2004.13529v1 [cs.Al] 28 Apr 2020

arxXiv

Augmented Behavioral Cloning from Observation

Juarez Monteiro*!, Nathan Gavenski!, Roger Granada*, Felipe Meneguzzi' and Rodrigo Barros?
School of Technology, Pontificia Universidade Catdlica do Rio Grande do Sul
Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
*{juarez.santos, roger.granada} @acad.pucrs.br, Tnathan. gavenski @edu.pucrs.br
i{felipe.meneguzzi, rodrigo.barros } @pucrs.br

Abstract—Imitation from observation is a computational tech-
nique that teaches an agent on how to mimic the behavior of an
expert by observing only the sequence of states from the expert
demonstrations. Recent approaches learn the inverse dynamics of
the environment and an imitation policy by interleaving epochs
of both models while changing the demonstration data. However,
such approaches often get stuck into sub-optimal solutions that
are distant from the expert, limiting their imitation effectiveness.
We address this problem with a novel approach that overcomes
the problem of reaching bad local minima by exploring: (i) a
self-attention mechanism that better captures global features
of the states; and (ii) a sampling strategy that regulates the
observations that are used for learning. We show empirically
that our approach outperforms the state-of-the-art approaches
in four different environments by a large margin.

Index Terms—Imitation Learning, Behavioral Cloning, Learn-
ing from Demonstration, Deep Learning

I. INTRODUCTION

Humans can learn how to perform certain activities by ob-
serving other humans. This ability of imitating allows humans
to transfer the knowledge from demonstrations to the task at
hand, despite differences in environment or objects used in the
demonstration [[1]]. For example, one can learn how to cook by
watching videos online, even if the stove and pans are different
from the ones in the video. The advance in technology and the
rising demand for intelligent applications have increased the
need for artificial agents that are capable of imitating a human
demonstrator. Research on imitation learning is motivated by
the ease with which humans transfer their knowledge through
demonstration rather than articulating it in a way that the
interested learner may understand [2].

Imitation learning, also referred to as learning from demon-
stration (LfD), refers to the task of artificial autonomous
agent acquiring skills or behaviors from an expert by learning
from its demonstrations [3, 4]. A natural way of imparting
knowledge by an expert is to provide demonstrations for the
desired behavior that the learner then emulates [5]. Unlike
humans that can learn without having direct access to the
actions executed in a demonstration [6], classical approaches
of LfD use labeled actions in order to imitate the expert
behavior. Such an assumption is restrictive and unrealistic
since usually, we do not have direct access to the label of
the action that is being performed by the expert.

I These authors contributed equally to the work.

978-1-4799-7492-4/15/$31.00 ©2020 IEEE

Recent approaches perform imitation from observation
(IfO) [Z, 18], which uses only the sequence of state observations
from the expert. Such approaches learn two models: the inverse
dynamics of the environment (Inverse Dynamics Model, IDM)
and an imitation policy model (PM). Current approaches learn
both models iteratively from samples based on each other,
i.e., the IDM uses demonstrations generated with a specific
policy from PM to update its model, and then the PM is
updated using the new outcomes from the updated IDM. Using
iterations during the learning process allows the policy model
to approximate the distribution of actions used by the expert,
which improves the imitation process. However, performing
IfO using this type of iteration has the drawback of overfitting
the policy demonstrations, primarily in the first iterations,
and sometimes, causing some of the actions to be ignored
altogether during learning of the PM due errors in the IDM.

To deal with this problem in IfO, we design an architec-
ture that uses attention models and a sampling mechanism
to regulate the observations that feed the inverse dynamics
model, preventing the models from reaching undesirable local
minima. We name our proposed approach Augmented Behavior
Cloning from Observations (ABCO). It learns a model with
the inverse dynamics of the environment in order to infer
actions from state changes, and a policy model to mimic the
expert via behavior cloning. ABCO substantially improves
sample efficiency and the quality of the imitation policy
model over traditional behavior cloning by exploiting attention
mechanisms (Section within both the inverse dynamic
model (Section and the policy model (Section [[II-B)
and a sampling strategy (Section that regulates the
observations that will feed the inverse dynamic model. Experi-
ments (Section show that by using either low-dimensional
state spaces or raw images as input, ABCO outperforms the
main IfO algorithms regarding both Performance and Average
Episodic Reward.

II. PROBLEM FORMULATION

We formulate the problem of imitation learning within the
Markov Decision Process (MDP) framework. An MDP is a
quintuple M = {S, A, T, r,~} [9], where S denotes the set of
states in the environment, A corresponds to the set of possible
actions, T' is the transition model P(s;11 | $t,a), ie, a
function to determine the probability of the agent transitioning
from state s; to sy41 with s; € S after taking action a € A at
time ¢; 7 is a function that determines the immediate reward for



taking a specific action in a given state, and -y is the discount
factor. The solution for an MDP is a policy 7(a | s) that
specifies the probability distribution over actions for an agent
taking action a in a state s; when following policy 7 that
imitates the expert behavior.

Since ABCO follows the behavioral cloning from observa-
tion (BCO) [8]] framework, we are interested in learning an
inverse dynamics model Mg'"**** = P(a | s¢, st41), ie., the
probability distribution of any action a when the agent transi-
tions from state s; to s,y1. Although we specify the problem
as an MDP, the BCO problem is defined without an explicitly-
defined reward function, using only agent-specific states [10],
and having no access to the labels of the actions performed
by the expert. Hence, our problem consists in finding an
imitation policy 7 from a set of state-only demonstrations
of the expert D = {(1,(s,...,{n}, wWhere ( is a state-only
trajectory {sg, $1,...,SN}-

The environment interactions are designed as either pre-
demonstrations ZP"¢ or post-demonstrations ZP°®, where each
demonstration contains a set of interactions (S¢,a;, S¢y1)-
Pre-demonstrations set ZP"¢ contains golden truth actions,
since the agent takes a random action a, in state s; of the
environment and generates the new state s;;;. Conversely,
IP°s contains predicted actions from the model since given
some state s; the model predicts action a; that tries to mimic
the expert behavior and generates the new state s;1.

III. AUGMENTED BEHAVIORAL CLONING FROM
OBSERVATION

Behavioral Cloning from Observation (BCO) [8]] combines
both an inverse dynamics model to infer actions in a self-
supervised fashion, and a policy model, which is a function
that tells the agent what to do in each possible state of the
environment. The former considers the problem of learning
the agent-specific inverse dynamics, and the latter considers
the problem of learning an imitation policy from a set of
demonstration trajectories. We detail both components, as well
as the modifications to this framework we propose in this
paper: the Augmented Behavioral Cloning from Observation
(ABCO) approach.

A. Inverse Dynamics Model

We model the inverse dynamics model (IDM) as a neural
network responsible for learning the actions that make the
agent transition from state s; to s;y;. In order to learn
these actions without supervision, the agent interacts with
the environment using a random policy 7, generating pairs

of states '7?5 = {(s$?,5/{1),...} for agent ag with the
corresponding actions Ay, = {a¢,...}. We store pairs of

states along with their corresponding action (s;, a¢, S¢+1) as a
pre-demonstration (ZP"¢). While randomly transitioning from
states in ZP"¢, the model learns the inverse dynamics My
for the agent by finding parameters * that best describe the
actions that occur for achieving the transitions from 7.9. BCO
uses the maximum-likelihood estimation (Eq. [I) to find the
best parameters, where py is the probability distribution over

actions given a pair of states representing a transition. At test
time, the IDM uses the learned parameters to predict an action
a given a state transition (sy?,s;{,).

[Z7|
0* = o g 1
= arg meax polas | s;%,8:01) ey
t=0

We augment the original IDM by adding a Self-Attention
(SA) module [11, [12]] (Section [III-E), which we use to
compensate for the large variation of the samples from ZP"¢
to ZP°° in the iterative process. The self-attention forces the
IDM to identify what is essential to learn from each state.
When using SA with images, it can identify which part of the
image representation of the state is essential for predicting the
correct action.

B. Policy Model

The Policy Model (PM) is responsible for cloning the
expert’s behavior. Based on the expert demonstrations D =
{¢1,(2,...,¢n}, where each demonstration comprises pairs
of subsequent states (s¢,s¢, 1) € T¢, (A)BCO uses the IDM
to compute the distribution over actions My(sf,sf, ;) and
predict action a that corresponds to the movement made by
the expert to change from state s; to s;41. With the predicted
action (self-supervision), the method builds a set of state-
action pairs {(s¢,a)} corresponding to the action & taken in
state s;. Then this is used to learn the imitation policy 7y that
mimics the expert behavior in a supervised fashion.

For behavioral cloning, learning an imitation policy 74 from
state-action tuples {(s¢,a)} consists of finding parameters ¢*
for which 74 best matches the provided tuples. Originally,
BCO employs maximum-likelihood estimation following the
Eq. [2| for finding the best set of parameters ¢*. After train-
ing the policy network, it performs imitation learning and
stores the sequences of states and predicted actions as post-
demonstrations (ZP°%).

N
¢* = arg m;xx Hﬁ¢(c2t | s¢) )

t=0
Compared to the original BCO, we augment the PM by
adding a self-attention module [11), [12], further detailed in
Section Unlike in the IDM, we use SA to reduce the
state changes during each iteration, since the self-attention
module focus on small details and differentiate better all
classes given by the IDM. The SA also allows the policy to
look non-locally at states, helping the model to learn faster
for higher dimensional states (e.g., Maze and Acrobot) with a

more gradual success rate in between iterations.

C. Iterated Behavioral Cloning from Observation

Torabi et al. [8] extend the BCO algorithm using the
post-demonstration environment interaction to improve both
the IDM and the imitation policy. The improvement, named
BCO(«), where o represents a user specified hyperparam-
eter to control the number of post-demonstration interac-
tions, works as follows. After learning the imitation policy,



Algorithm 1 ABCO(«)
1: Initialize the model My as a random approximator

2: Initialize the policy mg with random weights
3: Generate ZP" using policy 7

4: Generate state transitions 7 ¢ from demonstrations D
5: Set Z° = IPre

6: for i< 0toa do

7: Improve My by TRAINIDM(Z?)

8: Use My with 7€ to predict actions A

9: Improve 7, by behavioralCloning(7 ¢, A)
10: for e« 1to |E| do

11: Use g to solve environment e

12: Append samples ZP°® < (s, ¢, St41)
13: if 74 at goal g then

14: Append v, < 1

15: else

16: Append v, < 0

17: end if

18: end for

19: Set Z®° = SAMPLING(ZP"¢, ZP°%, P(g | E), v.)
20: end for

the agent executes the environment to acquire new state-
action sequences as post-demonstrations (ZP°%). These post-
demonstrations are then employed to update the IDM, and
further on, the imitation policy itself.

The problem of the iterated BCO is that it only uses the
set of post-demonstrations to re-train the IDM. Thus, for
those cases in which the policy still does not have good
enough predictive performance, the generated set of post-
demonstrations will contain misleading actions for specific
pairs of states. Those erroneous actions tend to degrade the
predictive performance of the IDM, which leads to degrading
the predictions of the policy in a negative feedback loop.

In order to deal with these problems, we create ABCO(«)
that iteratively improves over ABCO via a sampling method
that weights how much the IDM should learn from pre-
demonstrations (ZP"¢) and post-demonstrations (ZP°%). Algo-
rithm 1| summarizes the ABCO(«) training process, where
TRAINIDM(Z®) refers to using Z° to find a 6* that best
explains the transitions in the demonstration Z° as in Eq. [I]

Unlike BCO(0), which uses only ZP"® to train the IDM,
ABCO(«) updates the training data (Z°) in every iteration. As
ABCO(«) does not have any post-demonstration data in the
first iteration, Z° receives all data from ZP"¢. From the second
iteration onwards, Z° receives the concatenation of a sample
(Z%,7) from ZP°* and a sample (Z{ ") from ZP"° using a win-
loss probability according to the agent capability of achieving
the goal for each environment.

D. Sampling

For every iteration, our sampling strategy creates new
training data Z° containing a set of post-demonstrations Z77
and a set of pre-demonstrations Z7". In order to obtain the

sample from post-demonstrations (Z77"), we first select the

distribution of actions given a run E in an environment and the
current policy P(A | E;ZP°%). We consider only successful
runs from ZP°% ie., only state-action sequences in which
the agent was able to achieve the environmental goal. Note
that this goal might be a specific state (i.e. such that the last
transition in ZP°% is in a set of specified states), or avoiding an
undesirable state for a fixed number of transitions. We infer
these goal states from the type of expert demonstration we
receive.We represent it as v, in Eq. 3] where v, is set to 1 if
the agent achieves the environmental goal and zero otherwise,
and FE is the set of runs in an environment.

Z ve - P(A | e)
ecE 3)
E|

The intuition of using the post-demonstration only for
successful runs is that if a policy is unable to achieve the
environmental goal, then the post-demonstration alone does
not close the gap between what the model previously learned
with ZP"¢ and what the expert performs in the environment.
Using only successful runs also gives us a more accurate
distribution of the expert since we are only using those
distributions that achieved the goal instead of the random
distribution that consisted of a balanced dataset. By not adding
unsuccessful runs to the training dataset, we solve the problem
in which BCO(«) degrades the performance in both models.
With the distribution of actions from winning executions, we
select the sample Z777 from those runs, according to the win
probability P(g | E), i.e., the probability of achieving a goal
in an environment, as shown in Eq. 4]

P(A| B;17%) =

T = (P(g| E) x P(A| E,I7%)) ~ I (4)

spl

The sample from pre-demonstrations has a complementary
size of the post-demonstrations. Thus, to create a sample from
pre-demonstrations Z?7, we use the loss probability with
a distribution of actions in pre-demonstrations, denoted by
P(A | ZP¢), as demonstrated in Eq.

Tyl = (1= P(g| E)) x P(A| ) ~ TP (5)

spl T

Complementing the training dataset with random demon-
strations offers two main advantages. First, it helps the model
avoid overfitting from the policy demonstrations. Second, in
the early iterations, when the policy generates only a few
successful runs, and the distribution might not be closer to the
expert, the training data guarantees exploration by the IDM.

Using a win-loss probability, we induce the training data to
be closer to the expert demonstration than to the random data,
which boosts the model capability of imitating the expert. In
this setting, the more an agent can achieve its goal, the less we
want Z° consisting of ZP"® and more of ZP°°. It is important
to emphasize that our method is only goal-aware since we
consider tuples from successful runs in the sample from post-
demonstration, and does not use the reward information for



learning or optimizing. We do not use reward because not all
environments have a function for it. On the other hand, most
agents have a goal that is relatively easy to visually identify
by inspecting the last transition, e.g. the mountaincar reaching
the flag pole, arriving at the final square at a maze, acrobot
reaching the horizontal line, and the cartpole surviving up to
195 steps, as described in Section

E. Self-attention Module

Self-Attention (SA) [11] is a module that learns global
dependencies within the internal representation of a neural
network by computing non-local responses as a weighted sum
of the features at all positions. It allows the network to focus
on specific features that are relevant to the task at each step
and learns to correlate global features [13]].

ABCO uses the SA module based on the Self-Attention
Generative Adversarial Network (SAGAN) [12], since it out-
performs prior work in image synthesis. In SAGAN the self-
attention module computes the key f(z), the query g(z) and
the value h(x), given a feature map x, with convolutional
filters with the equations f(z) = Wyz, g(z) = W,z and
h(x) = Wpz. We compute the attention map by performing
two different steps. First, we apply Eq. [f] with the current key

f and query g.

sij = fzi) " g(z;) (6)

Second, we calculate the softmax function f3;;, over the
attention module to the i*" location when synthesizing the
jt" region. With the attention map 3 and the values h(x) we
compute the self-attention feature maps a = (a1, ag, ...,an) €
RE*N where N is the number of feature locations and C' is
the number of channels, as illustrated in Eq.

N
a; =v <Z ﬁj,ih(x») Ju(xi) = W, 9
=1

In this equation, Wy, W, and W), € RE*C and W, €
RE*C, where C' is C/k to reduce the number of features
map. Furthermore, we have the self-attention feature map a,
which we weigh by i, a learnable variable initialized as zero.

The SA module in our method minimizes the impact of the
constant changes created by the iterations by weighting all
features. The model is capable of overlooking the potential
local noise an agent might create and focus on features that
are more relevant for the action prediction. It also provides
smoother weight updates as a consequence of the weighting
of all features. We believe that during early iterations, SA
modules will learn with the random policy dataset how to
weight each state, and this will later translate in more accurate
labeling when Z° becomes more of ZP°* than ZP"¢.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In order to test ABCO, we perform experiments using
the environments (Section [[V-A)) of the OpenAl Gym [14]
toolkit. We developed two networks comprising vector-based

.
Gym-Maze (5x5)

Acrobot-vl CartPole-vl MountainCar-v0

Fig. 1. Example frames of Acrobot-vl, CartPole-vl, MountainCar-v0 and
Gym-Maze 5x5 environments.

environments and image-based environments (Section
and evaluated the results in terms of Average Episodic Reward
(AER) and Performance (P) (Section [[V-C). We describe
our findings and a comparison with the state-of-the-art in

Section [[V-D|

A. Environments

We perform all experiments using four environments
from OpenAl Gym [14]]. These environments are sepa-
rated in vector-based environments (Acrobot-vl, Cart-Pole-vl,
MountainCar-v0), and image-base environments (Gym-Maze
3 x 3,5 x5, and 10 x 10). Each environment is described
below and illustrated in Fig. [}

e Acrobot-vl is an environment that includes two joints
and two links, where the joint between the two links is
actuated. Initially, the links are hanging downwards, and
the goal is to swing the end of the lower link up to
a given height. The state space contains 6 dimensions:
{cos b1,sin 0y, cos b5, sin B2, 61, 02}, and the action space con-
sists of the 3 possible forces. Acrobot-vl is an unsolved
environment, i.e., it does not have a specified reward threshold
at which it is considered solved.

e CartPole-v1 is an environment where an agent pulls a car
sideways with the goal of sustaining a pole vertically upward
as long as possible. The environment has a discrete action
space composed of left or right, while the state space has 4
dimensions: cart position, cart velocity, pole angle, and pole
velocity at tip. CartPole-v1 defines solving as getting average
reward of 195 over 100 consecutive trials.

e MountainCar-v0 environment consists of a car in an one-
dimensional track, positioned between two “mountains”. The
state space has 2 dimensions, the respective car coordinates
(z,y), and the action space consists of 3 possible strengths
to move the car (-1, 0, or 1). To achieve the goal in this
environment, the car has to acquire the required momentum
from the left mountain to drive up to the mountain on the
right. MountainCar defines solving as getting average reward
of -110.0 over 100 consecutive trials.

e Gym-Maze is a 2D maze environment where an agent (the
blue dot in Fig. [1] should find the shortest path from the start
(the blue square in the top left corner) to the goal (the red
square in the bottom right corner). Each maze can have a
different set of walls configuration, and three different sizes,
3x3,5x5,and 10 x 10. An agent is allowed to walk towards
any wall. The agent has a discrete action space composed of



N, S, W, and E, and the state space consisting of rendered
images of the maze.

B. Implementation

We create two different networks to address each type

of environment: a network for low-dimensional vector-based
environments, and a network for high-dimensional image-
based environments. We developed all models using the Py-
Torch framework, with the Cross Entropy loss function, and
the Adam optimizer [16]. We added self-attention [[11} [12]]
modules in both IDM and PM. Below, we describe the details
of each network used in our experiments, where F'Cy is a
fully connected layer containing d dimensions, S A, is a self-
attention layer, and ... indicates the sequence of layers from
the original architecture up to the description of the next layer.
e Vector-based Environments: Inputg.,s — FCis —
SA12 — FCiy — SA12 — FCiy — FCio — Outputg,
where dims is a vector with twelve and six states for the IDM
and PM, respectively.
e Image-based Environments: we modified the ResNet [[17]]
architecture by adding two self-attention modules as follows:
Input224><224 — .. RSSBIOC,ZCQ — SA64 — ..
ResBlocky — SAijss — ... = FCyums — LeakyRelu —
Dropoutys — FCs12 — LeakyRelu — Dropoutys —
Outputy, where dims is a vector with 1024 and 512 features
for the IDM and PM, respectively.

C. Metrics

We evaluate our policies with two known metrics in the area:
the Average Episodic Reward (AER) and the Performance
(P). AER is a standard metric used to measure how well
our generated policy performs in a specific environment. The
metric consists of the average value of one hundred runs for
each episode in a given environment (e.g.running one hundred
of different mazes in Gym-Maze environment and calculating
the average performance, or running one hundred consecutive
episodes for the CartPole problem and calculating the average
reward). AER value is an ideal metric to understand how well
the expert did a task and consequently understand how difficult
it is to imitate the expert behavior.

On the other hand, the Performance (P) metric calculates
the average reward for each run scaled from zero to one. Zero
scores for P represents the reward obtained for a random
policy running in a given environment, while the one score
represents the reward obtained by the expert policy. It is
important to note that each environment has its own value
for the minimum and maximum rewards, and thus P is not
comparable between different environments. We do not use
accuracy to measure the quality of our generated policies
since this metric can not guarantee high-quality results for this
problem. As mentioned in Section we run our problem in
a two-phase approach, where in the first phase, our model
can quickly propagate the error to the second. Therefore, we
cannot use the accuracy as a metric to verify the quality of the
generated PM since achieving 100% accuracy with a generated
policy using a poor IDM will lead us to lower AER and P.

D. Results

In order to evaluate our approach, we compare our trained
models with the state-of-the-art approaches. All models are
trained using the same initial set of random pre-demonstrations
ZPre, Table [I| shows the results in terms of Average Episodic
Reward (AER) and Performance (P) for our models and
the related work: BCO [8] and ILPO [15]. For comparison
purposes, we also show the results for Behavioral Clone (BC),
which is a supervised approach.

Table [[] shows that our method is equal or surpasses the
state-of-the-art approaches in all the environments but the
Maze 3 x 3 where results are similar to BCO. The overall
results confirm that the attention module and our sampling
strategy can improve the imitation process. All approaches
achieved the maximum score for CartPole in both AER and
Performance, showing that this problem is easy to learn.
Although our model achieved the best P and AER scores in
the Acrobot environment, the related work presented similar
results with P ~ 1.00 and AER = —85.300. Our model
achieving better results for AF R metric means that ABCO can
solve the problem using fewer frames. However, both models
present similar imitation capabilities since all models achieved
P ~ 1.00. It is important to note that even ABCO not using
labeled data, it was able to achieve better results than the BC
approach that uses labels for actions. For MountainCar, we
observe a large difference in terms of Performance, with our
model achieving P = 1.289 and presenting a difference of
~ 0.34 to BCO, which is the second-highest result.

Although in all the Maze environments we achieved the
highest scores for Performance, we can observe that as the
complexity of the environment increases, our performance
decreases. Nevertheless, we can see in the results that ABCO
is less affected than BCO as the complexity increases, since
the Performance for our results in Mazes 3 x 3, 5 X 5 and
10 x 10 are 1.159, 0.960 and 0.860 respectively, while BCO
obtained 0.883, —0.112 and —0.416. In terms of AER, ABCO
was only outperformed by BCO in Maze 3 x 3 by =~ 0.02,
where Torabi et al. [8] achieved AER = 0.927. Comparing the
results of ABCO with ILPO, we observe that ILPO increases
its Performance as the maze increases in size but it is still
much lower than ABCO for the 10 x 10 maze. We believe that
this discrepancy happens for two reasons. First, our method
contains an attention module ([II-E), which increases the
capability of ABCO to focus on essential features through
non-visited state spaces. Second, ILPO does not consider a
full image of the scenario since it uses crop mechanisms and
internal manipulations with the state images. Using a partial
observation from the environment means that the approach
cannot receive essential features from the images (e.g. the
initial state, the goal state, the agent, efc). On the other hand,
as the maze increases, ILPO receives more local information
through the crops, increasing its Performance.

V. DISCUSSION

We perform an ablation study to observe the impact of
each component of our architecture. We measure Performance



TABLE I
Performance (P) AND Average Episode Reward (AER) FOR A SUPERVISED MODEL (BC), THE RELATED WORK (BCO AND ILPO) AND OUR APPROACH
(ABCO) USING OPENAI GYM ENVIRONMENTS.

Model Metric ‘ CartPole Acrobot MountainCar Maze 3 x 3 Maze 5 x 5 Maze 10 x 10
BC P 1.000 1.071 1.560 -1.207 -0.921 -0.470
AER 500.000 -83.590 -117.720 0.180 -0.507 -1.000
BCO[S] P 1.000 0.980 0.948 0.883 -0.112 -0.416
AER 500.000 -117.600 -150.00 0.927 0.104 -0.941
P 1.000 1.067 0.626 -1.711 -0.398 0.257
ILPOTLS] AER 500.000 -85.300 -167.00 -0.026 -0.059 -0.020
P 1.000 1.086 1.289 1.159 0.960 0.860
ABCO(a)
AER 500.000 -77.900 -132.30 0.908 0.932 0.784
Ground Truth ABCO BCO
8196 8188
10000
10000 8000
8000 £ S
g 6000 3
6000 o =
4000 E 4000 &
2000 2000
196 186 : S n 0 j S N 10
N 8 ; 8
E SActionsN v 01/0'76‘ v \teragt'lons 000’78 Woooe \‘t‘eragtions

Fig. 2. Inverse Dynamic Model predictions of the expert examples through time. It is possible to see that after the first two iterations, due to BCO’s Policy
poor performance, IDM stopped predicting “"North” and "West” classes, while ABCO, although lower than the ground truth, kept predicting sixty and ten
after the fifth iteration. We believe that the vanishing of the action from BCO is due to all examples from the less present classes in ZP°® being worse
representations that the random ones, making the Inverse Dynamic model stop predicting those classes, due to expert examples being closer, in the feature

space, from other classes than their own.

and AER when using the only the self-attention mechanism
without sampling, when using the sampling strategy without
self-attention, and when using the combination of attention
with different samplings. We generate all results using the
Maze 5 x 5 environment.

A. ABCO and Self-attention

To measure the impact on the learning process, we trained
ABCO using only the self-attention module. We observe
that when using only the self-attention, the accuracy of our
models was higher than the original method. However, high
accuracy does not represent an excellent performance since,
without the sampling method, some action might not occur

TABLE 11
ABLATION STUDY CONSIDERING THE 2 MAIN COMPONENTS OF ABCO:
attention AND sampling IN THE 5 X 5 MAZE ENVIRONMENT.

Model P AER
BCO —0.112 —0.941
Attention —0.415 —0.940
Partial Sampling 0.717 0.716
Whole Sampling 0.628 0.676
ABCO (Attention + Partial Sampling) 0.960 0.932
ABCO (Attention + Whole Sampling) 0.759 0.755

in further iterations. With high accuracy and samples that do
not represent the action from the expert accordingly, IDM
stops predicting the minority action, creating a sub-set from
all possible actions, and the policy learn the new subset of the
real actions. This behavior results in the policy not performing
the less frequent actions that are needed to solve different
environments during the inference phase (e.g., North and West,
on mazes, or not performing actions during acrobot), as we
discuss in Section [V-Bl

We observe that even when weighing the features, IDM
is still capable of predicting the most common path. When
feeding the Policy with ten different solutions for each maze,
the agent mimics the most common path, as shown in Fig. [3]
Nevertheless, when the first iterations still sample all classes,
the model takes more transition samples to reach the results
from Table [l Although self-attention alone achieves results
similar to BCO(«), when combined with the sampling method,
it has a significant impact on the results.

B. ABCO and Sampling

In this experiment, we use only the sampling module to
train ABCO(«) by disabling the self-attention module. We use
the sampling method without the reduction of samples from
TP°%_ We hypothesize that sampling from the original random



Maze 5x5 1 ] 1 _
M1 ol
L] L]
L]
. (9/10) (9/10)
_ _ _ o_| J. _ . _
(10/10) (10/10) (10/10) (10/10) 1 L e . 1 (10/10) (10/10) (10/10)
K] L. _ _ _e
(1/10) (1/10) (1/10) (1/10)

Fig. 3. Expert demonstrations executing a 5x5 configuration of Gym-Maze. Bellow the state-image we represent the number of experts that visited that state.

The blue line represents the path chosen by our ABCO agent.

policy dataset helps to solve the vanishing actions, as well as
close the difference from the first iteration Z and the expert.
The vanishing of actions from the IDM prediction occurs
due to the weak policy inference creating a ZP°® that does
not contain all actions or sparse representations that underfit
the inverse dynamic model. during the early iterations under
these conditions, IDM stops predicting the classes that are the
minority in the expert dataset. This misclassification causes
the policy to loop between actions that prevent the model
from achieving its goal. We compare the distribution of all
predictions from the IDM from the BCO(«) and the ABCO
in Fig. 2l where it shows that our sampling method can better
predict all classes due to the artificial growth of our dataset
caused by sampling from the ZP"¢.

Furthermore, to observe if the policy can create samples
that are closer from the expert than the random dataset, we
calculate the L2 distances from the average of all images
from each action during each iteration and normalize them
between zero, for the expert, and one, for the ZP"® samples.
The results in Fig. f] represent how our model learns a policy
that creates better Z for the majority classes (e.g., S and E),
and even for the minority classes (e.g., N and W). We assume
this difference of the approximation of the expert dataset to
be due to the minority classes consisting mostly of the ZP"¢
since most mazes do not require those actions. By sampling
from the random dataset, we force our IDM to balance its
labeling and create iterations that are further distant. Still, as
the Policy progresses and solves more runs, it approximates

1.4 !

1.2

1.0

0.8

06 T TT—

E ) ~—
— S
— W
"""" Random
————— Expert

10 20 30 40 50 60 70

0.4

0.2

0.0

Fig. 4. L2 distance for the average of each action for each iteration normalized
by the expert and random samples in the 5 X 5 mazes.

and becomes closer. By being closer to the expert, the new
samples allow the IDM to finetune itself and predict expert
labels more precisely.

We also believe that not all interactions following a sub-
optimal policy are relevant for IDM’s learning. If our hy-
pothesis is correct that a sub-optimal policy might create
samples that harm the IDM ability to label the expert samples
correctly, then the values from AER and P would be lower
than those from the sampling method from Section [[II-D} In
our experiment, we use a Resnet without attention modules
and by creating Z® with all ZP°* and the same ratio used in
the original sampling method for all ZP"°. Using this approach,
we observe that when using all interaction from the policy to
create the new dataset, the model achieves lower AER and P
as expected, as shown in Table

We conclude that the new sampling method alone can boost
the learning experience by allowing the IDM to receive a
more balanced dataset. Still, when accompanied by the self-
attention modules, it improves the generalization from the
model by learning to weigh each sample accordingly and
further boosting our method performance.

VI. RELATED WORK

Many approaches for imitating from observations have been
recently proposed [8} [15} |18} [19]. Ho and Ermon [[18]] propose
a generative adversarial imitation learning (GAIL) approach
that learns to imitate policies from state-action demonstrations
using adversarial training [20]].

Edwards et al. [15] describes a forward dynamics model,
i.e., a mapping from state-action pairs {(s:, a;)} to the next
state {s;+1}, called imitating latent policies from observation
(ILPO). In their two-step approach, the agent first learns a
latent policy offline that estimates the probability of a latent
action given the current state. Then, in a limited number
of steps in the environment, they perform remapping of the
actions, associating the latent actions to the corresponding
exact actions. This approach is very efficient in terms of
interactions needed since most of the process occurs offline.

Torabi et al. [8] develop behavioral cloning from obser-
vation (BCO) to imitate the behavior of an expert in a
self-supervised way by observing its states. Their approach
contains a model that learns the inverse dynamic of the agent,
and a policy model learns which action the agent should use



given a state. In that work, Torabi et al. train BCO using only
low-dimensional state features.

Using high-dimensional space, Torabi et al. [21] explores
the fact that agents often have access to their internal states
(i.e., proprioception). In that approach, the architecture learns
policies over proprioceptive state representations and compares
the resulting trajectories visually to the demonstration data.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a novel approach to learn how to
imitate the behavior from experts just by observing their states
with no prior information about their actions. The pipeline of
the architecture includes training two modules iteratively. The
Inverse Dynamics Model, which is responsible for learning
actions given that the agent transitioned from two states; and
the Policy Model that aims to predict which action the agent
has to select given a state in order to imitate the expert. Using
four different environments mentioned in Section [[V-A] we
perform experiments showing that our approach can use low-
dimensional or raw image data to learn how to imitate an
expert, and achieve better results than the best current methods.

As future work, we aim to evaluate our technique in more
challenging domains, such as Continuous Control Tasks, Atari
Games, Robotics Goal-based Tasks and others. Such domains,
have larger space states when compared with the ones in
our evaluation, which makes them harder to imitate. We plan
to work with temporal approaches and possibly adversarial
techniques in order to search for a model that could be able
to imitate and generalize having comparable or better results
than the state-of-the-art.

ACKNOWLEDGMENT

This study was financed in part by the Coordenao de Aper-
feioamento de Pessoal de Nvel Superior - Brasil (CAPES) - Fi-
nance Code 001, and CAPES/FAPERGS agreement (DOCFIX
04/2018) process number 18/2551-0000500-2. We gratefully
acknowledge the support of NVIDIA Corporation with the
donation of the graphics cards used for this research.

REFERENCES

[1] A. Bandura and R. H. Walters, Social Learning Theory,
Ist ed. Prentice-hall Englewood Cliffs, NJ, 1977.

[2] S. Raza, S. Haider, and M.-A. Williams, “Teaching
coordinated strategies to soccer robots via imitation,” in
Proceedings of ROBIO 2012, 2012, pp. 1434-1439.

[3] S. Schaal, “Learning from demonstration,” in Proceed-
ings of NIPS 1996, 1996, pp. 1040-1046.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Brown-
ing, “A survey of robot learning from demonstration,”
Robotics and Autonomous Systems, vol. 57, no. 5, pp.
469-483, 2009.

[5] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne,
“Imitation learning: A survey of learning methods,” ACM
Computing Surveys, vol. 50, no. 2, pp. 21:1-21:35, 2017.

[6] G. Rizzolatti and C. Sinigaglia, “The functional role of
the parieto-frontal mirror circuit: Interpretations and mis-
interpretations,” Nature Reviews Neuroscience, vol. 11,
no. 4, pp. 264-274, 2010.

[71 Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation
from observation: Learning to imitate behaviors from raw
video via context translation,” in Proceedings of ICRA
2018, 2018, pp. 1118-1125.

[8] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning
from observation,” in Proceedings of IJCAI’18, 2018, pp.
4950-4957.

[9] R. S. Sutton and A. G. Barto, Introduction to reinforce-
ment learning. MIT press Cambridge, 1998, vol. 2,
no. 4.

[10] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine,

“Learning invariant feature spaces to transfer skills with

reinforcement learning,” in Proceedings of ICLR 2017,

2017, pp. 1-14.

A. Vaswani, N. Shazeer, N. Parmar, J. UszKoreit,

L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin,

“Attention is all you need,” in Proceedings of NIPS 2017,

2017, pp. 5998-6008.

H. Zhang, 1. Goodfellow, D. Metaxas, and A. Odena,

“Self-attention generative adversarial networks,” in Pro-

ceedings of ICML 2019, 2019, pp. 7354-7363.

[13] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image

style transfer using convolutional neural networks,” in

Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 2414-2423.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,

J. Schulman, J. Tang, and W. Zaremba, “Openai gym,’

arXiv preprint arXiv:1606.01540, 2016.

A. D. Edwards, H. Sahni, Y. Schroecker, and C. L.

Isbell, “Imitating latent policies from observation,” in

Proceedings of ICML 2019, 2019, pp. 1755-1763.

D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in Proceedings of CVPR

2016, 2016, pp. 770-778.

[18] J. Ho and S. Ermon, “Generative adversarial imitation
learning,” in Proceedings of NIPS 2016, 2016, pp. 4565—
4573.

[19] F. Torabi, G. Warnell, and P. Stone, “Generative adversar-

ial imitation from observation,” in I3 Workshop at ICML

2019, 2019.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

“Generative adversarial nets,” in Proceedings of NIPS’14,

2014, pp. 2672-2680.

[21] F. Torabi, G. Warnell, and P. Stone, “Imitation learning
from video by leveraging proprioception,” in Proceedings
of IJCAI'19, 2019, pp. 3585-3591.

[11]



	I Introduction
	II Problem Formulation
	III Augmented Behavioral Cloning from Observation
	III-A Inverse Dynamics Model
	III-B Policy Model
	III-C Iterated Behavioral Cloning from Observation
	III-D Sampling
	III-E Self-attention Module

	IV Implementation and Experimental Results
	IV-A Environments
	IV-B Implementation
	IV-C Metrics
	IV-D Results

	V Discussion
	V-A ABCO and Self-attention
	V-B ABCO and Sampling

	VI Related Work
	VII Conclusions and Future Work

