex backbone network. This not only requires 
better equipment to support its computing power, but also 
increases the inference time, making it difficult to achieve 
video-level detection requirements in industrial scenarios. 

In view of the above problems, using YOLOv3 to 

automatically extract the features of workpieces and locate 
their rectangular bounding boxes for the multi-objective and 
personalized workpiece detection task. In order to avoid the 
problem of over-parameterization, based on basic 
convolutional neural network (CNN) pruning strategy [4], an 
improved pruning filter strategy is designed for the residual 
structure of Darknet-53, which is the backbone network of 
YOLOv3. For multiple consecutive residual identity blocks 
[5], the kernels of the last layer in each block need to be 
pruned in the same order. In this strategy, the hyperparameter 
α is set as the evaluation weight, and the 1 -norm of the 
corresponding kernels are assigned and integrated according 
to the evaluation weights in order of hierarchy. The unified 
pruning order is determined after the integrated result is 
sorted. We use the pruning strategy to test Darknet-53 (tiny) 
on the CIFAR100 dataset [6] and test YOLOv3 on the 
workpieces dataset. Finally, based on the detected 
rectangular bounding boxes, a cropping bias is set according 
to the type of the workpieces to increase the pixel coverage 
area, and the original image is cropped to extract the 
contours and appropriate gripping points of the workpieces 
through traditional image processing.  

II. RELATED WORK 

Workpiece detection integrates the classification and 
positioning task of the workpieces. According to the 
algorithms used, it can be generally divided into two 
categories: template-based matching algorithm and learning-
based classifier algorithm. The template matching uses 
traditional machine vision algorithms to process image 
pixels, and matches the template's edges or corners with the 
template to determine the positions and categories 
information of the workpieces. For example, based on Hu 
moment invariance extraction, the contours of the 
workpieces are extracted and matched with the template to 
identify the target workpieces [7]. Obtaining the contours 
information of the workpieces through the Canny algorithm, 
combining the probabilistic Huff transform and Freeman 
chain code to identify the shape and calculate the center 
space coordinates of the workpieces [8]. Since such 
algorithms mostly use global search, they are time-
consuming [9], and are sensitive to factors such as shadows 
and noise [10, 11]. It is necessary to adjust the image 
preprocessing method according to the specific usage 
scenarios. Therefore, they are usually used in scenarios with 
fewer types of workpieces, simple features, high 
discrimination, and stable production environment. 

Learning-based classifier algorithms are representative of 
machine learning algorithms that have been applied in 
workpiece detection tasks, such as support vector machine 
(SVM), and AdaBoost [12-14]. Since such classifiers need to 
define features manually, they still cannot be used in the case 
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of complex features. In recent years, deep learning has 
emerged because of its obvious advantages in deep and 
abstract feature extraction of workpieces, without the need to 
manually define features, and being insensitive to 
environmental interference factors. For example, CNNs are 
used to extract the edges and corners of cube candidate 
objects, and a decision tree is established according to 
detection probability and geometric relationship to identify 
the type of workpieces [15]. Using ResNet-34 as a feature 
extractor, a deep transfer learning method named cold-to-hot 
training that transfers prior knowledge from labeled synthetic 
images to unlabeled real images for workpiece viewpoints 
estimation [16]. Taking the standardized depth map as input 
to train a fully CNN  (convolution and deconvolution neural  
network, the convolution part is composed of VGG16 loaded 
with a pre-trained model), and using the segmentation mask 
as the output. Segmenting the workpiece area from the non-
workpiece area in the point cloud data helps to increase the 
number of detected workpieces and estimate the correct 
object poses [17]. Using the position image of the 
workpieces to train the CNN to push the position deviation 
of the mechanical part for accurately placing the workpieces 
on the fixture [18]. Thanks to the powerful fitting capabilities 
of various deep learning network frameworks, although 
workpiece detection tasks are more diverse and complex, 
they can do tasks that traditional algorithms cannot. 

However, the complexity of the task requires the 
corresponding network scale to match, which means that 
more computing power and memory are needed. At the same 
time, it has become a trend to deploy neural networks to 
hardware platforms with limited computing capabilities such 
as mobile terminals [19], so lightening of the networks has 
always been one of the important research directions for deep 
learning. At present, common network compression 
algorithms include network pruning, network distillation, and 
network decomposition [20]. Among them, pruning the 
convolution kernels of CNN is an effective method that can 
remove redundant parameters to avoid network performance 
overflow. It is true that network architecture is more 
important than inherited weights after pruned as pointed out 
by [21], but for industrial applications, loading pre-trained 
models from existing network structures for transfer learning 
[22] can make tasks converge with less data. After pruning 
and retraining the trained model, we can quickly find a 
network model with the appropriate structure and parameter 
scale for specific tasks. Since the residual structure [5] was 
proposed, it has been widely used in various CNNs. For the 
pruning of the residual structure, the main difficulty appears 
in the pruning standard of the last convolutional layer. The 
representative solution is to choose not to prune [23] or use 
the 1 -norm ordering of the shortcut convolutional layer as 
the standard [4]. Darknet-53 only uses the identity block in 
series, and we have improved this pruning situation. 

III. WORKPIECE DETECTION METHOD 

As described above, in the multi-target detection of 
workpieces, it is necessary to determine the type and pose of 
the workpieces. This paper proposes a workpiece detection 
method that combines deep learning and traditional machine 
vision algorithms. It combines the advantages of deep 
learning in workpiece simple positioning, and image 
processing to detect workpiece contours in pixel processing. 

The proposed workpiece detection is divided into three 
stages: training and pruning, detection and cropping, and 
traditional machine vision processing, as shown in Fig. 1.  
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Fig. 1. Three stages of proposed workpiece detection 

A. Training and Pruning 

The YOLOv3 is loaded with the trained weights on the 
COCO dataset [24] and trained on the workpieces dataset. 
Transfer learning strategy enables YOLOv3 to quickly 
converge with fewer training samples on the workpiece 
dataset. Then, the network is pruned in kernel granularity by 
using the improved residual structure pruning strategy and 
retrains. With the accuracy of the network maintained, we 
find the optimal parameter scale for the workpiece dataset 
under the YOLOv3 network structure. 

YOLOv3 is trained on the workpiece dataset as in [3] . 
For anchor prior mechanism, the k-means algorithm is used 
to obtain 9 bounding boxes prior on the training set of the 
workpiece dataset. During training and verification, the 
network input is images with size of 416×416. Since the type 
of the workpiece dataset is 10, the specifications of the three 
output layers (batch, height, width, channels) of YOLOv3 
become (batch, 13, 13, 45), (batch, 26, 26, 45), and (batch , 
52, 52, 45). Therefore, after loading the weights besides the 
output layers, we use he-normal [25] to initialize the output 
layers. The effect of YOLOv3 on workpiece detection after 
trained is shown in Fig. 2. 

YOLOv3 Detection

 

Fig. 2. YOLOv3 workpiece detection 

YOLOv3 achieves excellent performance on the 
workpiece dataset, so we proceed to prune the network. In 
this paper, the sequential structure convolutional layer is 
pruned using the method in [4]. And a greedy pruning 
strategy is adopted in the continuous multi-layer pruning, 
that is, the influence of the convolutional pruning of the 
previous layer is eliminated in advance when the pruning 
order of a certain layer is calculated. 

In Darknet-53, the meta-structure of serial identity blocks 
is shown in Fig. 3, where conv stands for Convolution-Batch 
Normalization [26]-Leaky Relu. This paper designs a 
pruning strategy for the meta-structure. The process of 
pruning n% is as follows: 

1) For each block, calculate 1 -norm of , 1iconv : 



 , 1 ,1 1i is = i                                  () 

Prune , 1iconv  kernels corresponding to the smallest n% 

of , 1is  index, and then prune the corresponding dimensions 

of , 2iconv ;  

2) Calculate 1 -norm of 0conv  and , 2iconv  for each 

block, and use (1) to obtain 0s  and , 2is . Set the 

hyperparameter α to calculate: 

 0 1, 2(1 )s s   + −                      () 

For 2 :i k=  with a step of 1, calculate: 

, 2(1 ) is   + −                       () 

Prune 0conv  and , 2iconv  kernels corresponding to the 

smallest n% of   index, and then prune the corresponding 

dimensions of , 1iconv  and next meta-structure 0conv ; 

3) Load the pruned meta-structure weights into the new 
model for retraining. The hyperparameter α is selected 
according to the training results to obtain a model with the 
best accuracy. 
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Fig. 3. Series connection of identity blocks 

B. Detection and Cropping 

Inputting the detection image into the pruned YOLOv3 
can obtain the bounding boxes of the workpieces. According 
to the type of the workpieces, corresponding cropping biases 

are added to the four directions of the bounding boxes, and 
the cropped pixel coverage area is enlarged to avoid losing 
part of the workpiece information, as shown in Fig. 4. 
Therefore, the multi-target detection problem is 
approximately transformed into a single-target detection 
problem. 

The cropped images of the workpiece test dataset are 
processed by traditional image processing, the mean Average 
Precision (mAP) is calculated from the bounding rectangle 
of the workpiece contours and the data labels to represent the 
accuracy of the detected contours. Under certain cropping 
bias, mAP reaches the optimal value, thereby determining 
the cropping bias of each type of workpieces. 
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Fig. 4. Cropping image based on boxes with cropping bias 

C. Traditional Machine Vision Processing 

After cropped, multiple workpiece images are obtained, 
and the images are sequentially subjected to Canny algorithm 
[27], Gaussian blur, morphological closing, and find 
contours. Then, the polygon fitting curves of the contour 
point sets (cylindrical workpieces such as gears, bearings and 
screw dies are circumscribed circles) are used as the 
workpiece contours. Finally, calculate the Intersection over 
Union (IoU) by detecting the bounding rectangles of the 
contours (Fig. 5(f) red rectangles, cylindrical workpieces 
directly use the contours) and the bounding boxes of deep 
learning (Fig. 5(f) green rectangles), and select the detection 
contour corresponding to the maximum IoU as the workpiece 
contour, as shown in Fig. 5. 

(a) Cropped Image (b) Canny (c) Gaussian Blur (d) Morphological Closing (e) Contours Detection (f) IoU calculating

 

Fig. 5. The process of workpiece contour detection 

Obtaining the contour of the workpiece determines the 

pose of the workpiece, and then finds suitable gripping 

points for the workpieces. For cylindrical workpieces, 

directly select two points in the diameter direction on the 

circular contour of the workpieces as gripping points. For 

non-cylindrical workpieces, the circumscribed oblique 

rectangle of the workpiece contour is first obtained, then the 

midpoints of the longer sides of the rectangle are connected, 

and the intersection points of the connecting line and the 

detected contour are used as the gripping points. As shown in 

Fig. 6, the red curves represent the detection contours, the 

blue rectangles represent the circumscribed oblique 

rectangles of the contours, and the purple arrows represent 

the gripping points of the workpieces. 

 

Fig. 6. Workpiece detection contours and grip points 



IV. EMPIRICAL ANALYSIS 

Based on the above methods, this study first tests the 
improved pruning strategy on the CIFAR100 dataset using 
the Darknet-53 (tiny), and then trains and prunes YOLOv3 
on the workpieces dataset to obtain the network model with 
the best parameter amount. Finally, we analyze the accuracy 
of the workpiece contours obtained after processing the 
cropped images. 

A. Pruning Strategy Test 

Based on TensorFlow [28], the Darknet-53 (tiny) 
network framework shown in Table I was tested on 
CIFAR100 dataset. Convolutional represents the Conv-BN- 
Leaky Relu series structure. We set each layer of Conv's 
padding to SAME, a weight decay of  0.0005, momentum of  
0.9, initialized weight with he-norm [25], and Leaky Relu 
with an alpha of 0.1. We trained it on a single GPU with 
batch size of 128 based on stochastic gradient descent 
(SGD). The initial learning rate was set to 0.01, changed to 
0.1 after 400 iterations, then divided by 10 at 32k and 48k 
iterations, and terminated at 64k iterations. After pruned, the 
network iterated 40 epochs at a constant learning rate of 
0.001. For the CIFAR100 dataset, we did not divide the 
validation set, and the image preprocessing was consistent 
with [5]. 

TABLE I.  DARKNET-53 (TINY) FOR CIFAR100 

 Type Filters Size Output 

 Convolutional 32 3×3 32×32 

 Convolutional 64 3×3 32×32 

8× 

Convolutional 32 1×1  

Convolutional 64 3×3  

Residual   32×32 

 Convolutional 128 3×3/2 16×16 

8× 

Convolutional 64 1×1  

Convolutional 128 3×3  

Residual   16×16 

 Convolutional 256 3×3/2 8×8 

8× 

Convolutional 128 1×1  

Convolutional 256 3×3  

Residual   8×8 

 Average Pool Global 

 Connected 100 

 Softmax  

As shown in Fig. 7(a), we give the average value of 5 

experiments at α = 0: 0.1: 1, with the same proportions of 

each layer of the network pruned. It can be seen that under 

different α’s, the accuracy retention effects of the network 

are different. Among them, under different pruning ratios, α 

achieves the optimal solution at 0.6, 0.8, and 0.9, as shown in 

Figure 7(b). According to the average and standard errors, 

compared with α = 1.0 (the pruning orders of 0conv  and 

, 2iconv  in the meta-structure are determined by 0conv ) , the 

ability of the network to retain performance has significant 

advantages when the α gets the best accuracy. 

 

(a) Pruning filters at different α’s 

 

(b) Comparison of α’s with best accuracy and α=1.0 

Fig. 7. Darknet-53 (tiny) pruning analysis 

B. Training and Pruning YOLOv3 

The workpiece dataset created in this study consists of 10 
types of workpieces, including screw bolt, screw nut, 
screwdriver, screw die, drill, wrench, L-type wrench, 
bearing, tap, and gear. We divided the 1488 workpiece 
images into three sets: 8391 for training, 420 for validation, 
and 1677 for test. Each image contains a maximum of 7 
categories or 9 instances. Used the k-means algorithm to 
obtain 9 bounding boxes prior to the training as [(92,311), 
(117,116), (175,363), (191,191), (260,246), (279,286), 
(312,83), (359,154), (403,393)]. 

For both unpruned training and pruned retraining for 
YOLOv3, we set the mini-batch size to 4 and train 3 epochs 
with a constant learning rate of 0.0001 and a weight decay of 
0.0015, and the remaining parameters were consistent with 
the model given in [3]. After the trained weights were loaded 

on the COCO dataset, YOLOv3 's 
0.5IoUmAP =

 on the 

workpiece test set reached 98.60%. 

Since the optimal solutions for pruning appeared in 
[0.6,0.9]   in the darknet-53(tiny) experiment, therefore 

we set [0.6,1]   with a step of 0.1 for pruning YOLOv3. 

The batch size and the number of samples were so small that 
the network was liable to fall into a local optimal solution, so 
the optimal solutions of 5 experiments were taken under 
different α’s. This paper pruned each layer of YOLOv3 in 
the same proportions by 30%, 40%, and 50% respectively, 

and 
0.5IoUmAP =

 changed on the workpiece test set was 

shown in Fig. 8. It was obvious that YOLOv3 had the 
highest convergence accuracy when α = 0.8, which retained 
the performance of the network best. Fig. 9 showed the 



0.5IoUmAP = , parameter scale, and inference time(tested on 

Intel (R) Core (TM) i7-8750H CPU, NVIDIA GeForce GTX 
1070 device) of the network at α = 0.8. As the pruning ratio 
increased, the scale of the network parameters gradually 
shrunk and could run with shorter inference time. In the case 

of pruning the convolution kernels of 30%, 0.5IoUmAP =  

reached 99.38%, which was even higher than the unpruned 
model; while the parameter amount was reduced by 50.89%, 
and the inference time was shortened by 31.13%. 

 

Fig. 8. YOLOv3's 0.5IoUmAP =  curves after pruned 

 

Fig. 9. Unpruned and pruned data comparison at α = 0.8 

C. Workpiece Contour and Gripping Points Analysis 

First, according to the method described in Section III, 
we determined the cropping bias of each type of workpieces 
as [20,10,20,10,10,10,30,10,10,20](pixels). Based on Open 
Source Computer Vision Library (OpenCV) [29], we set the 
upper and lower thresholds of Canny as [50, 100], the k-size 

of the Gaussian blur filter as 5×5, and the dilate and erode 

of the morphological operation were iterated twice. In order 
to obtain the workpiece contour from the contour points set, 
we divide it into three processing situations according to the 
type of workpieces. For cylindrical workpieces such as gears, 
bearings and screw dies, using circumscribed circle of 
contour points set as workpiece contour directly; For the 
taps, screwdrivers and nuts, using the convex hull polygon 
curve as workpiece contour, which is a convex boundary that 
most tightly encloses contour points set; For wrenches, L-
type wrenches, screw bolts and drills, approximating the 
polygon curve of contour points set with a specified accuracy 
of 0.008 times the perimeter of the contour points set, thus 
the smooth multi-point curve is transformed into a polygon. 
In order to analyze whether the workpiece contours after 
image processing keep the accuracy of bounding boxes from 
deep learning, we use mAP as the test index by the bounding 
rectangle of the workpiece contours and the labels, and 
choose two models: unpruned and pruned off 30% 
convolution kernels with α = 0.8 for workpiece detection. 
And then traditional image processing performs. The 

changes in mAP before and after pruning are shown in Fig. 
10. 

The detection effect of the YOLOv3 was similar before 
and after pruning, and the pruned model was even slightly 
better than the unpruned at lower IoU nodes. After image 
processing, without losing the deep learning bounding boxes, 
part of the bounding boxes were corrected, and the bounding 
rectangles of the workpiece contours coincided with the 
labels higher, which proved the effectiveness of the method. 

 

Fig. 10. mAP trends under different IoU’s 

V. CONCLUSION 

This paper has proposed a workpiece detection method 
that combines deep learning with traditional image 
processing. According to the structural characteristics of 
YOLOv3, pruning filter strategy is improved, and 
experiments show that the improved strategy retains network 
performance more effectively. The original image is cropped 
according to the deep learning bounding boxes with cropping 
biases, and the multi-target detection problem is 
approximately transformed into a single-target one. A series 
of image processing algorithms are used to obtain the 
workpiece contours and appropriate gripping points. The 
experiment has proved that the image processing corrects the 
workpiece positioning information obtained by deep learning 
to a certain extent, and the degree of coincidence between the 
detected and the actual workpiece contours is higher. 
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