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Gdańsk, Poland
sebcyg@multimed.org

Bartłomiej Wróblewski§
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Gdańsk University of Technology

Abstract—While recent computer vision algorithms achieve im-
pressive performance on many benchmarks, they lack robustness
- presented with an image from a different distribution, (e.g.
weather or lighting conditions not considered during training),
they may produce an erroneous prediction. Therefore, it is desired
that such a model will be able to reliably predict its confidence
measure. In this work, uncertainty estimation for the task of
semantic segmentation is evaluated under a varying level of
domain shift: in a cross-dataset setting and when adapting a
model trained on data from the simulation. It was shown that
simple color transformations already provide a strong baseline,
comparable to using more sophisticated style-transfer data aug-
mentation. Further, by constructing an ensemble consisting of
models using different backbones and/or augmentation methods,
it was possible to improve significantly model performance in
terms of overall accuracy and uncertainty estimation under the
domain shift setting. The Expected Calibration Error (ECE) on
challenging GTA to Cityscapes adaptation was reduced from 4.05
to the competitive value of 1.1. Further, an ensemble of models
was utilized in the self-training setting to improve the pseudo-
labels generation, which resulted in a significant gain in the final
model accuracy, compared to the standard fine-tuning (without
ensemble).

Index Terms—uncertainty estimation, semantic segmentation,
domain adaptation, self-training, ensemble of models

I. INTRODUCTION

In recent years, visual recognition has witnessed impressive
progress on many benchmarks. However, the application of
deep learning methods for agents operating in the real world,
e.g. autonomous driving, is still limited. A significant chal-
lenge is that current vision models lack robustness [1]. It has
been shown that current CNN-based models are sensitive to
a novel type of noise [2], changes in context [3], temporal
changes in video [4] and novel weather conditions [5]. These
examples show that CNNs are sensitive to distributional shift:
when the test-time distribution of the data differs from the
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training distribution. Additionally, current models seem to be
biased towards texture information [6], largely ignoring shape
information. This again can be very dangerous for real-world
deployment, for example in the case of sensor noise [7].

What is more, current models tend to be overconfident in
their outputs [8]. The problem is even more evident for the
distributional shift [9]. For models operating in the real world,
it is of great importance to be robust to such distributional
changes, because for many applications it is not possible to
collect a large and diverse dataset that contains all possible sit-
uations that may occur during deployment (e.g., new weather
or lighting conditions, different types of distortions).

A task of particular importance for agents operating in
the real world is reliable uncertainty estimation, which can
be beneficial in many ways. During deployment, the agent
could warn that its prediction is not reliable (medicine), or
could effectively integrate predictions from different modali-
ties (autonomous driving) [10]. Uncertainty estimation could
also be used for pseudo-labelling of unlabelled data, to further
improve model accuracy in the target domain in a self-training
setting [11].

This work focuses on studying uncertainty estimation for
semantic segmentation, which is a very important task with
significant application potential. Further, our study focuses
on distributional shift, which is essential importance for real-
world deployment. We study uncertainty calibration in differ-
ent settings:

• when a model trained on the simulation is tested on real-
world data (large distributional shift)

• cross-dataset evaluation (mild distributional shift)
Further, we utilized a state-of-the-art method for model

calibration, namely an ensemble of models [9], [12], to im-
prove the model calibration. This allows the calibration of
predictive uncertainty (and overall accuracy) to be significantly
improved, especially under domain shift. Finally, we show the
effect of using an ensemble of models on downstream task
of domain adaptation, for which we utilize a popular self-
training approach [11], [13], [14]. Our study is aimed at the
reality-check for uncertainty estimation and domain adaptation
methods. Studying the performance for the varying domain
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shift for the aforementioned methods is vital empirical work
for real-world applications. We have focused on autonomous
driving due to the availability of large annotated datasets from
both simulations and the real world, and potential applications.
Our contributions are as follows:

• We study how the model accuracy and uncertainty es-
timation for semantic segmentation are affected by the
varying level of distributional shift. Further, an ensemble
of models approach is evaluated in the same setting.

• We show that simple color transformations can be as ef-
fective as style-transfer data augmentation for increasing
models’ robustness.

• We show how an ensemble of models can be utilized in
the self-training approach to improve model adaptation
to the target domain further.

II. RELATED WORK

Robustness. Evaluating models in an out-of-distribution
setting, where the test-time dataset is from a different dis-
tribution than the training data, is essential for real-world
applications [1], [9], [15]. This is because machine learning
models might provide incorrect predictions when presented
with, for example, noisy data, or different lighting or weather
conditions [7]. Several methods based on data augmentation
have been proposed to improve models’ robustness in visual
recognition, from which style-transfer data augmentation is
very popular [6], [16]. In our work, style-transfer data augmen-
tation was utilized, but we also noticed that simply applying
color-jittering during training can be beneficial for the cross-
dataset evaluation, which confirms the recent finding that very
simple naturalistic augmentation can be very effective [17],
[18].

Uncertainty estimation. One of the problems with modern
neural networks is that they are poorly calibrated and tend to
be overconfident in the predictions [8]. Different techniques
exist for improving estimates of predictive uncertainty. A
classical approach is called temperature scaling, where the
model confidences are scaled using a post-hoc procedure
on the held-out validation set [19]. A popular approximate
Bayesian approach is a dropout-based model, where the pre-
dictive uncertainty is computed based on the multiple outputs
of the model on a given image (with dropout enabled) [20].
Another sampling-based approach uses agreement between an
ensemble of models as a measure of model uncertainty [21].
Interestingly, using ensembles has been shown to yield the
best results on uncertainty estimation under the distributional
shift [9], [12]. The ensembles’ common setup is to use neural
networks trained using different random initialization weights
to induce diversity between the models [22]. This is because it
has been shown that networks pre-trained on the same dataset
stay in the same basin in the loss landscape, and thus reduce
variation in the models [23]. However, we found that semantic
segmentation models trained on used datasets using random
initialization perform rather poorly. As such, we show that it
is possible to create an efficient model ensemble using models
with different backbones and data augmentations.

Domain adaptation. While it is a standard to evaluate
machine learning models on i.i.d. (independent and identically
distributed) data, for the real-world deployment, the data
may come from different distribution than the training data.
As such, many methods for domain adaptation have been
proposed which use unlabelled data from the target domain
to improve the accuracy of the model. Popular approaches
include matching image statistics between domains [24], learn-
ing shape-based representation [13], self-learning [13] and
using data from simulation [25], [26]. Using simulated data
in particular is interesting, since a simulation allows numerous
and diverse training examples to be generated. Simultaneously,
the difference in data distribution between the source and
target domains is very challenging for real-world problems,
and sometimes using labelled data can actually hinder perfor-
mance [17]. As such, it is important to evaluate the models’
performance under varying levels of distributional shift.

Self-training. In our work, we make use of the self-
learning method, which works in two stages. First, given
a trained model, confident predictions are gathered for the
target domain, which are also called pseudo-labels. In the next
stage, the pseudo-labels are used to fine-tune the model, which
allows for domain adaptation. The potential problem with
self-learning is that the gathered pseudo-labels might contain
erroneous predictions. As such, we propose to use an ensemble
approach to gather the pseudo-labels, as ensembles are known
to have both good accuracy and uncertainty estimation, which
are crucial for the efficient pseudo-labelling stage.

Similar to our work, [27] shows that an ensemble of
models is efficient for improving uncertainty estimation in
medical image segmentation. We additionally show the effect
of ensembles under distributional shift and their utility for the
downstream task of domain adaptation. Ensemble predictions
on unlabelled datasets were also used as soft targets for direct
training supervision for the classification problem [28]. Here,
we use an alternative approach with hard labels, where the
least confident predictions are discarded during training, for
the task of semantic segmentation.

A similar approach to ours [13] uses style-transfer data aug-
mentation to train a base model, which is further adapted to the
target domain using self-training. We show that simpler data
augmentations can also be very efficient, and that ensemble of
models makes the fine tuning stage more efficient which, in
turn, makes our work complementary.

III. METHODOLOGY

A. Semantic Segmentation

Semantic segmentation can be viewed as a pixel-wise clas-
sification problem where the goal is to assign to each pixel
a predicted category c ∈ {1, ..., C}. As it is now common in
the visual recognition area, semantic segmentation models are
mostly based on Convolutional Neural Networks (CNNs), for
example, FCN [29]. As it is a classification problem, standard



cross-entropy loss can be used to optimize the model weights
over the training images:

LCE = − 1

N

N∑
i=1

C∑
c=1

(yi = c)log(p(ŷi = c)) (1)

where (yi = c) ∈ {0, 1} indicates whether class c is the correct
class for pixel i and ŷc is a predicted probability for class c at
pixel i, and N is the number of pixels. For each pixel model
returns a logit vector zi ∈ Rc. Further a softmax function is
applied pi = softmax(zi), which returns a list of predicted
class probabilities for a given pixel. The class with the highest
probability is used as the predicted class with an associated
probability score.

Over the years, many different architectures have been
developed, and in our work, we used DeepLabV3+ [30], which
is commonly used in the community. Furthermore, different
backbones (e.g. the large ResNet-101 or the lightweight Mo-
bileNet) can be used according to the requirements.

For evaluation, two metrics were used. Pixel accuracy sim-
ply measures what percentage of pixels are correctly predicted.
Another popular metric is the mean IoU (intersection over
union). The IoU metric is computed for each class and then
the mean value (mIoU) is reported.

B. Uncertainty Estimation

An output of the semantic segmentation network is a pre-
dicted class c for each pixel, associated with confidence value
p. Ideally, such classifier would be well-calibrated, thus correct
predictions should be associated with high confidence and
poor predictions contrary. One of the ways to measure model
calibration is to compute an Expected Calibration Error (ECE)
[8]. To compute the ECE score, pixel-wise predictions are
partitioned into m equally-sized bins based on the confidence
value, and the ECE score is computed as the difference
between the average confidence and the average accuracy in
each bin, weighted by the number of predictions in each bin:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (2)

where Bm is the set of indices that falls into the m-th
bin. Intuitively, when a well-calibrated segmentation network
outputs a 90% confidence value for some set of pixels, it
should be correct in 90% of the cases. The lower the value,
the better the calibration that is obtained (0 means perfect
calibration).

C. Ensemble of models

To improve model calibration, we utilized the model en-
semble method which has been shown to provide the best
results among other methods, especially under distributional
shift [9]. In the case of the ensemble approach, it is common
to train models using randomly initialized networks to induce
diversity between models [22]. However, we found that se-
mantic segmentation models trained on the GTA or Cityscapes
dataset without pretraining performs rather poorly. As a result,

Fig. 1: Different augmentation strategies applied to sample
images from the GTA dataset. First column - color transfor-
mations, second column - style transfer.

we used ImageNet pretraining. However, to achieve diversity
between the models, different backbones and/or augmentation
methods were used. It was shown in the literature that using
as few as 5 models can provide very good results [9], and
because of the computational budget, we used 5 models in our
experiments. Namely, given M independently trained models,
a final semantic segmentation pE for the image x can be
computed as the average of all models predictions:

pE(x) =
1

M

M∑
i=1

pm(x) (3)

where pm is the prediction of the m-th model in the ensemble.

D. Data augmentation

To improve the models’ adaptation to the distributional shift,
a style-transfer data augmentation was utilized, which has been
shown to improve model robustness [6], [16]. As the source
of style images, Kaggle’s Painter By Numbers1 dataset was
used, similar as in [6], and during training a stylized image
was sampled with probability p = 0.5, otherwise, the original
image was used. To generate stylized datasets, we have used
the method presented in the literature [31].

We also hypothesized that using simple color transforma-
tions could also be beneficial in the domain adaptation setting
as it would make the model more invariant to the texture
information. As, as an alternative to the style-transfer, the
following color jittering transformations from the Tensorflow
API2 were also used during training: random changes in the
brightness, contrast, saturation, and hue of the images. Details
are described in the implementation details section.

Using different augmentation strategies could also be bene-
ficial in the ensemble, as the models trained with different
augmentations might learn different representations. Fig. 1
shows examples of augmented images.

1https://www.kaggle.com/c/painter-by-numbers/
2https://www.tensorflow.org/api docs/python/tf/image



IV. EXPERIMENTS

A. Datasets

For our experiments, popular semantic segmentation
datasets were used. They contain dense pixel-level semantic
annotations for the same 20 classes (including the “ignore”
class – usually representing the background).

GTA [32] is a dataset for which data were collected
in a simulated environment, i.e. a modern computer game.
It consists of 22,466 training and 2500 validation images,
and is commonly used to evaluate simulation-to-real transfer.
Cityscapes [33] is a popular autonomous driving dataset for
which data was collected in 27 cities in Germany, consisting
of 2975 training images and 500 validation images. Although
Cityscapes is a diverse dataset, a potential limitation is the fact
that the data was collected mostly during the daytime in good
weather conditions. The Berkeley Deep Drive (BDD) dataset
[34] provides data collected in diverse weather conditions (e.g.
rain, snow), scene types (city, highway, countryside), and also
images recorded during nigh-time. Pixel-level annotations are
provided for 10,000 training and 1000 validation images.

In our experiments, we focussed on domain adaptation from
simulation to real data (GTA-to-Cityscapes) and cross-dataset
evaluation (Cityscapes-to-BDD).

B. Implementation details

For all experiments, the DeepLabv3+ [30] network was used
with different backbones (ResNet-101, Xception41, Xcep-
tion65) pre-trained on ImageNet. Specifically, all models were
trained on 2 GPUs for 100,000 steps with a batch size of 16.
As in the original paper, a polynomial decay learning rate was
used with an initial learning rate = 0.01 and parameter power
set to 0.9.

The data augmentations are consistent with the official
implementation3, specifically random scaling (in the range 0.5
to 2.0) and left-right flipping were applied during the training
procedure. All images were rescaled to the size 512 x 1024
pixels. Color jittering was applied using TensorflowAPI with
the following transformations: random brightness (adjustment
factor in the range [0, 0.25)), random contrast (contrast factor
in the range [0.5, 1.5)), random saturation (saturation factor in
the range [1.0, 3.0)), and random hue (hue offset in the range
[0, 0.25)). The chosen hyperparameters were experimentally
validated to provide visually diverse images.

All models were evaluated using the validation sets (as the
test sets’ ground-truth data are not publicly available). During
the fine-tuning stage, the models were trained for 25,000 steps
as we noticed that the training loss converged around 20,000
steps for all of the models. When reporting the results, CJ
stands for a model trained using color jittering transformations,
while SIN stands for a model trained using style-transfer, as
in [6].

3https://github.com/tensorflow/models/tree/master/research/deeplab

TABLE I: Performance of DeepLabv3 using ResNet-101
backbone under different evaluation settings. CJ models were
trained using color jittering and SIN models used style-transfer
augmentation.

Model name mIoU pix. acc ECE mIoU pix. acc ECE
GTA-to-GTA GTA-to-Cityscapes

Baseline 80,8 96,6 0.16 25,4 60,1 23.36
CJ 80,6 96,4 0.21 40,4 83,7 6.5
SIN 77,2 95,9 0.21 40 83,9 5.06

Cityscapes-to-Cityscapes Cityscapes-to-BDD
Baseline 74,1 95,5 1.49 42,8 83,9 9.55
CJ 74,4 95,4 1.36 49,1 89,4 5.07
SIN 71,4 95 1.18 49,3 89,8 4.56

C. Baseline models

First, the DeepLabV3+ model with the ResNet backbone
was trained on both the GTA and Cityscapes datasets and
further evaluated (see Table I). Several observations can be
made. First, there was a very significant drop in accuracy
when the models were evaluated under domain shift. The
gap was larger for sim-to-real adaptation (GTA-to-Cityscapes)
compared to the cross-dataset evaluation (Cityscapes-to-BDD).
Further, it can be observed that evaluated data augmentations
only slightly affected the performance on the source domain,
but they showed really impressive performance in the domain
adaptation setting. For GTA-to-Cityscapes, the mIoU increased
from 25.4 to 40.4, and similarly for Cityscapes-to-BDD, the
mIoU rose from 42.8 to 49.1. Nevertheless, the domain gap
was still quite large; a model trained on the Cityscapes dataset
achieved a mIoU of 74.1, compared to 40.4 achieved by a
model trained on the GTA dataset.

Noticeably, applying simple color transformations worked
as well as using an advanced technique of style-transfer, which
is consistent with a very recent finding [35]. Looking at
the model calibration, one can notice that all of the models
were almost perfectly calibrated when evaluated on the source
domain, however when evaluated under domain shift, the
ECE metric greatly increased, e.g. for a model trained on the
Cityscapes dataset, the metrics increased from 1.49 to 9.55
when evaluated on the BDD dataset instead of Cityscapes.
Consistent with recent findings, it was shown that using
texture-based data augmentation improved model calibration
under domain shift [16], with the SIN model obtaining slightly
better results than using color transformations. In general,
using any of aforementioned data augmentations was crucial
in the domain adaptation setting.

D. Model calibration

An ensemble of models method was used to improve model
calibration, which utilized three different backbones (ResNet-
101, Xception41, Xception65) and two different augmentation
methods (color jitter and style-transfer). We also experimented
with the PNAS architecture [36], which is known to achieve
great accuracy, however, the performance was not satisfactory,
as no pre-trained model is currently available for that model.
Table II shows the performance in the cross-dataset setting for



TABLE II: Xception models performance under cross-dataset
setting.

Name mIOU pix. acc ECE
GTA-to-Cityscapes

Xception41 (CJ) 41.8 82.7 7.3
Xception41 (SIN) 43.7 86.2 4.05
Xception65 (CJ) 41.3 82.0 7.47

Cityscapes-to-BDD
Xception41 (CJ) 52.6 90.3 4.5
Xception41 (SIN) 51.1 90.9 3.74
Xception65 (CJ) 52.4 90.4 5.09

TABLE III: Ensemble of models performance. Also mean
performance of all models is reported.

Model name mIoU pix. acc ECE mIoU pix. acc ECE
GTA-to-GTA GTA-to-Cityscapes

M=3 81.9 96.8 0.81 43.2 84.7 2.45
M=5 81.4 96.7 1.02 44.5 86.3 1.1
Models mean 79.0 96.3 0.21 41.4 83.7 6.08

Cityscapes-to-Cityscapes Cityscapes-to-BDD
M=3 77.2 96.0 0.36 55.7 91.3 1.99
M=5 77.0 96.0 0.29 56.2 91.7 1.09
Models mean 73.8 95.4 1.16 49.3 89.8 4.56

the Xception models. Comparing this to Table I, one can see
that Xception models performed slightly better than models
using ResNet-101 as the backbone.

Table III shows ensemble performance. Our base ensem-
ble consists of M = 3 models, for which color jittering
transformations were used during training using ResNet-101
and Xception backbones. Further, two additional models were
trained using style transfer augmentation (ResNet-101 and
Xception41 backbones) and results in another ensemble variant
with M = 5 models. While the results with no domain
shift were comparable, obtained results were better under the
domain shift when using 5 models. The mIoU increased from
43.2 to 44.5, and from 55.7 to 56.2 on the Cityscapes and BDD
datasets, respectively. Similarly, the ECE was significantly
reduced on both datasets. It is also very important to notice
that the ensemble performance was better than its strongest
member, i.e. for the Cityscapes-to-BDD transfer, the strongest
single model obtained a mIoU of 52.6 (Xception41 - CJ),
while the ensemble accuracy was 56.2. Similarly, the ECE
significantly improved for the ensemble under domain shift:
for the GTA-to-Cityscapes transfer, the ensemble ECE was
1.09, while the best result from a single model was 4.05
(Xception41 – SIN). Additionally, Fig. 2 shows the calibration
plot, comparing the model calibration of our highest-capacity
model (Xception-65) with the calibration of the ensemble.
Overall, it was confirmed that our ensemble improved both
accuracy and uncertainty calibration, especially under domain
shift.

One of the potential usages of well-calibrated uncertainty
estimation is self-training. For this purpose, we first estimated
the precision/recall points for different confidence thresholds
t (Fig. 3). Namely, such a curve is an approximation of
how many pixels can be automatically annotated with what

Xception65 Ensemble

Fig. 2: Calibration plots for Xception65 model and model en-
semble (M=5) evaluated on the GTA-to-Cityscapes adaptation.
Note great calibration for the ensemble of models.

Fig. 3: Precision / recall points evaluated at different con-
fidence threshold starting from 0.1 (bottom-right points) to
0.995 (top-left points) on GTA-to-Cityscapes transfer. Note
that Y-axis (precision) starts at 0.7 value to provide more
detailed view.

precision. Overall, it can be noticed that much higher recall
values were obtained for the ensemble. For example, with a
precision of 95% for the Xception65 model, the recall was
around 56.5%, while it increased to 71.2% for the ensemble.
This shows that ensembles are a very powerful technique. A
complementary work to ours shows that ensembles can be
used to label a new dataset efficiently [37]. The ensemble was
used to coarsely annotate new datasets with high accuracy,
and then human annotators were employed to refine the initial
predictions.

E. Domain adaptation

As was shown, the ensemble of models improved the model
precision in the domain adaptation setting, and greatly im-
proved uncertainty estimation, which can be efficiently utilized
in the self-training setting. First, a semantic segmentation
model was used to obtain pseudo-labels on the target datasets,



TABLE IV: Domain adaptation results for our models with per-class evaluation.
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Gta to Cityscapes
Baseline 29.9 17.4 62.8 13.2 14.7 15.5 26.8 10.7 79.0 8.4 47.4 53.5 10.3 48.2 25.7 3.04 0. 11.4 4.5 25.4
CJ 80.3 28.9 80.9 30.9 22.5 25.8 37.0 17.5 83.8 31.0 76.6 58.4 19.6 83.0 28.7 24.7 0. 27.4 11.0 40.4
CJ + fine 86.1 36.4 83.1 24.9 28.7 27.8 39.6 19.4 85.7 38.4 79.5 56.9 13.0 86.5 31.0 23.6 0. 22.6 0. 41.2
CJ + ens 88.6 43.2 85.0 36.3 33.8 30.7 37.4 21.9 86.8 44.9 83.9 57.5 14.5 87.3 37.2 32.2 0. 15.0 0. 44.0
Cityscapes to BDD
Baseline 88.9 52.4 65.2 18.5 18.7 35.2 35.7 31.9 78.2 36.1 75.8 47.3 22.3 78.5 23.4 32.7 0. 41.2 32.0 42.8
CJ 91.8 54.5 79.9 19.8 27.1 41.9 43.3 43.8 82.5 39.1 91.4 58.2 29.7 85.2 27.7 25.5 0. 49.1 42.6 49.1
CJ + fine 93.2 60.4 81.4 18.7 36.6 37.4 40.5 44.2 83.0 42.0 91.7 62.2 43.7 85.1 36.4 23.6 0. 47.6 48.7 51.4
CJ + ens 94.4 62.5 81.0 17.5 37.7 38.6 38.6 45.5 85.0 43.2 92.2 63.2 46.8 87.1 42.6 54.7 0. 44.9 53.4 54.2

Xception65 Ensemble

Fig. 4: Examples of pseudo-labels obtained obtained on GTA-
to-Cityscapes transfer (first row), and on Cityscapes-to-BDD
transfer (second row).

using some threshold t. In the literature, the threshold of value
0.9 is commonly used [13], and the same value is used in our
experiments. For the ensemble variant, such a threshold allows
70.1% of the pixels to be annotated with 92.6% accuracy,
on GTA-to-Cityscapes transfer. Fig. 4 shows obtained pseudo-
labels. In general, it can be noticed that the ensemble’s labels
were less noisy, and the object boundaries were more tightly
aligned around the object of interest.

After the pseudo-labels were obtained for the target datasets,
they were used for model fine-tuning. In this section results
for different models are presented:

1) ResNet-101 using standard data augmentation.
2) ResNet-101 trained using additional color jittering data

augmentation.
3) The previous model fine-tuned on target datasets using

pseudo-labels obtained by that model (CJ + fine in the
tables)

4) ResNet-101 fine-tuned on target datasets using pseudo-
labels obtained by the model ensemble (CJ + ens in the
tables)

Table IV shows the final results, including per-class eval-
uation. Firstly, consistent with other works, the self-training
approach improved the model accuracy (from 40.4 to 41.2,
and from 49.1 to 51.4 on the Cityscapes and BDD datasets,

respectively). When the pseudo-labels were collected using an
ensemble approach, the model accuracy was further greatly
increased (from 41.2 to 44.0 on Cityscapes dataset, and from
51.4 to 54.2 on BDD dataset). Fig. 5 shows qualitative results.
In general it can be noticed that obtained segmentation maps
are less noisy, especially in more challenging cases (second
and third row).

As a sanity check, the fine-tuning was also performed on the
highest-capacity model (Xception65). In that case the mIoU
has increased from 41.3 to 45.3, and from 52.4 to 53.6 on
Cityscapes and BDD datasets, respectively. This shows that
an ensemble approach is effective, also when the finetuned
model is a very strong member of the ensemble.

In general our results are very promising. Ensemble ap-
proach turned out to be very effective in terms out model
accuracy and uncertainty estimation, even for the large dis-
tributional shift (GTA to Cityscapes). On the drawback side,
ensembling did not improve for classes with the lowest pre-
cision (bicycle, motorcycle, rider). It might occur because the
baseline model is a week detector of such classes, so as a
result, there are very few pseudo-labels collected for those
classes. Improving accuracy for such classes remains an open
challenge in self-training methods. Another important problem
with an ensemble is that multiple models have to be trained
and evaluated, which is very costly. However, the recently
introduced BatchEnsemble method significantly reduced the
computational and memory costs [38]. Similarly, it was shown
that training one neural network with a multi-input multi-
output (MIMO) configuration could be an efficient strategy
to improve the models’ robustness [39]. However, applying
those ideas to the high-level task of semantic segmentation is
important future work.

V. CONCLUSIONS

In this work, calibration of model predictive uncertainty
under different, realistic real-world application settings was
studied. It was shown that the ensemble of models significantly
improved the uncertainty estimation and overall accuracy,
especially under domain shift. Notably, the performance gains
are consistent even when the domain gap is large (simulation-
to-real transfer case). Our ensemble consists of models using
different backbones and/or data augmentations. Interestingly,



Image Finetuned Ensemble finetuned Ground truth

Fig. 5: Qualitative results of trained models on GTA-to-Cityscapes transfer (first row) and Cityscapes-to-BDD transfer
(consecutive rows). White color corresponds to the ignore label.

it was also shown that simple color transformations can
lead to a similar performance improvement as much more
sophisticated style-transfer augmentation, and that both types
of data augmentation are crucial in the domain adaptation
setting, which confirms and extends recent findings [40].

Further, the ensemble of models was utilized for domain
adaptation using the self-training method. The improved uncer-
tainty calibration and model accuracy allowed the fine tuning
stage to be improved significantly, since the mIoU increased
from 41.2 to 44.0, and from 51.4 to 54.2 on the Cityscapes and
BDD datasets, respectively. Our approach is complementary to
other domain adaptation methods based on the self-training,
thus it could be easily combined with them, providing an
interesting future work subject.
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