
Intra-Model Collaborative Learning of Neural
Networks

Shijie Fang†, Tong Lin†∗
†Key Laboratory of Machine Perception (Ministry of Education), Beijing, China

∗Peng Cheng Laboratory, Shenzhen, China
fangshijie@stu.pku.edu.cn, lintong@pku.edu.cn

Abstract—Recently, collaborative learning proposed by Song
and Chai has achieved remarkable improvements in image
classification tasks by simultaneously training multiple classifier
heads. However, huge memory footprints required by such multi-
head structures may hinder the training of large-capacity baseline
models. The natural question is how to achieve collaborative
learning within a single network without duplicating any mod-
ules. In this paper, we propose four ways of collaborative
learning among different parts of a single network with negligible
engineering efforts. To improve the robustness of the network,
we leverage the consistency of the output layer and intermediate
layers for training under the collaborative learning framework.
Besides, the similarity of intermediate representation and convo-
lution kernel is also introduced to reduce the reduce redundant
in a neural network. Compared to the method of Song and
Chai, our framework further considers the collaboration inside a
single model and takes smaller overhead. Extensive experiments
on Cifar-10, Cifar-100, ImageNet32 and STL-10 corroborate the
effectiveness of these four ways separately while combining them
leads to further improvements. In particular, test errors on the
STL-10 dataset are decreased by 9.28% and 5.45% for ResNet-18
and VGG-16 respectively. Moreover, our method is proven to be
robust to label noise with experiments on Cifar-10 dataset. For
example, our method has 3.53% higher performance under 50%
noise ratio setting.

Index Terms—collaborative learning, neural networks, ma-
chine learning

I. INTRODUCTION

Despite the great success of deep neural networks, their
training remains to be difficult both practically and theoreti-
cally. It is well-known that ensembling neural networks [1] or
enlarging the capacity of networks [2, 3] tends to yield better
performance. However, these methods lead to a relatively
expensive extra computation cost in both training and test,
which prevents them from deploying in real settings. It is
challenging how to achieve improvements without any extra
cost in inference with the capacity and computation of the
network kept unchanged.

To address this challenge, Song and Chai [4] proposed
collaborative learning, where multiple hierarchical subnets
of the network are simultaneously trained to improve the
generalization. Using such a collaborative learning framework,
they achieved 26.36% test error on CIFAR-100 with ResNet-
32. Despite the great achievement, memory and computation
cost for training such a multi-instance or tree structure with
multiple paths is too expensive when the number of subnets
grows. For example, training a network with four paths will

take approximately 1.5 times of memory beyond the baseline,
which is prohibitive for training a large baseline model on
GPUs with limited memory.

The natural question is how to perform collaborative learn-
ing with little extra memory cost in training. In this work, we
proposed four effective ways of collaborative learning in a sin-
gle network. To be more specific, we consider the collaboration
of output layer, intermediate layers, feature representations,
and convolution kernel:

• For the collaboration of the output layer, we use the
simple yet effective dropout technique to replace the tree-
structure used in the method of Song and Chai for saving
expenses in training and inference. The consistency of
multiple inputs generated by dropout is regularized to
produce similar output to improve the robustness.

• As for the collaboration of intermediate layers, cross-
entropy loss and consistency regularization crossing each
layer are leveraged to directly produce local error signal
and relieve gradient vanishing problem brought by gra-
dient descent.

• We further borrow the idea of manifold learning by
measuring the similarity between intermediate feature
representations of different layers.

• For reducing redundancy in each layer, the collaboration
of the convolution kernel is employed as a resultful
regularization in training.

With a relatively low increase in memory cost, we achieve
evident improvements on various datasets. In addition, se-
lectively combining these ways can yield even better perfor-
mance. This work not only solves the problem of huge memory
cost of [4] in training stage, but also explore more possibilities
of collaborative learning for different parts in a single network.

Our contributions are summarized as follows:

1) We propose a new framework of collaborative learning
within one single network. Under this framework, accu-
racy can be improved with neither extra inference cost
nor the enlargement of network capacity.

2) Compared with [4], our collaboration framework con-
tains four different ways with lower training memory
cost, which is more friendly for memory-limited GPU
training case. What’s more, our proposed methods are
versatile and not limited to the output layer. It’s flexible
to separately use one of them to yield lower training

ar
X

iv
:2

10
5.

09
59

0v
1 

 [
cs

.C
V

] 
 2

0 
M

ay
 2

02
1



costs or to jointly use the combination of them to achieve
the best performance.

3) The empirical experiments results on CIFAR-10,
CIFAR-100, ImageNet32, STL-10 datasets demonstrate
the effectiveness of the proposed methods as well as
their combinations. For example, we reduce the test
errors on STL-10 by 9.28% and 5.45% with ResNet-
18 and VGG-16 respectively.

II. PRIOR WORK

In [4], collaborative learning was proposed to simultane-
ously train several heads and learn from the outputs of other
heads besides the ground-truth labels. In inference stage,
only one path is preserved, so that the inference graph is
kept unchanged and no extra inference cost is brought. Their
collaborative learning framework mainly includes two parts:
learning objective and patterns of multiple heads.

a) Learning Objective: The learning objective contains
two losses: Jhard loss is the normal cross-entropy loss, while
Jsoft loss is the collaboration loss. To be more specific,
for a network with H heads, let z(h) = [z1, z2, . . . , zm]ᵀ

denote the prediction logit vector of head h, where m
is the number of classes and h ranges from 1 to H .
The corresponding softmax with temperature T is given as
ψi(z

(h);T ) = exp(z
(h)
i /T )/

∑m
j=1 exp(z

(h)
j /T ). Given the

training data (x, y) where x is an input image and y =
[y1, y2, . . . , ym] is its target one-hot vector, the Jhard loss with
temperature T is defined as:

Jhard(y, z
(h)) = −

m∑
h=1

yilog(ψi(z
(h); 1)). (1)

To encourage collaboratively learning from the whole popula-
tion and achieve the consensus of multiple views, Jsoft loss
is defined as follows:

q(h) = ψ(
1

H − 1

∑
j 6=h

z(j);T ),

Jsoft(q
(h), z(h)) = −

m∑
i=1

q
(h)
i log(ψi(z(h));T ).

(2)

The final training objective of [4] is written as:

L =
1

H

H∑
h=1

αJhard(y, z
(h)) + (1− α)Jsoft(q(h), z(h)), (3)

where α is a trade-off parameter (set as 0.5 in their imple-
mentation).

b) Patterns of Multiple Head: Song and Chai [4] pro-
posed two patterns of collaborative learning — multi-instance
and tree-structure. Assuming the original network is composed
of three subnets, as shown in Fig.1(a). Multi-instance, shown
in Fig.1(b), simply duplicates the original network and the
memory cost is proportional to the number of paths. Fig.1(c)
shows a tree-structure where intermediate-level representation
are shared by all subnets in the same stage, thus memory cost
is decreased to some extent and generalization is improved.

c) Connection to other methods: The collaborative learn-
ing method of Song and Chai [4] has originated from previous
training algorithms by adding additional networks in the
training graph to boost accuracy without affecting the infer-
ence graph. To better understand their method and our new
framework, we highlight the similarity and some differences
between their method and other methods here:

1) Auxiliary training [5] aims to improve the convergency
of network by adding classifiers at specified layers,
which will be abandoned in inference stage. By contrast,
collaborative learning [4] direct duplicates modules form
the original network to avoid the necessity of designing
a new structure.

2) Multi-task training [6, 7] is proposed to learn multiple
related tasks simultaneously so that knowledge learned
by different tasks can be reused. The collaborative
objective of [4] can be viewed as a special form of multi-
task learning where the consensus of multiple views
are achieved. Since the collaborative objective is very
similar to the original classification objective, there’s
no need to meticulously design a specified objective
for different tasks like the common multi-task training
methods. Also collaborative learning can be applicable
to single task scenario where multi-task methods cannot
help.

3) Knowledge distillation [8] is to train a smaller stu-
dent model for mimicking the behavior of a larger
teacher model in order to achieve model compression
and knowledge transfer. However, such a teacher model
with larger capacity and better performance needs extra
work in designing and training. In contrary, collaborative
learning doesn’t require a pre-trained larger model to
assist training; instead, certain consensus of the target
network is leveraged for training in a ”bootstrap” man-
ner.

d) Limitations: We argue that the method of Song and
Chai [4] has two limitations. First, such multi-instance or tree
structure will bring huge memory cost when the number of
paths grows, which may hinder the training of large-capacity
models. Second, their method is limited to output layer while
ignoring the intermediate layers, which are also essential
for training a neural network. To address limitations, a new
framework of collaborative learning is proposed in this paper,
with lower memory cost in training and more versatile ways
for focusing on different parts of a network.

III. INTRA-MODEL COLLABORATIVE LEARNING

In this paper, we propose a new framework for collaborative
learning, which consists of four different objectives to train a
single network.

A. Collaboration of Output Layer

The widely used dropout technique [9] can split the network
into different ”thinner” sub-networks by temporarily removing
some units with a specified probability. Inspired by this,
we propose the hierarchical dropout structure in a single



(a) Original network (b) Multi-instance

(c) Tree-structure (d) Hierarchical dropout

Fig. 1. Training graphs: (a) is original model is composed of three subnets in
this illustration. (b) and (c) are proposed in [4]. (d) shows our collaborative
way of output layer using hierarchical dropout structure.

network rather than building a multi-instance or tree structure
with copies of modules like [4]. To be specific, as shown in
Fig. 1(d), we sample units at each layer K times by dropout.
As a consequence, some units are dropout and corresponding
parameters are omitted so that the network is split into K
branches. In the end, Kn prediction is given for a model
of n output layers. Since different features are handled by
different units, the output sequence of such a hierarchical
dropout structure represents different views, which can be
viewed as the collaboration of units in the output layer. It’s
clear to see that the proposed structure doesn’t increase the
capacity of a network and only needs to pay a little overhead
to store the multiple outputs. For example, a ResNet-101
network with input tensor of shape 64 × 3 × 64 × 64 will
take 8.77GB of memory to train. Using tree-structure in Fig.
1(c) will take 13.16GB of memory, which has exceeded the
maximum limit of 11GB memory for GPUs like RTX 2080Ti.
However, it only takes 8.78GB of memory in training with the
proposed hierarchical dropout structure with four predictions
(same as in Fig.1(d)), which is almost equal to the original
network. Besides, since the structure of thr network is kept
unchanged in our method, it can naturally obviate the issue of
unbalanced gradients of different levels in [4]. Therefore, the
back-propagation rescaling trick is not required in our method.

Denote the produced predictions for a classifier of n output
layers and K branches as z = [z(1), z(2), . . . , z(K

n)]ᵀ, the

collaboration objective for output layer is defined as follows:

q(i) =ψ(
1

Kn − 1

∑
j 6=i

z(j);T ),

Lout =
1

Kn

Kn∑
i=1

αoutJhard(y, z
(i))

+ (1− αout)Jsoft(q
(i), z(i)).

(4)

Similar to Eq. 1, ψ(·;T ) represents for the softmax operation
over all classes with temperature T . Experimentally, we set
parameters as K = 2, T = 2 and αout = 0.5 for better
performance. The loss Lout will affect all layers through back-
propagation.

B. Collaboration of Multiple Intermediate Layers
We argue that collaborative learning may generalize from

output layer to intermediate layers. In a CNN, an intermediate
layer consists of convolution, batch normalization and activa-
tion. In this part, we propose to use a local classifier at each
intermediate layer to make prediction with the intermediate-
level representations (feature maps). Collaboration between
the ground-truth one-hot labels and intermediate layers can
be achieved by measuring the cross-entropy between the local
predictions and the targets. To be more detailed, a series of
local classifiers are built for each intermediate layers, all of
which is composed of a max pooling layer, a 3×3 convolution
and a fully connected layer to obtain the local classification
prediction. Denote the local prediction of the i-th intermediate
layer for total m classes as z(i) = [z

(i)
1 , z

(i)
2 , . . . , z

(i)
m ]ᵀ and

the groud-truth one-hot target as y, the local classifier loss is
defined as follows:

Jmid
hard(y, z

(i)) = −
m∑
i=1

yilog(ψi(z
(i);T )). (5)

Other works such as Local Error Signal [10] and HSIC
Bottleneck [11] also try to build a direct connection between
intermediate layers and target labels. However, they ignore the
correlation between different layers and simply set the same
objective for all layers. To address this, we further propose
the Jmid

soft loss in order to transfer the knowledge of high-level
layers to low-level layers, which is defined as follows:

q(i) = ψ(
1

N − i

N∑
j=i

z(j);T ),

Jmid
soft(q

(i), z(i)) = −
m∑

k=1

q
(i)
k log(ψk(z(i));T ),

(6)

where N represents the total number of layers in a network.
Combining both of them, the final objective for the i-th
intermediate layer is defined as:

L(i)
mid = αmidJ

mid
hard(y, z

(i)) + βmidJ
mid
soft(q

(i), z(i)). (7)

In experiments, we set αmid = 0.05, βmid = 0.05 and T = 2.
Different from collaboration of output layer, here the loss L(i)

mid

will only update the connection weights of the i-th layer by
local back-propagation.



C. Collaboration of Intermediate Representation with Inputs
and Targets

The above collaborations mainly focus on harnessing con-
sensus among multiple intermediate layers. It is possible to
leverage the relationship between an intermediate layer and
inputs or targets along the two ends of the spectrum. To be
more specific, we use metric S(.) to measure the similarity
of all data points in a mini-batch. Given a data sequence
with n data points d = [d1, d2, . . . , dn] in a mini-batch,
where di ∈ RC×W×H with image width W and height
H of C channels. However, it’s non-trivial to model the
similarity over such a huge space. To address this, we use
standard deviation of each feature map as their low-dimension
representations, hence obtain z = [z1, z2, . . . , zn], where
zi = [zi,1, zi,2, . . . , zi,c] and zi,c = σ(di,c[. . . ][. . . ]). Here di,c
is the c-th channel of i-th data point. The similarity matrix
S(x) of size n × n is defined for the mean-centered vectors
z̃ = [z̃1, z̃2, . . . , z̃n] obtanined by substracting mean from z.
The element in the i-th row and j-th column of the similarity
matrix describes the similarity between the i-th data points
and j-th data points, which is measured by cosine similarity
metric:

sij =
z̃i

ᵀz̃j
‖z̃i‖2 ‖z̃j‖2

. (8)

Datapoints with the same labels are expected to have similar
intermediate-level representations, while different labels lead
to diverse representations. Hence, the similarity matrix of
intermediate representations is supposed to minimize the dis-
tance to the target. On the contrary, the intermediate represen-
tations can be viewed as extracted features that should exhibit
discrepancy from the input representations. The final objective
for i-th layer is named as L(i)

pull−push, which represents pulling
the intermediate representation to targets and pushing it away
from the inputs:

L(i)
pull−push =αpull

∥∥∥S(gi(h(i)))− S(y)∥∥∥
F

− αpush

∥∥∥S(gi(h(i)))− S(x)∥∥∥
F
,

(9)

where x and y represent the input data points and target one-
hot vectors respectively. We denote gi the projection operation
for i-th intermediate layer, where a single convolution is
actually used. In experiments, we linearly increase αpull and
decrease αpush through all the layers from inputs to outputs.
Similarly, Lpull−push will only update the connection weights
of the i-th layer.

D. Collaboration Inside One Convolution Layer

The above proposed three forms of collaboration are built
based on different parts of network or external information
(i.e., inputs and target labels), while here we study the col-
laboration among units inside one single convolution layer. In
training deep neural networks, co-adaption often occurs when
two or more hidden units become highly coupling and relies
on each other, which not only yields redundant information
in the network but also brings serious overfitting problem. To

cope with this issue, Tompson et al. [12] and Ghiasi et al.
[13] proposed to use 2D Dropout which is similar to dropout
but is applied on the feature map. However, the probability
of dropout is difficult to control and may bring under-fitting.
Cogswell et al. [14] proposed to minimize the cross-covariance
of hidden activations, but it leads to large computation costs
when the size of feature map is huge.

Here a new collaboration method for the weights of con-
volution kernel W is proposed. Since restricting feature maps
may take huge computation cost, we choose to direct reg-
ularize W by minimizing its covariance matrix. This can
be seen as a collaboration of convolution kernel weights
to reduce the redundancy of the feature maps. Given the
kernel weight W ∈ RF×C×W×H of the specified convolution
layer, where F is the number of filters, C is the number
of channels, W and H are the size of kernel weight. We
first reshape W to a matrix form WM ∈ RF×G, where
G = C × W × H . Zero-mean normalization is used to
obtain the normalized matrix W̃M , in which the i-th row
is represented by W̃M

i = (WM
i − µ(WM

i )/σ(WM
i ) with µ

and σ represent for mean and standard deviation respectively.
Elements in the covariance matrix of the normalized W̃M and
the collaboration objective are defined as:

Ci,j =
1

G

G∑
k=1

W̃M
i,kW̃

M
j,k,

Lkernel = ‖C − diag(C)‖F .
(10)

The intuition is that the redundancy of feature maps will be
reduced if the covariance is controlled for convolution kernels.
In experiments, we found it beneficial to use Lkernel only in
the last two groups of convolutions for VGG-16 and ResNet-
18. Since we direct compute loss over convolution kernel, the
loss Lkernel only updates the connection weights of the current
convolution layer.

IV. EXPERIMENTS

We first conduct experiments by using each of the proposed
collaboration separately to demonstrate their effectiveness. In
order to achieve a higher accuracy, we further study the
combinations of the proposed four ways and investigate the
relationship between them. The results of the best combina-
tion on each datasets are also reported. We use the popular
VGG-like (VGG-16) and ResNet-like (ResNet-18) models as
backbone networks, followed by three fully-connected layers
for image classification. Dropout with a probability of 0.5 is
used in the first two layers of classifier to reduce overfitting.
SGD optimizer with momentum = 0.9 is used in all
experiments, with different learning rate and weight decay
on different datasets. The experiments are implemented on
PyTorch framework, using a single RTX 2080Ti GPU with
11GB memory.

A. Results on Four Datasets

We first report results of experiments on CIFAR-10, CIFAR-
100, ImageNet32 and STL-10 datasets to testify the effec-
tiveness of the proposed four ways separately and the best



TABLE I
TEST ERROR(%) ON CIFAR-10 AND CIFAR-100.

Dataset Model baseline
baseline

(2x)
Lout Lmid Lpull−push Lkernel

Lout + Lmid

+ Lpull−push

Lpull−push

+ Lmid + Lkernel

CIFAR-10
VGG-16 6.32 5.48 5.90 5.44 5.51 6.04 5.34 5.42
ResNet-18 4.84 4.53 4.55 4.47 4.45 4.69 4.42 4.31

CIFAR-100
VGG-16 26.94 25.39 25.90 24.93 26.03 25.64 24.18 25.13
ResNet-18 22.98 21.58 22.02 21.93 22.27 22.55 22.03 20.93

TABLE II
TOP-5 TEST ERROR(%) ON IMAGENET32 AND TOP-1 TEST ERROR(%) ON STL-10.

Dataset Model baseline
baseline

(2x)
Lout Lmid Lpull−push Lkernel

Lout + Lmid

+ Lpull−push

Lpull−push

+ Lmid + Lkernel

ImageNet32
VGG-16 33.08 30.06 30.00 29.09 29.51 31.52 28.41 28.75
ResNet-18 24.10 22.38 22.27 22.01 23.12 22.95 22.05 21.64

STL-10
VGG-16 30.25 39.70 26.35 28.87 25.92 29.53 24.80 25.47
ResNet-18 33.31 32.05 27.89 30.59 24.80 30.35 24.66 24.03

TABLE III
TEST ERROR(%) UNDER DIFFERENT COMBINATION OF COLLABORATIONS ON CIFAR-100.

Lout X X X X X X X X

Lmid X X X X X X X X

Lpull−push X X X X X X X X

Lkernel X X X X X X X X

VGG-16 25.90 24.93 26.03 25.64 24.76 25.31 25.62 24.67 24.81 25.68 24.18 24.39 24.81 25.13 24.89
ResNet-18 22.02 21.93 22.27 22.55 21.79 21.84 21.88 21.60 21.81 21.86 22.03 21.42 21.89 20.93 21.51

combination. Besides, the results on CIFAR-100 with noisy
labels, following [4], are also reported to attest the robustness
of proposed methods. Due to the training time budget, we
performed only a single run and report the lowest test error in
all epochs.

a) CIFAR-10 and CIFAR-100: As proposed by
Krizhevsky and Hinton [15], CIFAR-10 and CIFAR-100
consist of 50,000 RGB images with 32 × 32 pixels for
training and 10,000 for validating, having 10 and 100 classes
respectively. Following [16], we train models for 200 epochs.
Batch size is set as 128 and weight decay is set as 5e-4. The
initial learning rate is 0.1 and decays by a factor of 0.2 after
60, 120 and 160 epochs.

The results on CIFAR dataset are shown in Table I, where
baseline(2x) means the number of convolution filters is mul-
tiplied by a factor of 2. It’s clear that all of these four
Collaborations gives evident improvement of test accuracy.
In addition, Lmid has the greatest impact such that it offers
competitive accuracy approaching to baseline with 2 times
of the number of filters. For example, by separately using
one way of collaborations, we obtain test error 21.93%
and 4.47% on CIFAR-100 and CIFAR-10 using ResNet-18
without bringing any extra cost in inference stage. What’s
more, we further reduce the test error to 20.93% and 4.31%

by selectively using the best combination of collaborations.
b) ImageNet32: The origin ImageNet dataset [17] is

a large-scale classification dataset consisting of 1000 object
classes. For each class, it contains 50 test samples and more
than 1000 training samples. Due to the large amount and the
relatively large size of images, it tends to take several days to
train a model on a single GPU. Chrabaszcz et al.[18] proposed
a downsampled version of ImageNet by downsampling each
image to a 32 × 32 size and keeping the amount of images
unchanged. Chrabaszcz et al.[18] proposed a downsampled
version of ImageNet. Following [18], we train models for 40
epochs. Batch size is set as 256 and initial learning rate is set
as 0.1, decayed after 12, 24, 36 epochs by a factor of 0.2.

We report the top-5 error in Table II. It’s clear that our
methods can offer evident improvements on this challenging
dataset. By separately using each way of collaboration, we
improve the top-5 accuracy by 3.99% and 2.19% for VGG-16
and ResNet-18 respectively. The combination of collaborations
further produces error improvements of 4.67% and 2.46%.

c) STL-10: STL-10 [19] is a classification dataset with
10 object classes. There’re 500 training images and 800 test
images per class with each image of 96× 96 pixels. We train
models for 200 epochs, where batch size is set as 128 and
weight decay is set as 5e-4. The initial learning rate is set as
0.05 and decayed after 60, 120, 180 epochs by a factor of



0% 10% 20% 30% 40% 50%

24%

26%

28%

30%

32%

Noise level

E
rr

or
ra

te

baseline
Lout

Lmid

Lpull−push

Lkernel

Lout + Lmid + Lpull−push

Fig. 2. Test error of VGG-16 on CIFAR-100 with label noise. Noise level is the portion of labels which are uniformly sampled from the whole class labels.

0.2. Note that for ResNet-18 with 2x number of filters, we
decrease the batch size by half due to memory limitation.

As shown in Table II, Lpull−push yields significant im-
provements up to 8.51% for ResNet-18 and 4.33% for VGG-
16. By using Lout or Lmid, we can also gain remarkable
improvements. However, Lkernel seems to be not that effective
for VGG-16. By jointly using multiple collaborations, we yield
remarkable accuracy improvements up to 5.45% and 9.28%
for VGG-16 and ResNet-18 respectively.

d) Robustness to label noise: Following [4], we conduct
experiments on CIFAR-100 with VGG-16 to validate the noisy
label resistance of the proposed methods. Noisy labels are
corrupted with a uniform distribution over the whole labels.
The portion of noisy labels are fixed in a single run, but
noisy labels are randomly generated every epoch. As shown
in Fig. 2, we execute experiments over noise levels range
from 10% to 50%. It’s evident that the above four methods
of collaborative learning as well as their combination yield
significant improvements compared to baseline. What’s more,
the accuracy gains become larger when the portion of noisy
labels is huge. For example, Lout +Lmid +Lpull−push offers
an improvement of 3.53% over baseline at the noise level of
50%, which demonstrates that our methods are more tolerant
to noisy labels.

B. Combination of Collaborations

Since the effectiveness of using collaboration separately
has been demonstrated, we further conduct experiments to
investigate the effectiveness of different combinations of col-

laborations. Due to time limits, experiments with VGG-16 and
ResNet-18 on CIFAR-100 are reported in Table III.

The optimal weights for each form of collaboration are
obtained by grid-search approach and it’s clear that that the
best performance cannot be achieved by simply stacking all
of these ways of collaboration. For VGG-16, Lout tends to
offer improvements when combined with others. Using both
Lpull−push and Lmid can also bring evident improvements,
while further using Lkernel increase the test error instead. As is
shown, using Lout + Lmid + Lpull−push yields the lowest test
error. For ResNet-18, we found it most beneficial to use Lmid

+ Lpull−push + Lkernel. With the explored combinations, for
example, we further reduce the test errors by 0.16%, 1.00%,
0.37% and 0.77% compared to separately using one best form
of collaborations on CIFAR-10, CIFAR-100, ImageNet32 and
STL-10 respectively.

V. CONCLUSION

In this paper, we propose a new framework of collaborative
learning with the following features:

1) Although the method proposed by Song and Chai [4]
doesn’t require extra inference cost, the memory over-
head might be huge for training large-capacity models
on memory limited GPUs. In contrast, our proposed
framework significantly lessens the memory burden in
training.

2) Compared to the method of Song and Chai[4] which
totally depends on multi-head patterns to achieve con-
sensus, our new four ways of collaboration offer versa-
tile consensus among different part of a single network



and provide higher flexibility for single deployment or
selective combination.

3) Results on four datasets testify the improvements
brought by each of these four methods. Besides, the
best combinations can be found to offer further improve-
ments in accuracy.

4) We demonstrate that the proposed methods can still yield
better performance under relatively high levels of noisy
labels, which verifies the robustness of our framework.

In the future, we are planning to extend collaborative
learning to other fields such as semantic segmentation, object
detection and person re-identification.

ACKNOWLEDGMENT

This work was supported by NSFC Tianyuan Fund for
Mathematics (No. 12026606), and National Key R&D Pro-
gram of China (No. 2018AAA0100300).

REFERENCES

[1] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet,
“A Survey on Ensemble Learning for Data Stream Clas-
sification,” ACM Computing Surveys (CSUR), vol. 50,
no. 2, pp. 1–36, 2017.

[2] S. Zagoruyko and N. Komodakis, “Wide Residual Net-
works,” in Brit. Mach. Vis. Conf., 2016, pp. 87.1–87.12.

[3] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He,
“Aggregated Residual Transformations for Deep Neural
Networks,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2017, pp. 1492–1500.

[4] G. Song and W. Chai, “Collaborative Learning for Deep
Neural Networks,” in Adv. Neural Inform. Process. Syst.,
2018, pp. 1832–1841.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going Deeper with Convolutions,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2015, pp. 1–9.

[6] O. Sener and V. Koltun, “Multi-task learning as multi-
objective optimization,” in Adv. Neural Inform. Process.
Syst., 2018, pp. 527–538.

[7] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning
using uncertainty to weigh losses for scene geometry and
semantics,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2018, pp. 7482–7491.

[8] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
Knowledge in a Neural Network,” in Adv. Neural Inform.
Process. Syst., 2014.

[9] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A Simple Way to Prevent
Neural Networks from Overfitting,” The Journal of Ma-
chine Learning Research, vol. 15, no. 1, pp. 1929–1958,
2014.

[10] A. Nøkland and L. H. Eidnes, “Training Neural Networks
with Local Error Signals,” in Int. Conf. Machine Learn-
ing, 2019, pp. 4839–4850.

[11] K. W.-D. Ma, J. Lewis, and W. B. Kleijn, “The HSIC
Bottleneck: Deep Learning without Back-Propagation,”
in AAAI Conf. Artificial Intelligence, 2019.

[12] J. Tompson, R. Goroshin, A. Jain, Y. Lecun, and C. Bre-
gler, “Efficient Object Localization Using Convolutional
Networks,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2015, pp. 648–656.

[13] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: A
regularization method for convolutional networks,” in
Adv. Neural Inform. Process. Syst., 2018, pp. 18 727–
18 737.

[14] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick,
and D. Batra, “Reducing overfitting in deep net-
works by decorrelating representations,” arXiv preprint
arXiv:1511.06068, 2015.

[15] A. Krizhevsky and G. Hinton, “Learning Multiple Lay-
ers of Features From Tiny Images,” Computer Science
Department, University of Toronto, Tech. Rep, vol. 1, 01
2009.

[16] T. DeVries and G. W. Taylor, “Improved Regularization
of Convolutional Neural Networks with Cutout,” CoRR,
vol. abs/1708.04552, 2017.

[17] A. Krizhevsky, I. Sutskever, and G. Hinton, “Ima-
geNet Classification with Deep Convolutional Neural
Networks,” in Adv. Neural Inform. Process. Syst., 2012,
pp. 1097–1105.

[18] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A Down-
sampled Variant of ImageNet as an Alternative to the CI-
FAR datasets,” arXiv preprint arXiv:1707.08819, 2017.

[19] A. Coates, A. Ng, and H. Lee, “An analysis of single-
layer networks in unsupervised feature learning,” in Pro-
ceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, 2011, pp. 215–223.


	I Introduction
	II Prior Work
	III Intra-Model Collaborative Learning
	III-A Collaboration of Output Layer
	III-B Collaboration of Multiple Intermediate Layers
	III-C Collaboration of Intermediate Representation with Inputs and Targets
	III-D Collaboration Inside One Convolution Layer

	IV Experiments
	IV-A Results on Four Datasets
	IV-B Combination of Collaborations

	V Conclusion

