
Unified Batch All Triplet Loss for Visible-Infrared
Person Re-identification

Wenkang Li†, Ke Qi†*, Wenbin Chen†, Yicong Zhou‡
†School of Computer Science and Cyber Engineering

Guangzhou University, Guangzhou, China
liwenkang25@foxmail.com, qikersa@163.com, cwb2011@gzhu.edu.cn

‡Department of Computer and Information Science
University of Macau, Taipa, Macau

yicongzhou@um.edu.mo

Abstract—Visible-Infrared cross-modality person re-
identification (VI-ReID), whose aim is to match person
images between visible and infrared modality, is a challenging
cross-modality image retrieval task. Batch Hard Triplet loss is
widely used in person re-identification tasks, but it does not
perform well in the Visible-Infrared person re-identification
task. Because it only optimizes the hardest triplet for each
anchor image within the mini-batch, samples in the hardest
triplet may all belong to the same modality, which will lead to
the imbalance problem of modality optimization. To address
this problem, we adopt the batch all triplet selection strategy,
which selects all the possible triplets among samples to optimize
instead of the hardest triplet. Furthermore, we introduce Unified
Batch All Triplet loss and Cosine Softmax loss to collaboratively
optimize the cosine distance between image vectors. Similarly,
we rewrite the Hetero Center Triplet loss, which is proposed
for VI-ReID task, into a batch all form to improve model
performance. Extensive experiments indicate the effectiveness
of the proposed methods, which outperform state-of-the-art
methods by a wide margin.

I. INTRODUCTION

Person re-identification is a challenge image retrieval task,
whose aim is to match person images across multiple disjoint
cameras. These cameras are usually deployed in different
locations, so the results of person re-identification can help
track the suspects.

Criminals often collect information during the day and then
commit crimes at night, so a reliable day-night person re-
identification system is very important. However, ordinary
visible light cameras have low visibility at night, so some
cameras switch to infrared mode at night. Therefore, the day-
night person re-identification task becomes the visible-infrared
person re-identification (VI-ReID) task.

As show in Fig. 1, the difference between visible images
and infrared images is that infrared images are grayscale
images with more noise and less details. To reduce this
difference so that the model can learn better, existing works
like AlignGAN [1] translate visible images to infrared im-
ages with GAN. However, our experiments show that, in the
training phase, simply converting visible images to grayscale
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Fig. 1: Example images of SYSU-MM01 [2] dataset. Im-
ages of visible modality and infrared modality are RGB and
grayscale images respectively.

images with a certain probability can significantly improve the
performance of the VI-ReID model.

The basic framework of person re-identification is that,
map images into 1D vectors, and then calculate the Euclidean
distance or cosine distance between these vectors. The smaller
the distance, the higher the similarity between the images.
Batch Hard Triplet loss [3] is a loss function that directly
optimizes the distance between image vectors, which is widely
used in person re-identification tasks. However, we found that
it does not work well on the VI-ReID task, because it only
optimizes the hardest triplet within a mini-batch, samples in
the hardest triplet may all belong to the same modality, which
will lead to the imbalance problem of modality optimization.
To address this problem, we adopt the batch all triplet selection
strategy, which selects all the possible triplets among samples
to optimize instead of the hardest triplet within the mini-batch.
Similarly, for the VI-ReID task, Hetero Center Triplet loss [4]
was proposed, and we also modify it to the batch all version
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to get better performance.
In addition to Triplet loss, classification loss such as Soft-

max loss is also used in most ReID models, which can be
regarded as optimizing the distance between each image vector
and its class center. But we notice that the metric it optimizing
is often different from Triplet loss. For example, Triplet loss
optimizes the Euclidean distance, while the Softmax loss opti-
mizes the vector inner product. In order to unify the metric to
be optimized, we introduce Unified Batch All Triplet loss [5]
and Cosine Softmax loss [6] to collaboratively optimize the
cosine distance between image vectors.

The main contributions of this paper are summarized as
follows:
• We find that random grayscale, as a data augmentation

method to reduce modality differences, can significantly
improve model performance.

• We use batch all triplet selection strategy to address the
imbalance modality optimization problem of Batch Hard
Triplet loss in VI-ReID tasks.

• In order to unify the metric to be optimized, we introduce
Unified Batch All Triplet loss and Cosine Softmax loss
to collaboratively optimize the cosine distance between
image vectors.

• We rewrite the Hetero Center Triplet loss into a batch all
form to improve model performance.

II. RELATED WORK

A. Single-modality Person Re-identification

The basic framework of person re-identification is that,
map images into 1D vectors, and then calculate the Euclidean
distance or cosine distance between these vectors. The smaller
the distance, the higher the similarity between the images. In
order to obtain better features of person, A Omni-Scale feature
extraction backbone OSNet [7] was designed. BOT [8] uses
bag of tricks to build a strong person re-identification baseline
model. PCB [9], MGN [10] and Pyramid [11] cut the feature
maps outputted by backbone into various granularities, and
then combine them into the final embedding vector to make
better use of local features. AlignedReID [12], PGFA [13]
and CDPM [14] improve the performance through feature
alignment. ABD-Net [15], SCAL [16], and SONA [17] use
attention mechanisms to enhance important areas or channels
in the feature map and suppress irrelevant information such
as background to obtain more meaningful features. Besides
feature representation, loss function is also crucial for person
re-identification. Batch Hard Triplet loss [3] and Softmax
loss are the two most popular loss functions. The recently
proposed Circle loss [5] shows good performance on person
re-identification.

B. Visible-Infrared Person Re-identification

In addition to dealing with the common problems of person
re-identification, visible-infrared person re-identification also
needs to deal with the problems caused by modality differ-
ences. Some existing works addressed this by GAN-based
methods. AlignGAN [1] translates visible images to infrared

images. D2RL [18], Hi-CMD [19] and JSIA [20] translates
visible images and infrared images to each other. cmGAN [21]
only uses adversarial learning to make the features of the
two modalities indistinguishable. X Modality [22]introduces
an intermediate modality. Some researchs are about feature
learning. EDFL [23] enhances the discriminative feature learn-
ing; MAC [24] adopts modality-aware collaborative learning;
MSR [25]learns modality-specific representations. Some other
works focus on metric learning. BDTR [26] calculates the
triplet loss of intra-modality and inter-modality respectively;
HPILN [27] calculates the triplet loss of inter-modality in
addition to the global triplet loss; HC [28] shortens the Eu-
clidean distance between the two modality centers. HC-Tri [4]
not only shortens the distance between heterogeneous center
of the same class, but also increases the distance between
heterogeneous centers of different classes.

III. PROPOSED METHODS

A. Unified Batch All Triplet Loss

Most ReID Models adopt the PK sampling strategy in
training phase, which first randomly selects P persons, and
then randomly selects K images of each selected person.
For VI-ReID tasks, it becomes 2PK sampling strategy, which
randomly selects K visible images and K infrared images of
each selected person. Such a sampling strategy ensures that
each ID has enough and the same number of images in the
training phase. Based on this sampling strategy, Batch Hard
Triplet loss [3] was proposed:

Lbh tri =

all anchors︷ ︸︸ ︷
P∑
i=1

2K∑
a=1

m+

furthest positive︷ ︸︸ ︷
max

p=1...2K
D(xia, x

i
p)

−

closest negative︷ ︸︸ ︷
min

n=1...2K
j=1...P
j 6=i

D(xia, x
j
n)


+

(1)

where xia is the 1D vector of ath image of the ith person
in the mini-batch generated by neural network. D(x, y) is the
Euclidean distance between vector x and y. [x]+ = max(x, 0).
As shown in Fig. 2a, for each anchor image vector, Batch Hard
Triplet loss selects the closest negative sample and the furthest
positive sample to form the hardest triplet with anchor. If the
distance to the furthest positive sample is not smaller than
the distance to the closest negative sample by margin term m,
then penalize these distances. So, Triplet loss pulls the positive
sample closer and pushes the negative sample farther to cluster
samples.

The problem of Batch Hard Triplet loss in VI-ReID task
is that the samples it selected to form the triplet to optimize
may all belong to the same modality. This means that, in each
iteration, one of the modalities is optimized more and the
other modality is optimized less. Since different modalities
follow different distributions and the neural network being
used shares the weights between modalities, this kind of
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Fig. 2: Illustration of different types of triplet selection
strategy. Different colors represent different modality, and
different shapes represent different IDs. (a) is Batch Hard
triplet selection. For each anchor, it select the closest negative
sample and the furthest positive sample to form a triplet with
anchor. Samples in the selected triplet may all belong to
the same modality; (b) is Cross Modality Batch Hard triplet
selection. Besides the hardest triplet within the mini-batch, it
also select the hardest cross modality triplet for each anchor
image. Modality of samples in that triplet is difference with
the anchor image; (c) is Batch All triplet selection. It selects
all possible triplets among samples.

optimization imbalance will make the model hard to fit the
less optimized modality.

Cross Modality Batch Hard Triplet loss proposed in
HPILN [27] can alleviate this problem. As shown in Fig. 2b,
besides the hardest triplet within the mini-batch, it also select
the hardest cross modality triplet for each anchor image.
Modality of samples in that triplet is difference with the anchor
image:

lcm bh vt(v
i
a) =

m+

furthest infrared positive︷ ︸︸ ︷
max
p=1...K

D(via, t
i
p)

−

closest infrared negative︷ ︸︸ ︷
min

n=1...K
j=1...P
j 6=i

D(via, t
j
n)


+

(2)

lcm bh tv(t
i
a) =

m+

furthest visible positive︷ ︸︸ ︷
max
p=1...K

D(tia, v
i
p)

−

closest visible negative︷ ︸︸ ︷
min

n=1...K
j=1...P
j 6=i

D(tia, v
j
n)


+

(3)

lcm bh =

P∑
i=1

K∑
a=1

(lcm bh vt(v
i
a) + lcm bh tv(t

i
a)) (4)

Lcm bh = Lbh tri + lcm bh (5)

where vij denotes the jth visible image of ith person in
the batch, tij denotes the jth infrared image of ith person
in the batch. So, lcm bh vt(v

i
a) selects the hardest infrared

triplet for visible image anchor via and lcm bh tv(t
i
a) selects

the hardest visible triplet for infrared image anchor tia. The
final loss Lcm bh contains the global hardest triplets and the
cross modality hardest triplets.

Cross modality batch hard triplet selection can still cause
the modality optimization imbalance problem, as long as the
global hardest triplet is the same as the cross modality hardest
triplet. In this case, Cross modality batch hard triplet selection
is downgraded to batch hard triplet selection.

We believe that instead of carefully designing a hard mining
strategy, it is better to directly optimize all possible triplets
among samples. So, we adopt Batch All Triplet loss [3]:

lba tri(x
i
a) =

all pos︷︸︸︷
2K∑
p=1
p 6=a

all neg︷ ︸︸ ︷
P∑
j=1
j 6=i

2K∑
n=1

[
m+D(xia, x

i
p)−D(xia, x

j
n)
]
+

(6)

Lba tri =
1

2PK

P∑
i=1

2K∑
a=1

lba tri(x
i
a) (7)

As shown in Fig. 2c, Batch All Triplet loss considers all
possible triplets. For each anchor, there are 2K − 1 positive
samples and 2(P − 1)K negative samples, so there are
2(P − 1)K(2K − 1) triplets in total. Because all samples
are taken into account, the modality optimization imbalance
problem no longer exists.

Batch All Triplet loss is fine but there is still a problem, that
is, the computational complexity is too high. Each batch needs
to calculate a total of 2PK × 2(P − 1)K(2K − 1) triplets.
To solve this problem, we introduce Unified Batch All Triplet
loss [5]:

luni ba(xia) =

all pos︷︸︸︷
2K∑
p=1
p 6=a

all neg︷ ︸︸ ︷
P∑
j=1
j 6=i

2K∑
n=1

eγ(S(xi
a,x

j
n)−S(xi

a,x
i
p)+m) (8)

luni ba(xia) =

all pos︷︸︸︷
2K∑
p=1
p6=a

e−γS(xi
a,x

i
p)

all neg︷ ︸︸ ︷
P∑
j=1
j 6=i

2K∑
n=1

eγ(S(xi
a,x

j
n)+m) (9)

Luni ba =
1

2PK

P∑
i=1

2K∑
a=1

log(1 + luni ba(xia)) (10)

where γ is a scale factor and m is a margin term. S(x, y)
computes the cosine similarity between x and y. Similar
to Batch All Triplet loss, Unified Batch All Triplet loss
also considers all the possible triplets among samples. The
difference is that Unified Batch All Triplet loss reduces the
computational complexity from O(2(P − 1)K(2K − 1)) to
O(2(P − 1)K + (2K − 1)). What’s more, Unified Batch All
Triplet loss replaces the hinge function [•]+ with exp(•), so
that all triplets can contribute appropriate loss, rather than
triplets larger than margin. It is worth noting that, unlike



ordinary triplet loss, which optimizes Euclidean distance,
Unified Batch All Triplet loss optimizes cosine similarity. In
the next subsection, we will introduce Cosine Softmax loss to
collaboratively optimize the cosine similarity.

B. Collaborative Optimization with Cosine Softmax Loss

In addition to triplet loss, classification loss such as Softmax
loss is also used in most ReID models:

Lsm =
1

N

N∑
i=1

−log(pi) =
1

N

N∑
i=1

−log(
efyi∑C
j=1 e

fj
) (11)

where pi denotes the probability of xi being correctly classi-
fied. N is the number of training samples and C is the number
of classes. yi is the label class of xi. fj is given by:

fj = WT
j x (12)

where W ∈ RD×C is the weights of the fully-connected layer.
Wj denotes the jth column in W and Wj can be regarded as
the center of class j. So Softmax loss optimizes the inner
product of each image vector and its class center.

Softmax loss is usually used together with triplet loss.
However, Softmax loss optimizes the vector inner product
while the triplet loss optimizes the Euclidean distance. They
are not consistent. What’s worse, in the inference stage, L2
normalized vectors are usually used, which means that whether
the vector inner product or Euclidean distance is used as the
metric function in the inference stage, it is equivalent to the
cosine distance. This is inconsistent with the metric function
used during training. To address these problems, we introduce
Cosine Softmax loss [6] to collaboratively optimize the cosine
distance with Unified Batch All Triplet loss. Cosine Softmax
loss can be formulated as:

Lcos =
1

N

N∑
i

−log eγ(S(WT
yi
,xi)−m)

eγ(S(WT
yi
,xi)−m) +

∑C
j=1
j 6=yi

eγS(WT
j ,xi)

(13)
where γ is a scale factor and m is a margin term. S(x, y)
computes the cosine similarity between x and y. The difference
between Cosine Softmax loss and Softmax loss is that the
former optimizes the cosine distance between the sample
vector and the weight vector, while the latter optimizes the
vector inner product. In addition, Cosine Softmax loss adds a
margin term to make the points belonging to the same class
more concentrated.

C. Batch All Hetero Center Triplet Loss

Vi-ReID task aims to match person images between differ-
ent modalities, so we do care the distance between samples
belonging to the same class but in different modalities. There-
fore, Batch Hard Hetero Center Triplet loss [4] was proposed:

anchor center

(a) Batch Hard

anchor center

(b) Batch All

Fig. 3: Illustration of different types of center triplet selection
strategy. Different colors represent different modality, and
different shapes represent different IDs. The light-colored
point represents the center of that class in that modality. (a)
is batch hard selection. For each anchor center, it selects
the center of the same class but in different modality as the
positive sample and the hardest center of different classes as
the negative sample to form the hardest center triplet. (b) is
the batch all selection, it considers all possible center triplets.

Lbh hc =

P∑
i=1

m+D(civ, c
i
t)− min

n∈{v,t}
j 6=i

D(civ, c
j
n)


+

+

P∑
i=1

m+D(cit, c
i
v)− min

n∈{v,t}
j 6=i

D(cit, c
j
n)


+

(14)

civ =
1

K

K∑
j=1

vij (15)

cit =
1

K

K∑
j=1

tij (16)

where vij denotes the jth visible image of ith person in the
batch, tij denotes the jth infrared image of ith person in the
batch. So, civ is the visible modality center of ith person,
cit is the infrared modality center of ith person. D(x, y) is
the Euclidean distance between vector x and y. As shown
in Fig. 3a, for each anchor center, Batch Hard Hetero Center
Triplet loss selects the center of the same class but in different
modality as the positive sample, the hardest center of different
classes as the negative sample to form the hardest center
triplet. Batch Hard Hetero Center Triplet loss shorten the
modality center distance of the same class, increase the center
distance between different classes.

Similar to triplet loss, we believe that all center triplets
should be considered instead of the most difficult center triplet.
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Fig. 4: Illustration of overall model pipeline. For visible images, we randomly select part of the image with a probability of
0.5 and convert them to grayscale images. then feed all images into the Resnet50 backbone model whose weights are shared
by two modalities. For the output feature map, we first use a 1x1 convolutional layer to reduce its dimension to 1024. We
use global average pooling to get 1D vectors from the output feature map, and then make it distributed around zero with BN
without bias term. Unified Batch All Triplet loss, Batch All Hetero Center loss and Cosine Softmax loss are used together.
Note that the Cosine Softmax classifier contains a fully-connected layer.

Therefore, we propose Batch All Hetero Center Triplet loss:

Lba hc =

P∑
i=1

log

1 +
∑

n∈{v,t}
j 6=i

eγ(S(c̄iv,c̄
j
n)−S(c̄iv,c̄

i
t)+m)



+

P∑
i=1

log

1 +
∑

n∈{v,t}
j 6=i

eγ(S(c̄it,c̄
j
n)−S(c̄it,c̄

i
v)+m)


(17)

c̄iv =
1

K

K∑
j=1

v̄ij (18)

c̄it =
1

K

K∑
j=1

t̄ij (19)

where v̄ij and t̄ij are L2 normalized vectors, so c̄iv and c̄it are
centers of L2 normalized vectors. S(x, y) computes the cosine
similarity between x and y. Our Batch All Hetero Center
Triplet loss has the similar formula as the Unified Batch All
Triplet loss. As shown in Fig. 3b, it considers all center triplets
and optimizes the cosine distance.

D. Model Pipeline

As shown in Fig.4, our model is quite simple and doesn’t
use advanced methods such as GAN, attention mechanism,
local features and multi-branch models. Firstly, we introduce
the random grayscale as a data augmentation method to
reduce modality differences, which randomly select part of the
visible image with a probability of 0.5 and convert them to

grayscale images. Then we concatenate infrared images and
the processed visible images to form a mini-batch and feed
them into the Resnet50 backbone model whose weights are
shared by two modalities. Resnet50 outputs a N×2048×H×
feature map. We use a 1x1 convolutional layer to reduce its
dimension to 1024. Note that ReLU is used as the activation
function and no BN layer after the convolutional layer. We use
global average pooling get 1D vectors from the output feature
map. Since the last ReLU makes all values of the output not
less than 0, we use a BN layer without bias term to make them
distributed around zero. Unified Batch All Triplet Loss, Batch
All Hetero Center Loss and Cosine Softmax Loss are used in
our final model:

L = Luni ba + Lcos + Lba hc (20)

In inference phase, we use the consine distance as the metric
function:

dist(x, y) = 1− cos(x, y) (21)

Including random grayscale, no data augmentation is applied
to the test images in inference phase.

IV. EXPERIMENTS

A. Experiment settings

We evaluate our methods on SYSU-MM01 [2] dataset. The
training set of SYSU-MM01 contains 22258 visible images
and 11909 infrared images from 395 IDs. The test set contains
6775 visible images and 3803 infrared images from another 96
IDs. We follow the evaluation protocol [2] prepared for SYSU-
MM01, and mainly report the results of all-search single-shot
setting. We report the CMC and mAP metrics.



TABLE I: Evaluation of each component on the large-scale
SYSU-MM01 dataset. We use Batch Hard Triplet loss and
Softmax loss as the baseline method. Lcos means replac-
ing Softmax loss with Cosine Softmax loss. Luni ba means
replacing Batch Hard Triplet loss with Unified Batch All
Triplet loss. Lba hc means adding Batch All Hetero Center
Triplet loss. Grayscale means using the random grayscale data
augmentation method. Rank1(%), Rank10(%) and mAP(%)
Results are reported.

Lcos Luni ba Lba hc Grayscale R1 R10 mAP
47.45 89.53 48.24

3 56.99 89.38 53.99
3 53.25 91.48 53.93

3 55.49 92.56 55.32
3 46.83 90.58 47.25

3 3 58.28 91.14 54.76
3 3 59.35 94.04 59.50

3 3 56.24 93.66 55.80
3 3 59.12 91.95 58.56
3 3 3 60.07 93.21 59.07
3 3 3 3 65.90 94.52 63.74

B. Implement details

The Resnet50 backbone is initialized with ImageNet pre-
trained weights. The input images are resized to 320 × 128
for SYSU-MM01. Random erasing and random horizontal flip
are adopted as data augmentation. We adopt the 2PK sampling
strategy, which first randomly selects P persons, and then
randomly selects K visible images and K infrared images of
each selected person. We set P=6, K=8 for SYSU-MM01. We
use the Adam optimizer with lr=6e-4 and wd=5e-4. We use
cosine annealing LR scheduler to train a total of 24 epochs,
warm up the first 2 epochs. The margin hyperparameter m is
set to 0.3 for all loss. The scale factor γ is set to 64 for Cosine
Softmax and 12 for Unified Batch All Triplet loss and Batch
All Hetero Center Triplet loss.

C. Ablation study

1) Evaluation of each component: Table I shows the ef-
fectiveness of each component on the SYSU-MM01 dataset
all-search single-shot settings. We use Batch Hard Triplet
loss and Softmax loss as the baseline method. Lcos means
replacing Softmax loss with Cosine Softmax. Luni ba means
replacing Batch Hard Triplet loss with Unified Batch All
Triplet loss.Lba hc means adding Batch All Hetero Center
Triplet loss. Grayscale means using the random grayscale
data augmentation method. We make several observations
through the results shown in Table I. 1) Except for the
random grayscale data augmentation method, all the proposed
methods applied to the baseline model separately can achieve
performance improvement. So, all the proposed loss functions
are effective. 2) When these advanced loss functions are
used together with random grayscale, the performances are
better than not using random grayscale.It means that random
grayscale can be effective when it’s used with powerful loss
functions. 3) When all the proposed methods are used together,

TABLE II: Comparison with different triplet losses on SYSU-
MM01 dataset. Rank1(%), Rank10(%) and mAP(%) Results
are reported.

Softmax loss Triplet loss R1 R10 mAP

Softmax

Batch Hard 47.45 89.53 48.24
CM Batch Hard 53.19 90.63 52.20

Batch All 56.61 90.50 54.24
Unified Batch All 53.25 91.48 53.93

Cosine Softmax

Batch Hard 56.99 89.38 53.99
CM Batch Hard 56.28 89.47 53.79

Batch All 57.09 89.64 54.13
Unified Batch All 59.12 91.95 58.56

we get the best result. It shows that all the proposed methods
have no conflict and can be used together.

2) Comparison with different triplet losses: Table II shows
the comparison with different triplet losses on SYSU-MM01
dataset. Random grayscale and Hetero Center Triplet loss are
not used. We make several observations through the results.
1) No matter what kind of softmax loss is used, the triplet
loss functions using batch all selection strategy are better than
the triplet loss functions using batch hard selection strategy.
2) When Unified Batch All Triplet loss is used together with
Cosine Softmax loss, the performance is greatly improved. So,
it’s important to collaboratively optimize the same distance
metric. 3) Except for Unified Batch All Triplet loss, the other
triplet losses have similar performance when used with Cosine
Softmax loss. It may be because the optimization goals are
different, they can not play the expected effect.

3) Evaluation of Random Grayscale: Table IV shows the
evaluation of different grayscale settings on SYSU-MM01
dataset. Cosine Softmax loss and Unified Batch All Triplet
loss are used in the baseline. Training denotes the method
used in training phase. Inference denotes what color mode
is used by visible images in inference phase. The following
observations can be made: 1) When training with no grayscale,
the model biases to the RGB images; When training with
all grayscale, the model biases to the gray images; 2) When
training with random grayscale, RGB images and grayscale
images perform similarly; It means that random grayscale
is a strong data augmentation method, which can reduce
the modality differences between input images and make the
model insensitive to color.

4) Comparison with different Hetero Center Triplet losses:
Table V shows the comparison with different Hetero Center
Triplet losses on SYSU-MM01 dataset. Cosine Softmax loss,
Unified Batch All Triplet loss and random grayscale are used
in the baseline. Lbh hc denotes the Batch Hard Hetero Center
Triplet loss and Lba hc denotes the Batch All Hetero Center
Triplet loss. When used with the strong baseline, Lbh hc,
which only considers the hardest center triplet, has the best
Rank10 performance but gets almost no improvement at Rank1
and mAP, while Lba hc , which considers all possible center
triplets, has more than 1 point improvement at all metric. It
shows the effectiveness of the batch all selection strategy in
hetero center triplet loss.



TABLE III: Comparison with State-of-the-Art Methods on SYSU-MM01 dataset all settings. Rank1(%), Rank10(%), Rank20(%)
and mAP(%) Results are reported. *cmSSFT uses a reranking method while others don’t.

Method Venue
All Search Indoor Search

Single-Shot Multi-Shot Single-Shot Multi-Shot
R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

AlignGAN [1] ICCV19 42.4 85.0 93.7 40.7 51.5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3
Hi-CMD [19] CVPR20 34.94 77.58 - 35.94 - - - - - - - - - - - -

JSIA [20] AAAI20 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7
XModal [22] AAAI20 49.92 89.79 95.96 50.73 - - - - - - - - - - - -
DDAG [29] ECCV20 54.75 90.39 95.81 53.02 - - - - 61.02 94.06 98.41 67.98 - - - -
HAT [30] TIFS20 55.29 92.14 97.36 53.89 - - - - 62.10 95.75 99.20 69.37 - - - -
HC [28] Neuro20 56.96 91.50 96.82 54.95 62.09 93.74 97.85 48.02 59.74 92.07 96.22 64.91 69.76 95.85 98.90 57.81

HCTri [4] TMM20 61.68 93.10 97.17 57.51 - - - - 63.41 91.69 95.28 68.17 - - - -
cmSSFT* [31] CVPR20 61.6 89.2 93.9 63.2 63.4 91.2 95.7 62.0 70.5 94.9 97.7 72.6 73.0 96.3 99.1 72.4

ours - 65.90 94.52 98.32 63.74 72.42 96.55 99.05 58.41 74.23 98.15 99.62 79.15 83.10 99.09 99.73 73.63

TABLE IV: Evaluation of different grayscale settings on
SYSU-MM01 dataset. Training denotes the method used in
training phase. Inference denotes what color mode is used by
visible images in inference phase. No Grayscale denotes that
we don’t convert visible images into grayscale images; All
Grayscale denotes that all the visible images are converted
into grayscale images; Random Grayscale denotes that we
randomly select part of the images with a probability of 0.5
and convert them to grayscale images. Rank1(%), Rank10(%)
and mAP(%) Results are reported.

Training Inference R1 R10 mAP

No Grayscale Grayscale 34.15 77.26 32.07
RGB 59.12 91.95 58.56

All Grayscale Grayscale 64.80 94.87 62.62
RGB 57.24 93.25 54.48

Random Grayscale Grayscale 64.39 94.44 61.64
RGB 64.78 93.85 62.46

TABLE V: Comparison with different Hetero Center Triplet
losses on SYSU-MM01 dataset. Cosine Softmax loss, Unified
Batch All Triplet loss and random grayscale are used in the
baseline. Lbh hc denotes the Batch Hard Hetero Center Triplet
loss and Lba hc denotes the Batch All Hetero Center Triplet
loss. Rank1(%), Rank10(%) and mAP(%) Results are reported.

Loss Type R1 R10 mAP
baseline 64.78 93.85 62.46
Lbh hc 64.74 94.70 62.78
Lba hc 65.90 94.52 63.74

5) Comparison with State-of-the-Art Methods: Table III
shows the comparison with State-of-the-Art methods on
SYSU-MM01 dataset all settings. It shows that, even with a
simple network, our proposed method outperforms most State-
of-the-Art model at almost all metric except the mAP at all-
search multi-shot settings obtained by cmSSFT [31]. But it is
worth noting that cmSSFT includes a reranking technology,
which will rank again according to the results of the first
ranking. No other methods use reranking. Since our method
does not change the network structure, but most other methods
change the network structure, this comparison result shows
that our method is simple and efficient.

V. CONCLUSIONS

In this paper, we adopt the batch all triplet selection strategy
to solve imbalance modality optimization problem of Batch
Hard Triplet loss in VI-ReID tasks. What’s more, in order to
unify the metric to be optimized, we introduce Unified Batch
All Triplet loss and Cosine Softmax loss to collaboratively
optimize the cosine distance. In order to further improve the
performance of VI-ReID model, we rewrite the Hetero Center
Triplet loss into a batch all form. After using these losses, our
model achieves the state-of-the-art results on SYSU-MM01
dataset. We wish that our explorations will benefit the VI-
ReID community.
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