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Abstract—Continual (or “incremental”) learning approaches
are employed when additional knowledge or tasks need to
be learned from subsequent batches or from streaming data.
However these approaches are typically adversary agnostic, i.e.,
they do not consider the possibility of a malicious attack. In
our prior work, we explored the vulnerabilities of Elastic Weight
Consolidation (EWC) to the perceptible misinformation. We now
explore the vulnerabilities of other regularization-based as well
as generative replay-based continual learning algorithms, and
also extend the attack to imperceptible misinformation. We show
that an intelligent adversary can take advantage of a continual
learning algorithm’s capabilities of retaining existing knowledge
over time, and force it to learn and retain deliberately introduced
misinformation. To demonstrate this vulnerability, we inject
backdoor attack samples into the training data. These attack
samples constitute the misinformation, allowing the attacker to
capture control of the model at test time. We evaluate the extent of
this vulnerability on both rotated and split benchmark variants
of the MNIST dataset under two important domain and class
incremental learning scenarios. We show that the adversary can
create a “false memory” about any task by inserting carefully-
designed backdoor samples to the test instances of that task
thereby controlling the amount of forgetting of any task of its
choosing. Perhaps most importantly, we show this vulnerability
to be very acute and damaging: the model memory can be easily
compromised with the addition of backdoor samples into as little
as 1% of the training data, even when the misinformation is
imperceptible to human eye.

I. INTRODUCTION

False memory formation — the phenomenon where one’s
memory can be easily distorted through post-event misin-
formation — is a common problem in human memory [1].
Such misinformation is sometimes self-imposed: a person
assures him/herself that they had an experience that in fact
did not occur. However, false memory formation can also
be implanted by external agents: a malicious entity may
provide deliberate and persistent misinformation over a period
of time to convince an otherwise unsuspecting victim of the
adversary’s preferred — but inaccurate — version of events [2].

We explore the vulnerability of artificial neural networks
(ANN5s) to adversarial false memory formation in the context
of continual learning of a sequence of tasks. Continual learning
(CL) algorithms are used when there is additional knowledge
or tasks to be learned from additional data batches or streaming
data. Such algorithms are particularly useful when the data
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distributions change over time, i.e., when the all-too-common
assumption of i.i.d. data does not hold. Hence, continual learn-
ing algorithms have an important place in machine learning
due to many — and increasing — number of applications that
require such algorithms.

Continual (or incremental) learning is a challenging problem
due to catastrophic forgetting [3|]: the phenomenon where the
accuracy of the model on some previously-learned — but still
relevant — task is partially or completely lost (forgotten) while
training to acquire new knowledge for a subsequent task.
Catastrophic forgetting is characterized by the stability and
plasticity dilemma [4], referring to the difficulty in preserva-
tion of past knowledge, while acquiring new knowledge.

We consider two important and practical scenarios of con-
tinual learning, namely domain incremental learning and class
incremental learning [S[]. Domain incremental learning repre-
sents a setting where only the input or marginal data distribu-
tions differ between tasks, with class distributions remaining
fixed. In contrast, class incremental learning represents a more
challenging scenario, where the distributions of both the input
marginal data and that of the classes differ between tasks.

The primary question we explore is whether an adversary
can take advantage of CL algorithm’s ability to retain prior
knowledge while acquiring new knowledge, and insert misin-
formation during training in order to distort the algorithm’s
memory and deliberately force loss of its prior knowledge.

In our prior work, we showed the vulnerability of a spe-
cific regularization-based continual learning algorithm, elastic
weight consolidation, to adversarial backdoor poisoning at-
tacks with visibly obvious backdoor patterns (such as small
subimages) that are embedded into the training dataset with
a false label of the attacker’s choosing [6]]. In this effort,
we extend that work to demonstrate the same vulnerability
in other state-of-the-art regularization-based and generative
replay-based CL algorithms. We show that the very mecha-
nisms used by CL algorithms to retain prior knowledge can
be easily exploited by an adversary and used against the model
itself. Furthermore, we now show that an adversary only needs
to insert a small amount of misinformation — that is visually
imperceptible to the human eye — in order to capture complete
control of the model at test time.



II. BACKGROUND & RELATED WORK
A. Continual Learning

Regularization-based approaches retain prior knowledge by
penalizing changes in those parameters of the model deemed
important when learned during the previous tasks, and forcing
them to stay close to their previously computed optimal values.
This penalization of changes is accomplished by adding a reg-
ularization term to the loss function while learning new tasks.
The importance weight of each parameter in the network may
be determined either during or after learning a particular task.
These weights are then used to determine which parameters
are more important for the preservation of the previous task(s).
Competing regularization approaches differ in the specific
mechanism used to compute the importance weights. Elastic
weight consolidation (EWC) [7[], synaptic intelligence [8]], and
memory-aware synapses [9] are examples of regularization-
based approaches.

Generative replay-based approaches, on the other hand, use
a generative model to synthesize data from previous tasks that
are regularly replayed with the original data samples from the
current task, and the network parameters are jointly optimized
over all data. Loss of prior knowledge is therefore avoided
by periodic refreshing of the classifier’s memory with data
that represent such prior knowledge. Deep generative replay
(DGR) [10], deep generative replay with distillation [S]], [[11]],
and continual classification using generative models [12] are
examples of generative replay-based approaches.

Both regularization- and generative replay-based CL ap-
proaches work reasonably well in retaining prior knowledge,
but their vulnerability to adversarial attacks has only recently
started to be explored. For example, the vulnerability of
EWC to perceptible backdoor attacks was investigated in [[13]],
and the vulnerability of related importance based domain
adaptation approaches to optimization based poisoning attacks
has been discussed in our prior work [14], [[15]. However, to
the best of our knowledge, the vulnerabilities and robustness
of other regularization-based approaches, as well as those
of the more successful and robust generative replay-based
approaches [5]] have not yet been determined. Moreover, the
vulnerabilities of these approaches to imperceptible attacks
have also not been explored. We explore the vulnerabilities
of these approaches to adversarial poisoning attacks under
two realistic continual learning scenarios: domain and class
incremental learning.

B. Adversarial Machine Learning

Adversarial machine learning explores the vulnerabilities
of machine learning algorithms to various attack scenarios,
while developing possible defenses to such attacks. There
are two major types of adversarial attacks [16]: in causative
(or poisoning) attacks, the attacker adds strategically-chosen
malicious data points into the training data [[14]], [15], [[17]
to adversely impact the future generalization capabilities of
the classifier, whereas in exploratory (or evasion) attacks, the
attacker manipulates the malicious data samples at test time

specifically to evade detection [18]-[20]]. Since CL approaches
involve retraining the model with each new batch of data
(or each new task), the adversary’s choice in targeting CL
algorithms is typically a poisoning attack.

Backdoor attacks are a specific class of poisoning attacks
that can also be used in a hybrid poisoning-evasion scenario
[21]], [22]. These attacks take the form of malicious samples
created by tagging a small portion of training images with a
special backdoor pattern. The adversary assigns a false label
of its choice to these malicious samples, which are then added
to the original training set. The model is trained on the new
training dataset, which contains both correctly-labeled images
as well as mislabeled, tagged images. The attacker’s goal is to
force the model to learn an association between the backdoor
pattern and the attacker’s desired class label. Once the model
learns this association, it performs well on clean (untagged)
test inputs during the inference stage. However, any test data
that contains the attacker’s chosen specific backdoor tag will
be misclassified. The attacker can therefore launch targeted
evasion attacks against the model by applying the backdoor
tag to any test image of its choice.

In this work, we explore the impact of the backdoor attack
strategy in the context of continual learning. First, we examine
the vulnerability of a variety of state of the art CL models
to the gradual introduction of misinformation of backdoor
samples over time. We also relax the conventional backdoor
requirement of adding a large amount of mislabeled samples
at once. Such a strategy allows the attacker to continuously
add small amounts of misinformation over time, reducing the
likelihood of detection. More importantly, unlike typical back-
door attack approaches that use visible backdoor patterns, we
explore whether the models can be fooled with imperceptible
backdoor patterns in the data. Such patterns may make it more
difficult to force the model to learn the misinformation, but
in exchange make the attack stealthier and more difficult to
detect.

Previous works in one-shot backdoor attacks commonly
assume that the attacker has access to both the training data
as well as the model parameters [21] — an assumption that
provides undue (and rather unrealistic) capabilities to the
attacker. In this work, we assume the more relaxed assumption
that the attacker has access only to the training data, but not
to the model parameters. This more realistic setting further
demonstrates the severe vulnerability of CL algorithms to
backdoor attacks.

III. APPROACH & ATTACK MODEL

We consider the problem of adversarial backdoor attacks
in continual learning settings. In such settings, a new task is
received through its training data X* and the corresponding
labels y® at time t. The goal of the incremental setting is
to learn a model fy, parameterized by 6, that minimizes the
loss function on all tasks received at time ¢ = 1,...,7T seen
so far. The goal of the attacker is to force the model to
completely forget the knowledge it acquired about a particular



targeted task of attacker’s own choice using imperceptible
misinformation.

Conventional one-shot backdoor attacks are successful be-
cause the training and the test data are assumed to be drawn
from the same distribution. In CL setting, however, there
are different tasks to be learned, and the data for each task
typically follows a different distribution from each other task.
The attacker may select any task of its choice on which it seeks
to hinder the test time performance: we refer to that task as
the attacker’s farget task. The attacker does not manipulate the
training data of the target task, as such obvious strategies could
be too easy to detect. Rather, in our formulation, the attacker
inserts malicious backdoor patterns only into the training data
of the other, unrelated tasks. Hence, the attacker’s challenge is
to hinder the test time performance of the model on the target
task using only imperceptible backdoor patterns added to the
training data of tasks unrelated to the target task.

A. Attacking Regularization Based CL algorithms

Regularization approaches find the optimal parameter vector
0* by adding an extra regularization term to the loss function
of the model. This regularization term penalizes changes
to those parameters that were deemed important during the
previous tasks based on the parameters’ importance matrix.
The model’s generalized loss function £(fp) while learning
the current task at time ¢ can therefore be written as:

U(fo) = tlfo(X"),y +AZIHZ€“ 0;1.)° ()

where £[fo(X?),y!] is the model’s loss on the current task
at time ¢; I;_y; is the ith parameter’s importance matrix
computed for the previous task at time ¢ — 15 6;_; ; is the
optimal value of the i*" parameter learned for the previous
task at time ¢t — 1; and A is the regularization coefficient. We
consider three popular regularization based continual learning
approaches in this work: Elastic Weight Consolidation (EWC)
[7], Online EWC [23], and Synaptic Intelligence (SI) [8]]. It
is important to mention here that each of these regularization-
based approaches are based on the same principle; the main
difference between them is how they compute the importance
matrix. The generalized pseudo-code for regularization-based
CL algorithms is provided in Algorithm

Regularization based CL approaches are useful as they
neither store data from the previous tasks nor add more layers
or nodes to the network with each new incoming task, and thus
avoid data storage and architectural complexity issues. How-
ever, with a fixed capacity single network and with no access
to previous data at all — not even in the pseudo form — these
approaches do struggle for challenging datasets under domain-
incremental and class-incremental settings. More specifically,
regularization-based approaches only perform well for those
CL scenarios where the distributions between tasks are (differ-
ent but) related under domain incremental learning setting and
tend to fail for the more challenging class incremental learning
problems — even under no attack. We show that the attacker
can take full advantage of the relatedness of data distributions

Algorithm 1 Regularization-based CL algorithms

Input (X%, 4*): Training data samples received for time
step t; T': total number of tasks; fy: Initial model parameter-
ized by 6; A: regularization parameter

Output Optimal Parameter 8* and the final model fy+

1: fort=1,...,7T: do
2 if £ == 1 then
3 07 miniemizeﬁ[fg(Xt),yt]
4: else
5 Compute Fisher Information Matrix [;_; using
optimal parameters 0;_;
6: 0F + miniemize fo(X1), 9"+
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among tasks, and insert a backdoor pattern with a false label
into the training data of the future unrelated tasks. These
training data — now malicious due to the backdoor patterns in
them — then serve as the misinformation. We also show that
the attacker can cause significant damage by inserting as little
as 1% malicious training data, and while making the backdoor
patterns imperceptible to humans.

Mathematically, we can formally describe the attacker’s ob-
jective as follows: let X} represent the malicious training data
with backdoor patterns to be inserted into the training data of
the current task and y}, be their corresponding incorrect labels
as chosen by the attacker. The loss function to be minimized
during the training of current task — for all regularization based
approaches — is then:

0(fo) =L[fo(X" U X3), (" Uyp)]
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The pseudo-code of the generalized attack algorithm for reg-
ularization based CL approaches under this setting is shown
in Algorithm [2]
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B. Attacking Generative Replay Based Approaches

Generative replay-based approaches use a generator model
g, with parameters ¢, to generate representative samples from
previous tasks. The generated samples (from the previous
tasks) are replayed, along with the original training samples
of the current task, to find the optimal parameters 6* for the
learning model f. We consider two common generative replay-
based algorithms in this work: Deep Generative Replay (DGR)
[10] and Deep Generative Replay with Distillation (DGR with
Distillation) [J5]], [11]. Both algorithms employ a variational
autoencoder (VAE) [24] to generate representative samples
of previously-learned tasks. The generalized pseudo-code for
generative replay-based algorithms is shown in Algorithm [3]

Since generative replay-based approaches regularly replay
(synthesized) data from previous tasks while learning the
current task, they are able to regularly “remind” the model of
the prior tasks, and as such they are better able to handle the
bias induced by the different, unrelated distributions between



Algorithm 2 Attacking regularization-based CL algorithms

Input (X? y'): Training data samples received at time
step t; T: total number of tasks; fy: initial model parameter-
ized by 6; A: regularization parameter

Output Optimal Parameter 8* and the final model fy«

1: fort=1,...,T: do

2 if £t == 1 then

3 0; miniemize fo(X), 9"

4: else

5 Compute Fisher Information Matrix I;_; using
optimal parameters 0;_;

6: Pick 1% random samples from the training data of
the current task

7: Insert imperceptible backdoor pattern to these sam-

ples to create X} and assign them desired false label yj
Append (X}, y;) to (X', y")
9: 0; miniHmize fo(XTUXE), (v Uyl
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Algorithm 3 Generative replay-based CL algorithms

Input (X*,4*): Training data samples received for time
step t; T': total number of tasks; fy: Initial model parameter-
ized by 0; g,: Initial generator parameterized by ¢

Output Optimal Parameter 8* and the final model fy-

1: fort=1,...,7T: do

2: if t == 1 then

3: 0; miniemize fo(XY), 9"

4 oF minid)mize g (X))

5: else

6: for k =1,...,t-1 do

7: Generate samples from the previous task, i.e.,
Xk ~ g¢

8: Label generated samples from the previous
optimal model, i.e., 7% < for  (X*)

%
9: 0y <—mini0mize (T fo(XY),y"] +

(1—2) dfp(XTU X720 XY,
(@ rugt?u....gH)
10: (ﬁr — mingnize (T f[g¢(Xt)]+

(1—2) fge(XT UX2 U X))

tasks. Therefore, not only can they retain (remember) the
prior tasks, they also have a built-in, natural defense against
an adversary that is unaware of the replay feature of the
algorithm. However, most attackers are typically aware of
at least the general form of the learning model. Hence, an
attacker that knows that it is attacking a replay-based approach,
can therefore slightly adjust its strategy to bypass the replay
based built-in defense. To do so, it can simply sample and tag
a small subset of training data from the target task, but still
- as in attacking regularization based approaches - insert the
tagged target-task images into the training data of the non-

target tasks. Therefore, as the model generates and replays
clean images of the target task in future tasks, the attacker
will be able to continuously counter those clean images with
its own tagged (malicious) images.

In a sense, the attacker can simply hide a small number
of tagged malicious images of the target task into the rela-
tively large pool of clean (non-malicious) samples naturally
generated by the algorithm’s regular replay operation; and
by also making the backdoor tag imperceptible, the attacker
achieves a level of stealthiness that makes the attack very
difficult to detect. We note that although the attacker chooses
malicious samples from the training data of the target task—
differently from the method for attacking regularization-based
approaches—these samples are still inserted only into the
training data during training of subsequent non-target tasks.
The pseudo-code for attacking generative replay-based ap-
proaches is shown in Algorithm []

Algorithm 4 Attacking generative replay-based CL algorithms

Input (X*,4*): Training data samples received for time
step t; T: total number of tasks; fy: Initial model parametrized
by 0; g4: Initial generator parametrized by ¢

Output Optimal Parameter 6* and the final model fy+

1. fort=1,...,7T: do

2 if t == 1 then

3 0; minigmize fo(X"), 4"

4: ¢} < minimize £[g4(X")]

5 Pick 1% random samples from the training data

6 Insert imperceptible backdoor pattern to these sam-
ples to create X} and assign them desired false label y;}

7: else

8: for k=1,...t-1 do
9: Generate samples from the previous task, i.e.,
XF~ gy
10: Label generated samples from the previous
optimal model, i.e., 7% « for  (X*)
11: Append (X}, yl) to (X, y")
12: 0F emini@mize (T fa((XTUXY), (v Uyl)+
(1— %) {fo(X'"7TUX2U .. XD,
(G tugt—2u....gH)
13: o5 < mini¢mize (f lge(XTU X))+

(1—4) fge(XTTUXT2U LX)

IV. EXPERIMENTS & RESULTS

To demonstrate the impact of the proposed attack, we im-
plemented our attack strategy against several commonly-used
algorithms for both regularization-based and deep generative
replay-based continual learning. We use the two most common
continual learning benchmark datasets for our experiments:
rotation MNIST [25], [26] and split MNIST [8]].

For rotation MNIST, we created a sequence of 5 different
tasks, where each task is obtained by applying a different



(a) original image

(b) image with imperceptible
frame as a backdoor pattern

Fig. 1: Imperceptible backdoor pattern for MNIST images

randomly generated rotation in the interval (0,7/3] to the
image pixels. Each task in rotation MNIST is a 10-class
problem: the first task is to classify original ten MNIST digits;
each subsequent task involves classifying the same ten digits
with a different, but fixed, random rotation applied to all digits.

For split MNIST, the original MNIST dataset is split into
5 different tasks, where each task is a binary classification
problem: the first task is to distinguish between digits 0 and
1, the second task is to distinguish between digits 2 and 3,
and so on.

In order to insert the imperceptible backdoor pattern into the
images, we observe that most pixels around the original digit
in the image are black (zero). Therefore, we use a rectangular
frame around the digit with slight increase in the pixel values
from O to 0.03. This slight increase is imperceptible to human
eye [27]], but — as demonstrated in our results — it is clearly
visible to the classifier that directly reads pixel values. An
example of an original image, and its backdoor tagged version
— with the imperceptible rectangular frame around the digit —
are shown in Figure

Recall that the goal of the attacker in a CL setting is to
cause loss of prior knowledge, and to maximize the forgetting
of a particular previous task. We refer to this prior task — that
the attacker wants the model to forget — as the farget task. The
attacker may choose any of the tasks as its desired target task.
Without any loss of generality, let us assume that the target task
is Task 1. The attacker could attack this target task by inserting
malicious samples to the target task’s training data, which will
guarantee the attack to be successful (since the attack samples
will come from the same distribution as the target task’s test
distribution). However, such an attack can be easy to detect.
The attacker also wishes not to get caught, so it plans the attack
to be as stealthy as possible. Therefore, in our attack model,
the attacker inserts a small number of malicious examples
(about 1%) containing visually imperceptible backdoor pattern
as described above into the non-target tasks (i.e., all tasks
except Task 1). Hence, the attacker wants the model to learn
the backdoor pattern and associate it with the incorrect label it
had assigned while the model is learning non-target tasks. In
order to determine whether the attacker has been successful in
its goal, we provide backdoor tagged images, this time from
the target task to the model during test time. If the model
classifies those tagged samples as the attacker’s desired false

label, while correctly classifying the samples of all other tasks,
the attacker has been successful. Note that the attacker can also
use this — now test-time — strategy as a means of an evasion
attack, by inserting its backdoor tagged images into the target
task’s field (test) data. This strategy can be used, for example,
to force an autonomous vehicle to recognize a stop sign with
an imperceptible tag as a speed limit sign during the actual
operation.

A. Attacking Domain Incremental Learning

1) Attacking Rotation MNIST: As described above, the
attack scenario we consider allows the attacker to insert
malicious samples into the training data for all tasks except
the initial target task on which the attacker wishes to inflict
maximum damage at test time. In this setting, we create a small
number of malicious samples by inserting an imperceptible
backdoor pattern into only 1% of the training data. Without
loss of any generality, we assume that the incorrect target
label that the attacker assigns to these malicious samples is
of class 0. Hence, the malicious data are randomly drawn
from all labels except class 0. The falsely-labeled malicious
samples (containing the imperceptible backdoor pattern) are
then added to the clean training data, and the model is trained
using regularization-based continual learning (CL) algorithms
and generative-replay based CL algorithms. The models being
attacked are therefore trained first on the clean data for the
initial task, and subsequently trained on the compromised
training data for each of the four subsequent tasks.

At inference time, we compute test accuracy for each task
when there is “no attack” and when there is an “attack”. Recall
that the attacker’s objective is to compromise Task 1; hence, in
all tasks except the first task, test examples are presented to the
model without the backdoor pattern, in order to monitor the
model’s ability to retain performance on untargeted tasks. For
the targeted task, 100% of the test examples from each class —
except class 0 — are presented to the model with imperceptible
backdoor tagged images. The attacker’s goal here is to have
each of these tagged images to be misclassified as class 0.
In other words, the attacker takes control of the classifier,
by forcing it to classify any pattern it desires (by tagging
it with an imperceptible backdoor image) to be misclassified
as any class it wishes (class 0, in this example). The test
accuracy for each task, as well as the average accuracy across
all tasks, under no attack and with attack are presented in
Table [[| for regularization-based CL approaches and in Table
for generative replay-based approaches. All attack results are
presented with mean and standard deviation computed over
ten independent runs.

We observe from Tables [[l and [ that there is a dramatic
drop in Task 1 performance for all five algorithms under
consideration — from upper 80% to around 10% for regular-
ization approaches and from around 95% to 10% for replay
approaches. The 10% figure comes from the fact that all
classes 1 through 9 (the classes that had the backdoor tag)
are incorrectly classified (as class 0), and only the original
class 0 images (which were not tagged) are classified correctly.



TABLE I: Test accuracy on rotation MNIST using regularization-based CL approaches under domain incremental learning.
The training data of every task, except the first, contains backdoor tagged images, at a ratio of 1%.

Tasks EWC under no EWC under attack SI under no SI under attack on Online EWC Online EWC under
attack on Task 1 attack Task 1 under no attack attack on Task 1

Task 1 0.8817 0.0967 + 0.0004 0.8832 0.1111 + 0.0035 0.8708 0.0966 + 0.0004

Task 2 0.9637 0.9627 £ 0.0018 0.9513 0.9528 + 0.0072 0.9508 0.9608 + 0.0032

Task 3 0.9702 0.9700 + 0.0009 0.9525 0.9522 + 0.0036 0.9589 0.9608 + 0.0024

Task 4 0.9674 0.9679 + 0.0007 0.9431 0.9403 £ 0.0041 0.9575 0.9529 + 0.0025

Task 5 0.9591 0.9596 + 0.0009 0.9165 0.9084 + 0.0114 0.9421 0.9315 + 0.0032

[ Avg. Accuracy [ 0.9484 [ 0.7917 £ 0.0009 [ 0.9293 [ 0.7729 + 0.0059 [ 0.9360 [ 0.7805 + 0.0023 ]

TABLE II: Test accuracy on rotation MNIST using generative replay based approaches under domain incremental learning.

The training data of every task, except the first, contains backdoor tagged images, at a ratio of 1%.

Tasks DGR under no DGR under attack DGR with DGR with
attack on Task 1 distillation under distillation under
no attack attack on Task 1
Task 1 0.9553 0.1161 + 0.0074 0.9683 0.1052 + 0.0017
Task 2 0.9728 0.9738 £ 0.0010 0.9823 0.9828 + 0.0004
Task 3 0.9742 0.9754 4+ 0.0010 0.9837 0.9836 £ 0.0005
Task 4 0.9753 0.9736 £ 0.0010 0.9815 0.9823 £ 0.0005
Task 5 0.9688 0.9676 & 0.0015 0.9784 0.9795 £ 0.0006
| Avg. Accuracy | 0.9693 | 0.8013 £ 0.0024 | 0.9788 | 0.8067 £ 0.0007 |

Hence, we see that the attacker can successfully force the
model to forget a specifically targeted information (Task 1,
in this experiment) by corrupting only 1% of the training
data of other tasks and further force the model to incorrectly
classify those images as a class of its choosing. Importantly,
the corrupted images look exactly identical to clean images
to a human observer—a significant obstacle to detecting the
presence of such attacks. We demonstrate that adding an
imperceptible perturbation to the raw image can be easily used
with malicious intent. For both regularization- and generative
replay-based approaches, the attacker is extremely effective in
its attack , causing all of the backdoor-tagged samples of the
targeted task to be misclassified as the attacker’s target label.

2) Attacking Split MNIST: We use the same training scenar-
ios and setup as we used for rotation MNIST, and follow the
same training protocols. As before, the attacker targets Task
1 and seeks to make the model forget what it has learned for
that task by introducing imperceptible misinformation through
backdoor attacks during training for subsequent tasks. Again,
we assume that the incorrect target label that the attacker
wishes to assign to these malicious samples is class 0. Recall
that each task in split MNIST for the domain incremental
scenario is a binary problem. Therefore, the class distributions
among different tasks of split MNIST remain fixed under this
setting. However, unlike rotation MNIST, the input marginal
data distributions are not only different but also unrelated,
since each task in Split MNIST contains two completely
different digits. Therefore, Split MNIST poses a more chal-
lenging problem for regularization based approaches to tackle
even without any attack. Generative replay-based approaches,
however, can handle this scenario (when not under attack) due
to their ability to regularly replay data from the previous tasks

[5). This is why, we only present the results of attacking
generative replay based approaches, and not regularization
based approaches. After all, there is no point in attacking an
algorithm that fails even when there is no attack.

As before, the adversary adds 1% malicious samples con-
taining the imperceptible backdoor pattern into the training
data of every task other than the target task. The models are
trained using deep generative replay (with and without distil-
lation), first on clean data from Task 1, and then sequentially
on each of the subsequent tasks containing compromised data.
To compute the test-time performance on the targeted task,
clean samples from class 0 and malicious samples from class 1
(that contain the imperceptible backdoor trigger) are presented
to the model. For the remaining tasks, clean examples from
both classes are presented to the model at the test time. We
compute the test accuracy for every task, both when there
is a targeted attack to the initial task and when there in no
attack. The results are shown in Table [LII| for both DGR and
DGR with distillation. As before, all results are averages of
ten independent runs.

As in the rotated MNIST example, the attack is able
to successfully force the model to forget specific targeted
examples from the first task, while leaving all other tasks
unaffected. Not affecting other (non-target) tasks is important,
as it limits the detectability of the attack [28]]. We demonstrate
that because the attacker has the ability to selectively impair
the model, it is able to assume complete control over the
continual learner. The attacker forces all examples from the
target task containing our imperceptible trigger, to be falsely
classified as the attacker’s desired label. Both DGR and DGR
with Distillation are reduced to achieving less than 50%
test accuracy — i.e., below random guessing for a two-class



TABLE III: Test accuracy on split MNIST using generative replay based approaches under Domain Incremental Learning. The
training data of every task, except the first, contains backdoor tagged images, at a ratio of 1%.

Tasks DGR under no DGR under attack DGR with DGR with
attack on Task 1 Distillation under Distillation under
no attack attack on Task 1
Task 1 0.9608 0.4486 + 0.0080 0.9858 0.4537 + 0.0033
Task 2 0.9540 0.9497 £ 0.0104 0.9755 0.9743 £ 0.0035
Task 3 0.8895 0.9157 £ 0.0237 0.9509 0.9540 £ 0.0095
Task 4 0.9844 0.9852 + 0.0017 0.9824 0.9857 £ 0.0026
Task 5 0.9788 0.9777 £ 0.0046 0.9798 0.9764 + 0.0038
| Avg. Accuracy | 0.9535 | 0.8554 £ 0.0097 | 0.9749 | 0.8688 £ 0.0045 |

problem - for the targeted task 1 of Split MNIST dataset.

B. Attacking Class Incremental Learning

1) Attacking Rotation MNIST: We consider the same sce-
nario as considered in attacking domain incremental learning,
where the attacker inserts malicious samples containing im-
perceptible backdoor pattern to the training data of every task
other than the targeted task. We force the model to learn the
association between the imperceptible backdoor pattern and
the attacker’s desired target label (which is class 70" in our
experiments).

Once the imperceptible misinformation is learned by the
model, we apply the same misinformation to 100% of the test
samples of the targeted task, excluding the samples from class
0. Table [TV] presents the test-time performance obtained by
both DGR and DGR with distillation, in both the “attack” and
“no attack” scenarios. The attack is incredibly effective against
both algorithms, as seen in the dramatic drop in Task 1 test
performance from 70-80% range to below 10%, indicating that
the attack forced all examples from class 1 to class 9 of Task
1 to be misclassified classified as class 0. The accuracy is less
than the ideal 10% as there were additional test examples of
untargeted class 0, which are also misclassified by the model
itself for reasons unrelated to the attack.

2) Attacking Split MNIST: Again, we assume that the
attacker inserts malicious samples to the training data of every
other task except the target task itself. During training, the
model learns to associate the backdoor pattern to the false
label from the malicious samples. Once the backdoor pattern
is learned, clean examples of class 0, and examples of class
1 with imperceptible backdoor pattern are presented to the
model at test time for the first task. For every other task,
only clean test examples, i.e., without any backdoor pattern
are presented to the model. The results obtained with DGR
and DGR with distillation are shown in Table [V] Once again
the attacker is very effective in its pursuit, and is able to
inflict considerable damage on both generative replay based
algorithms. Specifically, the attacker achieves its intended
targeted misclassification on all class 1 examples of the initial
task, hence achieving less than 50% accuracy for task 1 at
test time. The test performance is under 50% as some of the
untargeted class 0 instances are also misclassified by the model
- for reasons unrelated to the attack.

V. CONCLUSIONS & FUTURE WORK

We have shown that both regularization-based and genera-
tive replay-based continual learning approaches are vulnerable
to a backdoor poisoning attack, even when only 1% of the
training data are poisoned, and perhaps more importantly, even
when the backdoor patterns are completely imperceptible to
humans. We demonstrate this vulnerability on two important
scenarios of continual learning— domain incremental learning
and class incremental learning—using two common CL bench-
mark datasets. We show that an informed adversary, knowing
the specific mechanisms of success of both regularization-
and generative replay-based approaches, can easily exploit
these mechanisms against the algorithms themselves to induce
false learning with pin-point targeted damage, and force the
model to forget any task and misclassify the instances of any
class as any other class of its own choosing. Moreover, the
imperceptible nature of the backdoor misinformation severely
reduces the detectability of the attack while remaining highly
damaging to the learners. Hence, this work emphasizes the
critical need for continual learning algorithms seeking to be
cognizant of imminent adversarial threats.

Our future work consists of exploring the vulnerabilities of
continual learning approaches for other natural and realistic
continual learning datasets. Perhaps more importantly, we
wish to develop appropriate defensive solutions against such
catastrophic attacks. This work further demonstrates that it
is important to prioritize the development of robust learning
systems, as well as defenses against adversarial attacks, such
that a continual learner will be able to learn from streaming
data while remaining secure against deliberate misdirections.
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