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Abstract—To witness quantum advantages in practical settings,
substantial efforts are required not only at the hardware level
but also on theoretical research to reduce the computational cost
of a given protocol. Quantum computation has the potential to
significantly enhance existing classical machine learning methods,
and several quantum algorithms for binary classification based
on the kernel method have been proposed. These algorithms
rely on estimating an expectation value, which in turn requires
an expensive quantum data encoding procedure to be repeated
many times. In this work, we calculate explicitly the number of
repetition necessary for acquiring a fixed success probability and
show that the Hadamard-test and the swap-test circuits achieve
the optimal variance in terms of the quantum circuit parameters.
The variance, and hence the number of repetition, can be further
reduced only via optimization over data-related parameters.
We also show that the kernel-based binary classification can
be performed with a single-qubit measurement regardless of
the number and the dimension of the data. Finally, we show
that for a number of relevant noise models the classification
can be performed reliably without quantum error correction.
Our findings are useful for designing quantum classification
experiments under limited resources, which is the common
challenge in the noisy intermediate-scale quantum era.

I. INTRODUCTION

The theory of fault-tolerant quantum computing promises
tremendous opportunities with clear quantum advantages for
certain computational tasks [1], [2], [3], [4]. However, the
development of full-fledged quantum computing hardware
remains a long-term prospect. On the road to building fault-
tolerant quantum computers, noisy intermediate-scale quantum
(NISQ) computers are expected to be available in the near
future [5], [6], [7]. These quantum devices can execute only
a limited size of quantum circuits reliably due to noise, but
can surpass the capabilities of classical digital computers.
An important issue in the NISQ era is to find problems
and applications for which the NISQ technology can provide
practical quantum advantage. Addressing this issue involves
not only experimental efforts at the hardware level but also
requires theoretical research to develop quantum algorithms
while taking imperfections into account.

Quantum computing also has the potential to drastically
improve machine learning tasks [8], [9], [10], [11], [12].
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Quantum advantages in machine learning are expected nat-
urally since quantum computers can reduce the computational
cost exponentially for solving certain basic linear algebra
problems [13], [4] that often appear as basic subroutines in
machine learning tasks. Moreover, quantum computers can
achieve exponential compression of data [14], [15], [16]. Full
comprehension of which machine learning problems can be
solved more efficiently with quantum algorithms remains as
an important open problem.

A family of machine learning tasks for which quantum
techniques are expected to outperform existing methods is the
kernel-based classification [17], [18], [19], [20], [21], [22],
which is a fundamental problem in pattern recognition. A
common advantage of quantum computing utilized in these
works is the ability to manipulate exponentially large quantum
Hilbert space efficiently and evaluate the kernel function much
faster than classical computers. The quantum machine learning
algorithms presented in Refs. [20], [21] are of particular
interest in the NISQ era since they do not require expensive
subroutines for solving the convex optimization problem of
support vector machine. Furthermore, they are flexible in
terms of the quantum data encoding method; either amplitude
encoding [10] or quantum feature mapping [19] can be used.
In these algorithms, a classification score is evaluated by mea-
suring an expectation value of certain observables, and hence
repeating the same experiment multiple times is inevitable
for a reliable statistics. However, due to the measurement
postulate of quantum mechanics and the no-cloning theorem,
a same input state must be created for every execution of
the algorithm [23]. Since computational cost for preparing an
arbitrary quantum input state can be substantial depending on
the structure of data to be encoded, reducing the number of
repetition is essential [23], especially for NISQ computing.

In this work, we explicitly calculate the number of repetition
necessary for estimating the classification score with a fixed
precision. We discuss various generalizations that can be made
to existing kernel-based quantum classifiers and calculate the
variance of the estimator to show that the classifiers presented
in Refs. [20], [21] are indeed optimal with respect to the
number of repetition. We also show that the kernel-based
binary classification can be performed with a single-qubit
measurement regardless of the number and the dimension of
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the data. This is particularly useful for the systems in which the
measurement error is worse than the gate error. Furthermore,
we show that the binary classifications can be performed
reliably under certain noise models that are important in quan-
tum information science without having to employ expensive
quantum error correction; the classification will succeed by
increasing the number of repetition quadratically with respect
to a relevant error rate.

II. PRELIMINARIES

A. Binary classification

Classification is a fundamental problem in machine learning.
The goal of L-class classification is to infer the class label of
an unseen data point x̃ ∈ CN , given a labelled data set

D = {(x1, y1), . . . , (xM , yM )} ⊂ CN × {0, 1, . . . , L− 1}.

Although the data is real-valued in usual machine learning
tasks, we allow complex-valued data without loss of general-
ity by noting that various quantum data encoding schemes
utilize the quantum Hilbert space. A famous example of
encoding classical information as a quantum state is the
amplitude encoding which represents a classical vector xj =
(x1j , . . . , xNj)

T ∈ CN as a quantum state in the following
form,

|xj〉 :=
1

‖xj‖

N∑
i=1

xij |i〉 , (1)

using dlog2(N)e qubits. Similarly, a set of M data points
x1, . . . ,xM can be encoded in dlog2(NM)e qubits as

1√∑
ij |xij |2

M∑
j=1

N∑
i=1

xij |i〉 ⊗ |j〉 . (2)

Hereinafter we focus on binary classification (i.e. L = 2)
like majority of works on quantum kernel-based classifiers
since a multi-class classification can be constructed with
binary classifiers by one versus all or one versus one scheme.
In addition, we will omit the Kronecker product symbol (⊗)
whenever the meaning is clear (e.g. |i〉 ⊗ |j〉 = |ij〉).

B. Review of kernel-based quantum classifiers

This work focuses on extending and improving the kernel-
based quantum classifiers presented in Refs. [20], [21],
since they are more suitable for NISQ computing as men-
tioned in the introduction. These algorithms are referred to
as Hadamard-test classifier (HTC) and swap-test classifier
(STC), respectively. Construction of these algorithms can
be broken into two parts: preparation of a quantum state
that encodes data in a specific form and expectation value
measurement. These are explained in more detail below.

The Hadamard-test classifier encodes the dataset D in a
quantum state as

|ψh〉 =
1√
2

M∑
j=1

√
aj (|0〉 |xj〉+ |1〉 |x̃〉) |yj〉 |j〉 , (3)

where |xj〉 and |x̃〉 encodes classical training and test data
vectors via an encoding of choice, and the label yj ∈ {0, 1}
is represented by the computational basis of the label qubit.
Without loss of generality all inputs xj and x̃ are assumed to
be normalized and have unit length. The subscript h indicates
that the state is for the Hadamard-test classifier. In Ref. [20],
the weights are uniform, i.e. aj = 1/M ∀j, but it can be
left as a variable to be optimized, similar to the treatment
in support vector machines [22]. The measurement scheme
utilizes a Hadamard-test, which applies a Hadamard gate on
the ancilla qubit to interfere training and test data states.
Finally, by measuring an expectation value of a two-qubit
observable σ(a)

z σ
(l)
z on the ancilla qubit and the lable qubit,

one obtains

〈ψh|H(a)σ(a)
z σ(l)

z H(a)|ψh〉 =

M∑
j=1

(−1)yjajRe 〈xj |x̃〉 , (4)

where the superscripts a and l indicate that the corresponding
operator is acting on the ancilla qubit and the label qubit,
respectively. From this equation, one can see that the kernel
function in HTC is k(xj , x̃) = Re 〈xj |x̃〉, and Eq. (4) defines
the classification score, which we denote by f , in an HTC.
The HTC assigns a new label to the test data as

ỹ =
1

2

1− sgn

 M∑
j=1

(−1)yjajRe 〈xj |x̃〉

 .

The HTC considers only a real part of the quantum state
overlap. In order to fully exploit the ability of quantum com-
puters to efficiently manipulate quantum states in the Hilbert
space, it is desirable to construct a kernel that takes both real
and imaginary parts of the quantum state into account. This
motivated the birth of the swap-test classifier (STC). To see
how the kernel function looks like in the STC, it is useful to
express the initial state with the density matrix formalism. The
initial state can be written as

ρs = |0〉〈0| ⊗
M∑
j=1

(
aj (ρ̃⊗ ρj)⊗k ⊗ |yj〉〈yj | ⊗ |j〉〈j|

)
, (5)

where the subscript s indicates that the density matrix is for
the swap-test classifier. The next step of the classifier is to
apply the swap test

Ts = H(a) ·
k∏
i=1

swap(ti, di|a = 1) ·H(a), (6)

where H(a) represents a Hadamard gate applied to the ancilla
qubit and swap(ti, di|a) represents a controlled-swap gate
that exchanges an ith copy of test (ti) and training (di) data
if the ancilla qubit state is a. Finally, the expectation value
measurement of a two-qubit observable σ(a)

z σ
(l)
z results in

〈σ(a)
z σ(l)

z 〉 =

M∑
j=1

(−1)yjaj Tr(ρ̃ρj)
k
. (7)



Therefore, the kernel function in the STC is k(xj , x̃) =

Tr(ρ̃ρj)
k. When the training and test data are given as a pure

state, i.e. ρ̃ = |x̃〉〈x̃| and ρj = |xj〉〈xj |, then the kernel is
reduced to k(xj , x̃) = |〈x̃|xj〉|2k, which is the kth power of
the quantum state fidelity. The classification score in an STC
is given by Eq. (7). The STC assigns a new label to the test
data as

ỹ =
1

2

1− sgn

 M∑
j=1

(−1)yjaj Tr(ρ̃ρj)
k

 .

III. OPTIMIZATION

We seek to minimize the computational resource overhead
in the HTC and STC caused by the number of repetition
necessary for estimating the classification score. The number
of repetition can be calculated from the Chebyshev inequality

Pr[|µ− 〈M〉| ≥ ε] ≤ σ2/(kε2) (8)

where µ is an average value obtained from k trials, 〈M〉 is the
expectation value to be estimated, and σ2 = ∆M =

〈
M2

〉
−

〈M〉2 is the variance. Since the classifier only uses the sign
of the expectation value, we can choose the precision to be

ε = 〈M〉/c (9)

for some constant c > 1. Then the desired number of repetition
goes as

k = O(σ2/〈M〉2) (10)

to bound the error probability to a fixed constant.
In the following, we examine how to reduce k by changing

the circuit design of the classifier.

A. General form of the classification score

Suppose one measures an expectation value of an observable
Mλ = σ

(a)
z ⊗ A

(l)
λ for some arbitrary Hermitian operator

Aλ. In addition, suppose the classical label yj is encoded in
a logical label state |ȳj〉. Then it is straight-forward to see
that the expectation value measured in either HTC or STC
classification protocols becomes

〈Mλ〉 =

M∑
j=1

aj〈ȳj |Aλ|ȳj〉k(xj , x̃), (11)

where the kernel function depends on whether the HTC or the
STC is performed. From the above equation, one can see that
the classification contrast can be increased by choosing A and
|ȳj〉 such that 〈ȳj |Aλ|ȳj〉 ∈ {−λ, λ} for some λ > 1.

Now we choose an observable and the label qubit state based
on the following rule:

λ∑
i=1

σ(i)
z |l〉⊗λ = (−1)lλ|l〉⊗λ, l ∈ {0, 1}, (12)

where the superscript i indicates that the Pauli operator is
acting on the ith qubit. By setting Aλ =

∑λ
i=1 σ

(i)
z and |ȳj〉 =

|0〉⊗λ if xj is labelled 0 and |ȳj〉 = |1〉⊗λ if xj is labelled 1,
one obtains

〈Mλ〉 = λ

M∑
m=1

aj(−1)yjk(xj , x̃). (13)

Therefore, the expectation value to be estimated is scaled by
a factor of λ by increasing the number of label qubits by the
same factor.

B. Variance calculation

We assume that we have an eigenstate decomposition
(which we can find) of the observable Mλ such that

Mλ = m0,0̄P0,0̄ +m0,1̄P0,1̄ +m1,0̄P1,0̄ +m1,1̄P1,1̄ (14)

where mi,j̄ = (−1)i+j̄λ and projections Pi,j̄ = |i, j̄〉〈i, j̄| for
i, j̄ = 0, 1. Gathering the statistics we compute

〈Mλ〉 =m0,0̄p(0, 0̄) +m0,1̄p(0, 1̄)

+m1,0̄p(1, 0̄) +m1,1̄p(1, 1̄)

=λ (p(0, 0̄)− p(0, 1̄)− p(1, 0̄) + p(1, 1̄)) (15)

as well as〈
M2

λ

〉
=m2

0,0̄p(0, 0̄) +m2
0,1̄p(0, 1̄)

+m2
1,0̄p(1, 0̄) +m2

1,1̄p(1, 1̄)

=λ2 (p(0, 0̄) + p(0, 1̄) + p(1, 0̄) + p(1, 1̄))

=λ2 (16)

with p(i, j̄) = Tr
(
Pi,j̄ |Ψf 〉〈Ψf |

)
.

By identifying Eq. (15) with Eq. (13) we see that the
variance is given by

σ2 =
〈
M2

λ

〉
− 〈Mλ〉2

= λ2

1−

 M∑
j=1

aj(−1)yjk(xj , x̃)

2
 (17)

which means that at the boundary, i.e. when both classes are
equally far away for a test datum, the variance is maximal.

Since both σ2 and 〈Mλ〉2 goes as λ2, the number of
repetition is independent of λ according to Eq. (10). In
other words, the number of repetition cannot be reduced by
increasing the number of label qubits. Therefore, the best
strategy with respect to the measurement of label register is
to use as small number of qubits as possible. This is simply
done by using a single qubit to encode the label information
(i.e. λ = 1), and setting A(l)

λ = σz .

C. Skewness

The skewness is a measure how much the distribution
is leaning towards one side from the mean. It is the third
standardized moment and with respect to the mean 〈M〉 and
can be expressed as

µc3 =

〈
M3

λ

〉
− 3 〈Mλ〉∆Mλ − 〈Mλ〉3

∆M3/2
λ

. (18)



For an arbitrary λ, the third moment is given by〈
M3

λ

〉
= m3

0,0̄p(0, 0̄) +m3
0,1̄p(0, 1̄)

+m3
1,0̄p(1, 0̄) +m3

1,1̄p(1, 1̄)

= λ3 (p(0, 0̄)− p(0, 1̄)− p(1, 0̄) + p(1, 1̄))

= λ3

 M∑
j=1

aj(−1)yjk(xj , x̃)

 . (19)

By combining the two equations above and using a notation
f =

∑M
j=1 aj(−1)yjk(xj , x̃)) we obtain

µc3 =

〈
M3

λ

〉
− 3 〈Mλ〉∆M− 〈Mλ〉3

∆M3/2
λ

=
λ3f − 3λfλ2(1− f2)− λ3f3

λ3(1− f2)3/2

= − 2f√
1− f2

. (20)

Two remarks are to be made here. First, the skewness does
not depend on λ. This result again favors the use of one-qubit
register for encoding the label information. The second is that
the skewness is negative with respect to the classification score
f . This indicates that the probability density favors values
whose absolute value is larger than | 〈Mλ〉 |. The skewness
is zero only if f = 0 with which the algorithm cannot
classify the test data; the skewness will always be non-zero
when the classifier can make a decision. The necessity of
the asymmetry opens an interesting research direction towards
designing quantum classifiers based on the mode (e.g. majority
vote) instead of the mean.

D. Generalization of the interfering circuit

Further generalization can be made in both HTC and STC
by using arbitrary single qubit rotation gates instead of the
Hadamard gates for creating superposition in the beginning
and interference at the end on the ancilla qubit. In this case,
Eq. (3) becomes

|ψh〉 =

M∑
j=1

√
aj

(
cos

θ0

2
|0〉 |xj〉+ sin

θ0

2
eiφ |1〉 |x̃〉

)
|yj〉 |j〉 .

(21)
The Hadamard gate at the end of the circuit for interfering two
subspaces spanned by the computational basis of the ancilla
qubit is also replaced with an arbitary rotation around the y-
axis of the Bloch sphere Ry(θ1) = cos(θ1/2)I−i sin(θ1/2)σy .
This gate can be followed by an arbitrary rotation around the
z-axis, but since we are also measuring in the σz-basis, we
can neglect it as it does not alter the measurement result. For a
depiction of this setup, confer to figure 2. Then the two-qubit
expectation value measurement gives

〈σ(a)
z σ(l)

z 〉 =

M∑
j=1

aj(−1)yj
(

cos(θ0) cos(θ1)− sin(θ0) sin(θ1)

× (cos(φ)Re 〈xj |x̃〉 − sin(φ)Im 〈xj |x̃〉)
)
. (22)

This equation shows that the imaginary part of the state overlap
〈xj |x̃〉 can also contribute to the classification result, unlike
in the original HTC. We leave the use of this imaginary part
for classification as an interesting future work, and only focus
on the case where Im 〈xj |x̃〉 = 0 to mimic the original HTC.

Similarly, the general form of the expectation value for STC
can be calculated. Without assuming Im 〈xj |x̃〉 = 0, it can be
written as

〈σ(a)
z σ(l)

z 〉 =

M∑
j=1

aj(−1)yj
(

cos(θ0) cos(θ1)− sin(θ0) sin(θ1)

× cos(φ)| 〈xj |x̃〉 |2
)
. (23)

Now, it is straight-forward to see that 〈(σ(a)
z σ

(l)
z )2〉 = 〈I〉 =

1. Thus the variance is simply 1− 〈(σ(a)
z σ

(l)
z )〉2, as expected

from Eq. (17). Since we aim to minimize the variance, we want
to maximize f(θ0, θ1φ) = 〈σ(a)

z σ
(l)
z 〉2; this is our objective

function. For simplicity, we can consider a special cases where
θ0 = π/2. In this case, the objective function becomes∣∣∣∣∣∣

M∑
j=1

aj(−1)yj sin(θ1) cos(φ)k(xj , x̃)

∣∣∣∣∣∣
2

for both HTC and STC. This is maximized with respect to θ1

and φ if | sin(θ1) cos(φ)| = 1. One solution is sin(θ1) = 1 and
cos(φ) = −1, which is equivalent to setting the final gate on
the ancilla qubit to be the Hadamard gate.

More rigorous analysis can be done by calculating the first-
and second-order partial derivatives of the objective function
with respect to θ0, θ1, and φ. After going through some
laborious calculations, it can be shown that the critical point
simultaneously satisfying

∂f(θ0, θ1, φ)

∂θ0
= 0,

∂f(θ0, θ1φ)

∂θ1
= 0,

∂f(θ0, θ1φ)

∂φ
= 0

is a solution to cos(θ∗0) = cos(θ∗1) = sin(φ∗) = 0. This
condition is satisfied in the original HTC and STC in which
the creation of superposition and interference on the ancilla
qubit is soley done by Hadamard gates. However, to be sure
that the critical point really gives the local maximum of f ,
the second derivative test needs to be performed. To keep
further discussions simple, we assume sin(φ) = 0 so that the
maximization is to be done only with respect to θ0 and θ1. In
this case, the above critical point satisfies

∂2f(θ0, θ1)

∂θ2
0

=
∂2f(θ0, θ1)

∂θ2
1

≤ 0. (24)

The second derivatives are zero when
∑
j aj(−1)yjk(xj , x̃) =

0, in which case the classification is not possible anyways.
Now, if

∂2f(θ0, θ1)

∂2θ0

∂2f(θ0, θ1)

∂2θ1
−
(
∂2f(θ0, θ1)

∂θ0∂θ1

)2

> 0, (25)

we can assure that the critical point above indeed
yields the local maximum. This condition is satisfied if
|
∑
j aj(−1)yjk(xj , x̃)| > |

∑
j aj(−1)yj |.
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Fig. 1: Classification Circuits. (a) The Hadamard-test classifier depicted with the state preparation and the equal superpositionof
the Hadamard. (b) This is altered to now have rotational gates with arbitrary angles instead of the two Hadamard gates. (c)
and (d) are analogue but with the swap-test classifier.

Having only two free parameters, another critical point
is given when sin(θ0) = sin(θ1) = 0. This condition
also satisfies Eq. (24), and hence a candidate for the max-
imizing solution. The condition in Eq. (25) is satisfied
if |

∑
j aj(−1)yjk(xj , x̃)| < |

∑
j aj(−1)yj |. However, if

sin(θ0) = sin(θ1) = 0 is used, then the classification outcome
becomes 〈σ(a)

z σ
(l)
z 〉 =

∑
j aj(−1)yj , and hence does not

construct the classification based on given dataset. Thus we
conclude that this is not a suitable solution. Therefore, we
argue that the best suited solution is given by the condition
cos(θ∗0) = cos(θ∗1) = sin(φ∗) = 0, which is satisfied with the
use of Hadamard gates. The variance is given as Eq. (17),
and this is the optimal value if |

∑
j aj(−1)yjk(xj , x̃)| >

|
∑
j aj(−1)yj |.

IV. ROBUSTNESS TO NOISE

Imperfections are unavoidable in the implementation of
quantum algorithms. The theory of quantum error correction
and fault-tolerance guarantees that the quantum computation
can be performed reliably under noise at the cost of increasing
the quantum resources (e.g. qubits and gates) as long as
the physical error rate is below certain threshold value. The
resource overhead is larger if the physical error rate is larger,
even if it is below the fault-tolerance threshold. Typical NISQ
devices will not have enough number of qubits to perform
an arbitrary fault-tolerant quantum computation. Therefore,
minimizing the resource overhead for fighting against noise
is of critical importance. In the following, we show that
under certain relevant noise models, the quantum binary clas-
sification can be performed reliably without quantum error
correction while increasing the number of repetition only
quadratically with respect to an effective error rate.

A. Classifier with a single-qubit measurement

Both HTC and STC rely on measuring an expectation value
of a two-qubit observable σ(a)

z σ
(l)
z . The same outcome can be

obtained by measuring an expectation value of a single-qubit

observable after an additional two-qubit gate. We introduce a
notation for the controlled bit-flip (CNOT) operation as I(i)⊗
|0〉〈0|(j) + σ

(i)
x ⊗ |1〉〈1|(j) = cX(i|j) to mean that the bit-flip

operation is applied to a target qubit i if the state of the control
qubit j is |1〉. Then the following property holds:

cX(i|j)†
(
σ(i)
z ⊗ I(j)

)
cX(i|j) = σ(i)

z ⊗ σ(j)
z .

With the above it is trivial to see that

〈σ(a)
z σ(l)

z 〉 = Tr
(
ρfσ

(a)
z σ(l)

)
= Tr

(
ρfcX(a|l)†σ(a)

z cX(a|l)
)

= Tr
(
cX(a|l)ρfcX(a|l)†σ(a)

z

)
= Tr

(
ρ̃fσ

(a)
z

)
, (26)

where ρf is the density matrix representation of the final state
of either the HTC or the STC quantum circuit, and ρ̃f is the
modified final state in these circuits obtained by applying the
CNOT operation on the ancilla qubit with the label qubit as
the control. Therefore, the HTC and STC algorithms can be
performed with a single-qubit measurement with addition of
a CNOT gate. The quantum circuit with this modification is
depicted in Fig. 2a

As a simple demonstration, we took the toy example from
Ref. [21] and simulated the quantum binary classification pro-
tocol with the one-qubit measurement scheme. The example
data set consists of two training data and one test data as

|x1〉 =
i√
2
|0〉+

1√
2
|1〉 , y1 = 0,

|x2〉 =
i√
2
|0〉 − 1√

2
|1〉 , y2 = 1,

|x̃〉 = cos
θ

2
|0〉 − i sin

θ

2
|1〉 . (27)

Simulations are carried out in two sets. First, we assume an
ideal implementation without noise to verify the idea. Then
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Fig. 2: One Qubit Measurement. (a) By adding a CNOT
gate with the label qubit as control and the ancillary qubit
as target, one can apply a one qubit z-measurement only. (b)
Simulations of the one-qubit-measurement scheme simulated
with and without noise. We compare the mean and the majority
voting as the classification rule, and show that the majority
voting is more favorable in practice. These results are obtained
from 8192 shots and the noisy simulations are with respect to
an IBM quantum devices called ibmq_rome.

we performed simulations with a realistic noise model. The
noisy simulations implemented quantum circuits with gate
decomposition (i.e. transpilation) given by a five-qubit IBM
quantum device available called ibmq_rome and its noise
model. We also tested the use of majority vote for classification
in place of the expectation value as suggested in Sec. III-C.
Each quantum circuit is repeated 8192 times to gather the
measurement statistics. The simulation results are shown in
Fig. 2b.

B. Effect of noise

As a simple noise model, let us consider the depolarizing
error that acts only on the ancilla qubit at the end of the
quantum circuit before the measurement. The effect of the
single-qubit depolarizing channel acting on the final state ρ̃f
can be studied with the Kraus representation as

Ed(ρ̃f ) =

4∑
k=1

E
(a)
k ρ̃f

(
E

(a)
k

)†
, (28)

where the set of Kraus operators are given as

E =

{√
1− 3p

4
I,

√
p

4
σx,

√
p

4
σy,

√
p

4
σz

}
with a depolarizing error rate 0 ≤ p ≤ 1. Then one can
calculate the expectation value under this noise model as

Tr
(
Ed(ρ̃f )σ(a)

z

)
= Tr

(
4∑
k=1

E
(a)
k ρ̃f

(
E

(a)
k

)†
σ(a)
z

)

=

4∑
k=1

Tr
(
ρ̃fE

(a)
k σ(a)

z E
(a)
k

)
= (1− p) Tr

(
ρ̃fσ

(a)
z

)
, (29)

where the last line is obtained by using the commutation rela-
tions of the Pauli operators. This equation shows that under the
single-qubit depolarizing noise model, the expectation value to
be measured in HTC and STC are reduced by a factor of 1−p,
but importantly, it will not change the sign of the expectation
value. This has an imperative consequence; the single-qubit
depolarizing noise acting on the ancilla qubit of the final
state can be easily mitigated since the classification only uses
the sign of the measurement outcome. The same level of the
classification accuracy as that of the noiseless case can be
achieved by repeating the measurement O(1/(1− p)2) times.
This result is deduced again from the Chebyshev inequality in
Eq. (8).

Now we extend the error model to be an arbitrary Pauli
channel acting on all qubits, which is the most basic noise
channel ubiquitous in quantum information science [24]. That
is,

Ep =

4n∑
j=1

cjPj ρ̃fP
†
j , (30)

where Pj ∈ {I, σx, σy, σz}⊗n is an element in the set of n-
qubit Pauli operators, and cj ∈ R, c ≥ 0, and

∑4n

j=1 cj = 1.
Note that Pj can be written as Pj = P

(1)
j ⊗ P

(2)
j ⊗ . . . ⊗

P
(n)
j . Under this noise model, the expectation value of interest

becomes

Tr
(
Ep(ρ̃f )σ(a)

z

)
= Tr

 4n∑
j

cjPj ρ̃fPjσ
(a)
z


=

4n∑
j

cj Tr
(
ρ̃fP

(a)
j σ(a)

z P
(a)
j ⊗ P (2)

j P
(2)
j ⊗ . . .⊗ P (n)

j P
(n)
j

)

=

4n∑
j

cj Tr
(
ρ̃fP

(a)
j σ(a)

z P
(a)
j

)
= (CI + Cσz

− Cσx
− Cσy

) Tr
(
ρ̃fσ

(a)
z

)
, (31)

where Ci =
∑
j|P (a)

j =i
cj . Therefore, an arbitrary Pauli noise

channel acting on the final state of the classifier only scales
the expectation value by a constant factor determined by the
noisy process. As long as this factor is positive, the classifier



can be made robust to noise by repeating the measurement
O(1/(CI + Cσz − Cσx − Cσy )2) times.

V. CONCLUSION

Kernel-based quantum classification algorithms are promis-
ing candidates for NISQ applications. These algorithms are
based on measuring an expectation value of an observable,
which requires an experiment to be repeated many times
to provide a good estimate. In this work, we investigated
the possibilities and strategies to reduce this extra resource
overhead. We showed explicitly that the variance in Hadamard-
test and the swap-test circuits are optimal in terms of the
quantum circuit design. In addition to the variance analysis,
we calculated skewness and argued that the mode can be a
statistically better quantity to measure for classification. We
also explicitly calculated the number of repetition necessary
to succeed a quantum classification protocol under relevant
noise models and showed that it can be performed correctly
without quantum error correction. The findings presented in
this work are useful for designing NISQ experiments to per-
form quantum classification protocols with minimal overhead
and robustness to noise.
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