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Abstract—Deep Neural Networks are an important class of
machine learning algorithms that have demonstrated state-of-
the-art accuracy for different cognitive tasks like image and
speech recognition. Modern deep networks have millions to
billions of parameters, which leads to high memory and energy
requirements during training as well as during inference on
resource-constrained edge devices. Consequently, pruning tech-
niques have been proposed that remove less significant weights
in deep networks, thereby reducing their memory and computa-
tional requirements. Pruning is usually performed after training
the original network, and is followed by further retraining
to compensate for the accuracy loss incurred during pruning.
The prune-and-retrain procedure is repeated iteratively until an
optimum tradeoff between accuracy and efficiency is reached.
However, such iterative retraining adds to the overall training
complexity of the network. In this work, we propose a dynamic
pruning-while-training procedure, wherein we prune filters of
the convolutional layers of a deep network during training itself,
thereby precluding the need for separate retraining. We eval-
uate our dynamic pruning-while-training approach with three
different pre-existing pruning strategies, viz. mean activation-
based pruning, random pruning, and L1 normalization-based
pruning. Our results for VGG-16 trained on CIFAR10 shows
that L1 normalization provides the best performance among all
the techniques explored in this work with less than 1% drop
in accuracy after pruning 80% of the filters compared to the
original network. We further evaluated the L1 normalization
based pruning mechanism on CIFAR100. Results indicate that
pruning while training yields a compressed network with almost
no accuracy loss after pruning 50% of the filters compared to the
original network and ∼5% loss for high pruning rates (> 80%).
The proposed pruning methodology yields 41% reduction in the
number of computations and memory accesses during training
for CIFAR10, CIFAR100 and ImageNet compared to training
with retraining for 10 epochs .

I. INTRODUCTION

Deep Neural Networks (DNNs) are a prominent class of
machine learning algorithms that have found widespread utility
in various Artificial Intelligence (AI) tasks such as image
recognition [1], speech recognition, spam detection, personal
assistants, among others. However, state-of-the-art DNNs like
VGG-16 and ResNet152 are memory-intensive with millions
of trainable parameters, and compute-intensive requiring 15.3
and 11.3 billion FLOPS, respectively, per inference. The
high memory, computational energy, and latency requirements
pose significant challenges to the deployment of large DNNs
on edge devices, with limited power budget and compute
resources, for inference. Model compression is a popularly
used technique for alleviating the memory and computational
energy requirements of large DNNs. Model compression can
be achieved by either pruning the redundant weights of a DNN

and/or by quantizing the weights and activations to lower bit
precision.

In this work, we propose an efficient pruning strategy for
DNNs that minimizes the accuracy loss compared to the orig-
inal network with minimal training overhead. Most previously
proposed pruning strategies train a DNN until the best accu-
racy is achieved, and then prune the filters (individual weights)
in the convolutional (fully connected) layers of the DNN. The
pruning phase is typically followed by a retraining phase for a
certain number of epochs to regain the accuracy loss incurred
due to pruning. Retraining imposes significant computational
overhead especially for large real-world datasets like ImageNet
consisting of millions of training images. In an effort to
eliminate the retraining phase, we propose pruning the DNN in
a gradual manner as the network is being trained. We prune a
small fraction of the convolutional filters every epoch over the
course of training until the target pruning rate is achieved. Our
analysis indicates that gradual pruning of filters during training
enables successive epochs to compensate for any accuracy
loss, leading to comparable accuracy at the end of training to
the original network on the CIFAR10 dataset for high pruning
rates (∼ 80%), and on the CIFAR100 and ImageNet datasets
for moderate pruning rates (≤ 50%). In addition, the proposed
gradual pruning methodology also enhances the computational
efficiency during training since the feed-forward and gradient
computations for the pruned filters can be skipped. As a
result, the proposed pruning methodology offers competitive
accuracy without the need for a separate retraining phase.
Unlike previous approaches, the proposed approach enables
sparsity to be exploited for computational efficiency during
both training and inference.

We investigate three different pruning strategies popularly
used in the literature for identifying the filters to be pruned,
namely, L1 normalization based pruning [2], random pruning
[3], and mean activation based pruning [4]. Our results indicate
that L1 normalization based pruning provides the best accuracy
after removing the redundant filters during training based on
the proposed gradual pruning methodology.

Overall, the key contributions of our work are:
1) We propose an efficient pruning methodology without

the need for a separate retraining phase, wherein the
convolutional filters are pruned gradually every epoch
to achieve the target pruning rate.

2) We investigate three widely used pruning techniques for
removing the redundant filters, namely, L1 normalization
based pruning [2], random pruning [3], and mean acti-
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vation based pruning [4], and evaluate their applicability
for the proposed gradual pruning methodology.

3) We demonstrate the effectiveness of our gradual pruning
methodology on the CIFAR10, CIFAR100, and Ima-
geNet datasets.

II. RELATED WORK

Many previous works have focused on compressing DNNs
using architectural, quantization, and pruning techniques. For
instance, Mobile Net [5] used depth-wise separate convolu-
tions to reduce the number of parameters and make infer-
ence more energy efficient while works such as DoReFa-Net
[6] efficiently compressed DNNs by quantizing the different
data structures. Deep Compression [7] proposes compressing
DNNs using pruning, trained quantization, and Huffman cod-
ing. Most works focused on pruning a network after training
followed by further retraining to compensate for the accuracy
loss [7], [8]. Runtime neural pruning [9] focuses on pruning
dynamically during run time using reinforcement learning. We
employ simpler pruning techniques such as L1 normalization
based pruning to minimize the energy and latency overhead
incurred by the pruning mechanisms. Our work differs from
the above efforts by incorporating pruning into the training
process itself, obviating the need for a distinct re-training
phase.Pruning filters for energy-efficient ConvNets [2] adopt
two strategies for pruning the network and regaining accuracy:
one-shot pruning/retraining and iterative pruning/retraining
based on the significance of filters. In both cases, the retraining
overhead in terms of additional MAC operations, gradient
computations, and memory accesses is quite large. Training
networks for datasets such as ImageNet (1,281,167 images)
require atleast 20 retraining cycles. Further PRT approaches
require ∼3× longer time (or latency) to retrain pruned net-
works [7], [2]. Our pruning while training approach yields both
MAC/memory energy and latency benefits (while completely
getting rid of the retraining overhead) with very minimal or no
loss in accuracy.The key findings of this paper which support
[10] are

1) Training a large, over-parameterized model is often not
necessary to obtain an efficient final model.

2) Learned ‘important’ weights of the large model are
typically not useful for the small pruned model.

3) The pruned architecture itself, rather than a set of
inherited important weights, is more crucial to the ef-
ficiency in the final model, which suggests that in some
cases pruning can be useful as an architecture search
paradigm.

III. PROPOSED PRUNING METHODOLOGY

This section describes the proposed pruning methodol-
ogy for efficiently compressing deep networks with minimal
training overhead. A plethora of prior approaches adopted
a ‘pruning followed by training’ strategy, which necessitates
additional an retraining phase to recover the accuracy degrada-
tion caused by pruning. Retraining cost in terms of latency and
computational energy can be substantial especially for large

real-world datasets like ImageNet. In order to eliminate the
retraining overhead, we propose pruning the network during
the training phase itself. We prune the network gradually every
epoch, i.e., uniformly over the course of the training period,
until the target pruning rate is achieved. The presented pruning
methodology has the following two-fold advantages. First, it
reduces the trainable parameters gradually, resulting in almost
no drop in accuracy on the CIFAR10 dataset, even for high
pruning rates (∼ 80%), and on CIFAR100/ImageNet dataset
for relatively lower pruning rates, as will be shown in the
results section (Section IV). Second, the gradual reduction
in the trainable parameters can be exploited to further the
computational efficiency in sparsity-aware neural accelerators
by eliminating redundant operations during both forward- and
back-propagation for the pruned weights. We employ three
widely-used pruning schemes for removing the redundant
weights, namely, L1 normalization based pruning, mean ac-
tivation based pruning, and random pruning that are described
in Subsection III-A. For each of the pruning techniques, the
weights to be pruned are forced to zero and the corresponding
gradient calculations are eliminated. We rigorously investigate
the effectiveness of the proposed methodology, and present the
pruning rates that can be achieved for given target accuracy
on the CIFAR10, CIFAR100, and ImageNet datasets. Note
that we have focused on only pruning the filters of the
convolutional layers to analyze the impact of compressed input
representations on the network accuracy, and because the the
coarser-grained pruning of filters is easier to exploit for time
and energy improvements. The presented methodology can
be extended to the fully connected classification layers for
improved compression efficiency.

A. Pruning Techniques

1) L1 Normalization Based Pruning: L1 Normalization
based pruning [2] is a way to remove the filters based on
their magnitude or L1 norm, which is computed as

L1_norm =

n∑
k=1

abs(wk) (1)

where abs(wk) is the absolute value of the kth filter weight
and n is the total number of filter weights. The filter magnitude
is used to determine the significance of the filter. Filters with
low magnitude do not contribute substantially to the network
output, and hence are pruned away.

2) Mean Activation Based Pruning: Mean activation based
pruning [4] is another form of magnitude-driven pruning. The
mean activation is calculated for each feature map in the
network on the entire training dataset as described by

Mean_Activation =

ntrain∑
k=1

(output_activationk) (2)

where output_activationk is the output activation of a feature
map for the kth image and ntrain is the size of the training



dataset. The filter corresponding to the feature map with the
lowest mean activation is considered to contribute insignifi-
cantly to the network performance, and hence is pruned away.
Mean activation based pruning tends to identify sparse feature
maps with maximum number of zeros, inserted as a result of
using ReLU non-linearity that zeroes out negative activations,
and removes the corresponding filters.

3) Random Pruning: Random pruning, as the name sug-
gests, prunes filters in the network randomly. A filter is chosen
at random every layer based on an unbiased random number
generator and removed from the network.

B. Training Algorithms for Gradual Pruning of Filters

In this section, we describe the training algorithm for
gradual pruning of the convolutional filters using the three
different pruning techniques described in Section III-A. Al-
gorithm 1 details network training with L1 normalization
based gradual pruning, Algorithm 2 describes network training
with mean activation based gradual pruning, and Algorithm 3
outlines network training with random pruning of the filters.
In Algorithms 1, 2, and 3, the basic steps are as follows for
each training epoch: 1) Perform forward and backward passes
through the network and perform weight update. 2) While the
current % of pruned filters (denoted as currentpruneperc) is
less than the required pruning rate (denoted as P%), we prune
the filters of all the convolutional layers of the network using
one of the pruning techniques. 3) As the current % of pruned
filters reaches P%, we proceed to the next epoch of training
and also increment the required pruning rate by a fixed value
(denoted as rate_per_epoch). Intuitively, such gradual pruning
while training will allow a network to adjust its weights and
compensate for the pruning-induced accuracy loss dynamically
and thus, reach a optimized pruned configuration towards the
end of training.

Algorithm 1: L1 norm based gradual pruning
Result: Pruned network at the end of all the epochs;
Input: Pixels of the training image;
All the training hyper parameters are initialized;
P% = initialpruningperc;
while epoch number <= the total number of epochs do

forwardpass();
backwardpass();
weightupdate();
currentprunperc = zero_filters_percentage();
while currentprunperc <= P% do

while layerno <= all-conv-layers do
L1_norm() is calculated for all filters;

end
lowestL1normfilter=0;

gradient calculations stopped for lowestL1normfilter;
current_prunperc = zero_filters_percentage();

end
P% = P% + rate_per_epoch;

end

IV. RESULTS AND DISCUSSION

We evaluated the efficacy of the proposed pruning method-
ology using the VGG-16 DNN consisting of 13 convolutional
layers and 3 fully connected layers. Batch Normalization is
used after every layer to normalize the output activations
before feeding them to the following layer. We used the Adam
optimizer [11] and cross entropy loss function for all the
experiments reported in this work. We trained VGG-16 on
the CIFAR10 (for 80 epochs), CIFAR100 (for 100 epochs)
and ImageNet datasets (for 100 epochs) to comprehensively
demonstrate the utility of the proposed ‘pruning while training’
methodology.

Algorithm 2: Mean Activation based gradual pruning
Result: Pruned network at the end of all the epochs;

Input: Pixels of the training image;
All the training hyper parameters are initialized;
while epoch number <= the total number of epochs do

forwardpass();
backwardpass();
weightupdate();
Output feature map activations are
accumulated over the entire training dataset every epoch.;
while layerno <= all-conv-layers do

Mean_Act() used to find the filter to prune for the
current layer ;
filter_layerno=0 ;
gradient calculations stopped for the particular filter ;

end
end

Algorithm 3: Training algorithm for random gradual pruning
Result: Pruned network at the end of all the epochs;

Input: Pixels of the training image;
All the training hyper parameters are initialized;
P% = initialpruningperc;
while epoch number <= the total number of epochs do

forwardpass();
backwardpass();
weightupdate();
currentprunperc = zero_filters_percentage();
while currentprunperc <= P% do

random_layer = RandomNumber_Generator ;
random_filter = RandomNumber_Generator
;
random_layer_filter = 0 ;
gradient calculations stopped for random_filter
;
currentprunperc = zero_filters_percentage() ;

end
P% = P% + rate_per_epoch;

end



Fig. 1. Accuracy of the original VGG-16 network, VGG-16 pruned while
training using L1 normalization based pruning (designated as PWT-L1Norm),
and VGG-16 pruned abruptly after initial training for certain number of epochs
(#epochs) followed by further retraining (designated as PRT-[#epochs]).

We first trained VGG-16 on CIFAR10 while pruning using
the three different techniques described in Section III-A to
identify the technique best suited for our ‘pruning while
training’ strategy, henceforth abbreviated as PWT-[Pruning
Technique]. For example, PWT-L1Norm refers to L1 nor-
malization based ‘pruning while training’. For the CIFAR10
dataset, we first used the PWT-L1Norm pruning methodology
and pruned 1% of filters every epoch to achieve the target
pruning rate of 80% at the end of 80 epochs. For the baseline,
we trained VGG-16 for certain number of epochs (#epochs)
before pruning 80% of the filters abruptly and retraining for
the remaining epochs, which is designated as PRT-[#epochs].
Consider for instance, PRT-55, where VGG-16 is trained for
55 epochs followed by pruning and retraining for the rest of
the epochs. Fig. 1 indicates that PWT-L1Norm strategy offers
comparable accuracy to the original VGG-16 network (without
any pruning) with 80% of the filters pruned. The PWT-
L1Norm strategy also provides higher accuracy than PRT-
based pruning, thereby yielding a superior pruned network.

Fig. 2. Number of trainable parameters versus epochs for VGG-16 pruned
using PWT-L1Norm strategy (L1 normalization based gradual ‘pruning while
training’) and PRT-[#epochs] strategy (initial training for certain number of
epochs, #epochs, followed by abrupt pruning and retraining).

In addition to offering higher performance, the PWT-

L1Norm strategy also gradually improves the computational
efficiency as training progresses. Fig. 2 illustrates that the num-
ber of VGG-16 parameters, pruned using the PWT-L1Norm
strategy, gradually decreases during the course of training.
The gradual parameter reduction can be exploited by sparsity-
aware neural accelerators to improve the computational ef-
ficiency of training by eliminating the redundant memory
fetches and computations corresponding to the pruned filters
as shown in Section V. Note that the PRT approach can
also provide higher computational efficiency post the abrupt
pruning phase, which is carried out after initial training for
substantial number of epochs. However, the proposed PWT
methodology yields a higher accuracy pruned network com-
pared to that obtained using the PRT approaches as illustrated
in Fig. 1, thereby providing the best trade-off between network
performance and computational efficiency. We also quantified
the latency overhead for computing the L1 norm every epoch
and found that it is ∼10× lower compared to the time taken
for a training epoch on the CIFAR10 dataset containing 50K
images. The L1 norm latency overhead further drops and
becomes negligible for larger datasets like ImageNet with over
a million images.

Fig. 3. Accuracy versus number of epochs provided by VGG-16 pruned using
PWT-L1Norm methodology for target pruning rates between 72% and 92%.

Next, we analyzed the impact of the overall target pruning
rate on the efficacy of the PWT-L1Norm pruning methodology.
We varied the target pruning rate for the filters from 72% to
92% over the entire 80 training epochs, which translates to
0.9% to 1.15% pruning rate, respectively, per epoch. Fig. 3
shows that target pruning rate of 72% yields the best accuracy
and that the accuracy degrades significantly as the pruning rate
is increased beyond 80%. For the CIFAR10 dataset, VGG-16
pruned using the proposed PWT-L1Norm methodology with
target pruning rate of 80% provides the best trade-off between
accuracy and parameter savings.

The PWT-L1Norm pruning strategy has thus far been ap-
plied every epoch. We next investigated the trade-off between
accuracy and training efficiency if the PWT strategy is carried
out with fixed delay (≥ 1 delay-epochs) between successive
pruning epochs, which is referred to as PWT-L1Norm-Mod
[#delay-epochs+1]. For instance, if the PWT strategy is applied
every second epoch; it is abbreviated as PWT-L1Norm-Mod2



Fig. 4. Accuracy versus the number of epochs for VGG-16 pruned with PWT-
L1Norm-Mod[#delay-epochs+1] strategy with different number of delay-
epochs between successive pruning epochs.

and translates to 1 delay-epoch between successive pruning
epochs. Fig. 4 indicates that superior accuracy is obtained
using PWT-L1Norm, where pruning is performed every epoch,
or PWT-L1Norm-Mod2. The accuracy degrades beyond a de-
lay of 1 epoch between successive pruning epochs as depicted
in Fig. 4. The original PWT-L1Norm strategy offers the best
trade-off between accuracy and training efficiency since it
reduces the network size every epoch as opposed to every
certain number of epochs.

Fig. 5. Accuracy versus the number of epochs for VGG-16 pruned using L1
norm, mean activation, and random ‘pruning while training’ strategies.

Finally, we compared the PWT-L1Norm methodology with
random and mean activation based ‘pruning while training’
schemes, referred to as PWT-Random and PWT-MeanAct, re-
spectively. The network is pruned gradually every epoch using
the respective schemes. Fig. 5 shows that PWT-Random strat-
egy with higher target pruning rate of 80% failed to converge
during training. As the target pruning rate is reduced to 40%,
PWT-Random strategy achieved training convergence, albeit
with lower accuracy compared to PWT-L1Norm methodology
that could prune 80% of the filters. This is because random
pruning does not account for the significance of filters while
pruning them, and hence can remove filters critical to network
performance as depicted in Fig. 5. We obtained similar results
for the PWT-MeanAct strategy, which yielded lower accuracy

than PWT-L1Norm strategy and comparable accuracy to the
inferior PWT-Random strategy. This indicates that L1 norm is
a better indicator of the significance of a filter than the mean
activation of the corresponding output map. Our comprehen-
sive analysis on CIFAR10 shows that PWT-L1Norm based
gradual pruning of filters every epoch provides a higher quality
compressed network compared to those obtained with random
and mean activation based pruning strategies.

Fig. 6. Accuracy versus the number of epochs for VGG-16 pruned using
PWT-L1Norm strategy on the CIFAR100 dataset with different pruning rates.

Fig. 7. Accuracy versus the number of epochs for VGG-16 pruned using
PWT-L1Norm strategy on the ImageNet dataset with 70% pruning rate.

We finally evaluated the efficacy of the PWT-L1Norm
methodology on the CIFAR100 and ImageNet datasets. Fig.
6 shows that VGG-16 pruned using PWT-L1Norm with target
pruning rate of 80% incurs 5% accuracy loss compared to
the original network. However, as the target pruning rate is
reduced to 50%, both pruned and original networks offer
comparable accuracy. For the ImageNet dataset, we similarly
found that VGG-16 pruned using PWT-L1Norm with higher
target pruning rate suffers from 10% accuracy loss as shown in
Fig. 7, which can be minimized by lowering the pruning rate.
It is noteworthy to mention that our PWT-L1Norm strategy
yields comparable accuracy with that of the PRT-70 (pruning
with retraining where pruning is applied at the 70th epoch).
Since we are effectively using progressively smaller networks



to train every epoch, we observe larger benefits in memory
and compute efficiency with PWT as compared to PRT.

V. COMPUTATION AND LATENCY BENEFITS

The number of Multiply-and-Accumulate (MAC) opera-
tions and read/write memory accesses are used as a proxy
for roughly estimating the energy benefits of the proposed
methodology. Table I lists the number of MAC operations
and memory accesses for the activations and weights during
both the forward- and back-propagation phases, for given DNN
layer with I input channels and O output channels, following
the estimation methodology described in [12]. Pp and Pc stand
for pruning percentage for previous and current layer. The
input and output feature map dimensions are considered to be
N × N and M × M , respectively. FP, BP, WU and S stand
for forward propagation, back propagation, weight update,
and stride, respectively. The savings in the number of MACs
or memory accesses using our PWT methodology over the
baseline PRT approaches can be computed as

Savings = 1−

n∑
k=1

((100− k + 1)/100 ∗X)

X ∗ n+m ∗ (1− PruningRatetarget) ∗X
(3)

where n is the number of nominal training epochs, m is the
number of retraining epochs, X is the actual number of MACs
or memory accesses in VGG-16, and PruningRatetarget
is the target pruning rate. We obtained 41% savings in
the number of MACs and memory accesses by pruning
VGG-16 on CIFAR10 (iso-accuracy), CIFAR100 and Ima-
geNet using our PWT-L1Norm strategy with n = 80 and
PruningRatetarget = 80% over PRT approach with m = 10
retraining epochs.

The latency for the proposed PWT-L1Norm and baseline
PRT approaches can be computed as

LatencyPWT−L1Norm = n ∗ (b ∗ Tb + TL1Norm)

LatencyPRT = n ∗ b ∗ Tb + TL1Norm +m ∗ b ∗ Tb (4)

where b is the number of mini-batches per epoch. Tb is
the mini-batch latency, TL1Norm is the latency for L1 norm
computation per epoch. We find that L1norm computation time
is lesser than the forward pass computation time through a
DNN for a batch of inputs. Note the forward pass computation
involves cost of Matrix Vector Multiplication (MVM) and non-
linear operations. In our experiments, we found TL1Norm and
b ∗ Tb to be 3.3 and 37.5 seconds respectively for VGG16 on
CIFAR100. We found b∗Tb to be 7680 seconds for VGG16 on
ImageNet. The prune-retrain approach takes approximately 21
hours more than PWT on ImageNet for 10 retraining epochs
on a NVIDIA GeForce GTX 1080 Ti GPU. This clearly shows
that the latency for the proposed PWT strategy is lower than
that incurred for the prune-retrain approaches even when m is
small.

TABLE I
NUMBER OF DIFFERENT DNN OPERATIONS

Forward Pass
Operation Number of ops
MAC operations (100− Pc) ∗ (100− Pp)% ∗M2 ∗ k2 ∗ I ∗O
Backward Pass
R=(N-M)/S+1
Operation Number of ops
MAC(Error) (100− Pc) ∗ (100− Pp)% ∗N2 ∗ k2 ∗ I ∗O
MAC(dw) (100− Pp)% ∗M2 ∗R2 ∗ I ∗O
Operation Number of ops
FP,BP and WU
Input Read N2 ∗ I
Weight Read (100− Pc) ∗ (100− Pp)% ∗ k2 ∗ I ∗O
Memory Write(Activation) (100− Pp)% ∗M2 ∗O
Memory Write(Weight) (100− Pc) ∗ (100− Pp)% ∗ k2 ∗ I ∗O

VI. CONCLUSION

In this paper, we propose a dynamic pruning while training
procedure to overcome the retraining complexity generally
incurred with conventional prune-and-retrain techniques. We
find that L1 normalization proves to be the best technique to be
used with our pruning while training approach. Our analysis
on CIFAR10, CIFAR100, ImageNet datasets show that our
approach yields the most optimal network configuration with
respect to efficiency and accuracy, while yielding, higher
memory and training latency improvements in comparison to
prior works.
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