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Abstract—Data augmentation has been widely used in machine
learning for natural language processing and computer vision
tasks to improve model performance. However, little research
has studied data augmentation on graph neural networks,
particularly using augmentation at both train- and test-time.
Inspired by the success of augmentation in other domains, we
have designed a method for social influence prediction using
graph neural networks with train- and test-time augmentation,
which can effectively generate multiple augmented graphs for
social networks by utilising a variational graph autoencoder
in both scenarios. We have evaluated the performance of our
method on predicting user influence on multiple social network
datasets. Our experimental results show that our end-to-end
approach, which jointly trains a graph autoencoder and social
influence behaviour classification network, can outperform state-
of-the-art approaches, demonstrating the effectiveness of train-
and test-time augmentation on graph neural networks for social
influence prediction. We observe that this is particularly effective
on smaller graphs.

Index Terms—graph neural networks, social network analysis,
social influence analysis, augmentation

I. INTRODUCTION

Graph neural networks (GNNs) [1] have been shown to
be effective in various graph machine learning tasks, such as
link prediction and node classification. The rapid growth of
online social networks has led to the development of numerous
methods for studying social behaviour online. However, many
learning tasks on social networks have relied heavily on
manual feature extraction. GNNs have provided an alternative
to this with their ability to automatically learn representations
end-to-end. One such task of interest, which has been shown
to be enhanced using GNNs, is social influence prediction [2].

Data augmentation [3], which increases the amount of
data available by creating informative variations of existing
data, can improve the performance of machine learning mod-
els and has been widely used in many machine learning
tasks [4, 5, 6]. In the fields of computer vision (CV) [7, 3]

and natural language processing (NLP) [8], the combination
of data augmentation methods and deep neural networks have
been shown to be effective. By performing data augmentation,
model performance can be improved as it facilitates the neural
network to learn generalizable features related to the task.
While GNNs have become a popular research field, little
research has focused on using data augmentation for GNNs,
especially in terms of using augmentation at both train- and
test-time. Motivated by the success of data augmentation in
CV and NLP, we study whether data augmentation at not only
train-time, but also test-time, can improve the performance of
GNNs, particularly on the task of social influence prediction.

Extending the work of DeepInf [2], we have developed a
method, AugInf, for social influence prediction with both train-
and test-time augmentation for GNNs. In this method, the
augmented graphs are first generated by utilising a variational
graph autoencoder (VGAE) [9] and then social influence is
predicted by joint training of both a Graph Auto-Encoder
(GAE) [9] and a GNN prediction module based on either a
Graph Convolutional Network (GCN) [10] or a Graph Atten-
tion Network (GAT) [11]. We have compared the performance
of AugInf with several state-of-the-art GNN approaches by
experimenting on numerous social networks. Our experimental
results show that AugInf can improve prediction performance
on several of these social networks.

In summary, our contributions are as follows. First, we
propose a joint training approach consisting of Graph Auto-
Encoder (GAE) [9] and GNN prediction module. The GNN
prediction module is implemented as either a Graph Atten-
tion Network (GAT) [11] or a Graph Convolutional Network
(GCN) [10]. The joint training approach optimizes for two
tasks simultaneously. The first is to obtain more effective
latent representations of input graphs, while the second is to
utilize the resulting representations to improve social influence
predictive performance. Additionally, we use the augmentation
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approach at both train- and test-time to further improve the
joint training model performance, which we demonstrate with
an ablation study. To the best of our knowledge, we are the
first to explore test-time augmentation on GNNs, and therefore
the first to combine both train-time and test-time augmentation
on GNNs. Finally, we conduct an experimental evaluation on
multiple different social networks comparing our proposed
method with two state-of-the-art methods.

II. RELATED WORK

a) Graph Neural Networks: Graph Neural Networks
(GNNs) [12, 13] have rapidly grown to become a popular
research area, providing a highly competitive approach for
tasks involving graph data. One line of research focuses
on unsupervised models, e.g. VGAE [9] and Graphite [14].
These unsupervised variational models typically aim to use
generative modelling of graphs for graph reconstruction, link
prediction and clustering. Additionally, supervised models
have attracted significant attention, such as SCNN [15],
ChebyNet [16], GAT [11] and GCN [10], which are widely
used in tasks where labelled data is available.

b) Data Augmentation: Data augmentation has been
shown to be an effective approach in machine learning which
expands a dataset by producing transformed copies of data,
thereby making the model invariant to these transformations.
Data augmentation has been widely used to improve gener-
alizability of machine learning models in natural language
processing (NLP) and computer vision (CV). Most of the work
on data augmentation has focused on improving augmenta-
tion at the training phase, e.g., batch augmentation [5] and
UDA [6]. There are also studies that focus on augmentation
during the testing phase [17]. However, data augmentation for
graph neural networks has only been recently studied, such as
SUBG-CON [18] and NodeAug [19]. Particularly, there is no
research on test-time augmentation for GNNs.

c) Social Influence: The Independent Cascade
Model [20] and Linear Threshold Model [21] are classic
social network influence propagation models. Measuring
social influence can be broadly divided into two categories
based on the methods used. The first category typically utilizes
ranking algorithms such as TwitterRank [22], Truetop [23]
and EIRank [24], to quantify each user’s influence. This
category of methods provide a coarse influence value for
each user at a specific time-point and do not model changes
to influence, nor the direct effect of this influence on
others on the network. The second category of methods
are based on predictive models to estimate social influence
change. For example, on the global-level patterns of social
influence, the DeepCas model [25] can predict the information
cascade by using recurrent neural networks. DeepInf [2] and
NNMLInf [26] consider a social influence prediction task
as a label classification task and directly predict the user
behaviour with respect to influence.

III. PRELIMINARIES

Let G = (V,E) be an input graph which consists of a set
of nodes V and a set of edges E, where E ∈ V × V . In

the most general sense, a social network can be represented
by a graph G, where V represents users and E is the set of
directed edges representing how the users are connected. The
adjacency matrix A is a (0,1) matrix with 0s on its diagonal
(i.e. no self-connection) which can represent graph G, where
Aij = 0 indicates nodes i and j are not connected. If G is
undirected, Aij = 1 indicates nodes i and j are connected and
A is symmetric. If G is directed, Aij = 1 indicates there is a
link from node i to node j. A graph neural network model is
defined as f(X,A), where X is the node feature matrix of A.

A. Graph Convolutional Network

A Graph Convolutional Network (GCN) [10] is a semi-
supervised learning algorithm for graph data, typically used
for node and graph classification, as well as link prediction.
A GCN model is typically formed by stacking multiple GCN
layers, and for each GCN layer, the inputs are the adjacency
matrix A and the features matrix, H ∈ Rn×F , where n is the
number of vertices, and F is the number of features. For each
GCN layer:

H(l+1) = σ(D̃−1/2ÃD̃1/2H(l)W (l)), (1)

where Ã is the adjacency matrix A with added self-
connections (the diagonal elements of the matrix are 1), D̃
is the diagonal degree matrix where D̃ii =

∑
jÃij , and σ(·)

denotes an activation function. The input layer H(0) = X .
We will experiment with the use of a GCN model for social
influence prediction.

B. Graph Attention Network

A Graph Attention Network (GAT) [11] is an attention-
based version of GCN, which incorporates self-attention mech-
anisms. The GAT layer performs the self-attention mechanism
for each node by introducing attention coefficients. The self-
attention mechanism is an attention function attn:

RF
′
× RF

′
→ R, (2)

where F ′ represents the number of output features of each
node in a GAT layer and the attention coefficient between
each pair of nodes is calculated as:

eij = attn(Whi,Whj), (3)

where hi, hj ∈ RF and W ∈ RF ′ × RF , and the atten-
tion function attn is instantiated with a dot product and a
LeakyReLU [27] non-linearity. The attention coefficient eij is
considered as the importance of node j to node i. A softmax
function is adopted to the normalized attention coefficient to
make it easier to calculate coefficients and compare them
among nodes:

αij = softmaxj(eij) =
Exp(eij)∑

k∈Ni
Exp(eik)

, (4)

where Ni is the set of neighbour nodes of node i and αij
is the coefficient for aggregating the calculation of the output
feature hi′ which has incorporated neighborhood information:

hi
′ = σ(

∑
j∈Ni

αijWhj), (5)



where σ is a non-linear function. In order to make the self-
attention learning process more stable, it is known to be
effective to use multi-head attention to expand the attention
mechanism. By using K independent attention mechanisms
to perform transformations with Equation 5, and then con-
catenating their features together, the following output can be
obtained:

h′i =‖Kk=1 σ(
∑
j∈Ni

αkijWhkj ), (6)

where ‖ denotes the vector concatenation operation and the
dimension of h′i is KF ′. We will experiment with the use of
a GAT model for social influence prediction.

C. Graph Auto-Encoder

A Graph Auto-Encoder (GAE) [9] can utilize the GCN
layers to obtain the latent representations of the nodes in the
graph through an encoder-decoder structure to learn represen-
tations for downstream tasks, such as link prediction and node
classification. The encoder process can be expressed as:

Z = GCN(X,A), (7)

where Z ∈ Rn×F is the latent representation, which is also
referred to as an embedding. In this paper, we use a two layer
GCN autoencoder which can be defined as:

GCN(X,A) = Ãσ(ÃXW0)W1, (8)

where W0 and W1 are the parameters to be learned and σ
is the ReLU activation function. GAE uses the inner-product
as a decoder to reconstruct the original graph. In the training
process of GAEs, cross entropy is used as the loss function:

L =
1

N

N∑
i=1

−(yi log ŷi + (1− yi) log(1− ŷi)) (9)

In the above equation, yi represents the value of an element
in the adjacency matrix A (0 or 1), and N is the size of
A, ŷi represents the value of the corresponding element in
the reconstructed adjacency matrix Â (between 0 and 1). We
use GAE in the joint training model to obtain the latent
representation.

D. Variational Graph Auto-Encoder

A Variational Graph Auto-Encoder (VGAE) [9] uses latent
variables for the model to learn the distributions, and then
samples from these distributions to get latent representations.
In VGAE, Z is no longer obtained by a certain function (such
as eq. (7)), but by sampling from a Gaussian distribution. This
mechanism makes VGAE suitable for graph generation tasks.
VGAE uses a 2-layer GCN model (same as Equation. (8)) to
calculate the mean µ and variance σ respectively to obtain a
Gaussian distribution:

µ = GCNµ(X,A), (10)

logσ = GCNσ(X,A), (11)

W0 is the same in both GCNµ and GCNσ , but W1 is
different. Z can be calculated by reparameterization [28]

and the decoder of VGAE is also an inner-product. The loss
function of VGAE is:

L = LCE + LKLD, (12)

Where LCE is same as Equation 9 and LKLD is the KL
divergence which is 1

2

∑d
i=1(σ

2
i + µ2

i − log(σ2
i ) − 1), where

d is the dimension of Z. We use VGAE as part of the graph
augmentation process.

IV. METHOD

We propose a method for social influence prediction which
consists of a joint training of the GAE and the GNN pre-
diction module with both train- and test-time augmentation.
For clarity, as different strategies are used for train- and
test-time augmentation, we demonstrate the entire method in
Figure 1 with shared boxes showing training and testing stages,
respectively.

A. Data Augmentation

Before the joint training, we first obtain augmentations of
our data by adapting a similar idea to [4]. The approach for
augmentation consists of two steps: (1) using the variational
graph auto-encoder (VGAE) [9] to obtain edge probabilities
for all possible and existing edges in graph G, (2) using the
predicted edge probabilities, with a threshold set to stochas-
tically add new edges, creating a modified graph Gm, which
is used as input to the joint training process. The key idea of
this augmentation approach is to use information inherent in
the graph to predict which non-existent edges are likely to be
added to the augmented graph to improve generalization. As
a VGAE is a generative model, we utilize VGAE as part of
our graph augmentation process.

The VGAE consists of a two-layer GCN encoder and an
inner-product decoder:

M = σ(ZZT ), (13)

where Z is the latent representation, σ is an element-wise
sigmoid function and M is the predicted (symmetric) edge
probability matrix produced by the inner-product decoder. We
can add edges in graph G to obtain the augmentation graph
Gm according to the probabilities in M . Corresponding to
G = (V,E), Gm can be expressed as Gm = (V,Em), and for
each node v ∈ V , there are different edge sets e and em in G
and Gm respectively.

For efficiency, the input graph we will use is not an entire
graph G, but a set of subgraphs sampled by random walks
on G, resulting in N subgraphs, following the approach of
DeepInf [2]. We will perform augmentation on each of the
subgraphs separately, generating in total Q augmentations for
each of the N subgraphs. For the probability matrix Mi of each
subgraph, we will set a threshold, and augment the subgraph
by adding number of edges that have probabilities higher than
this threshold. This threshold, as a hyperparameter of AugInf,
will be discussed in the experimental section of this paper.
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Fig. 1. The AugInf method. AugInf will first obtain the predicted edge probability matrix M by using the VGAE [9]. A threshold hyperparameter will control
the amount of edges added during the augmentation. We extend the work of [4] to perform multiple augmentations, randomly sampling a subset of edges to
add to each original subgraph. (a) For train-time augmentation, the method will then integrate all augmentations together for the joint training process. The
joint training model has two steps: the GAE step will learn the latent representations of the input data for the prediction stage; the prediction module (GAT
or GCN) will produce the social influence predictions. The losses of these two stages (decoder loss and prediction loss) will be combined and propagated
backwards to jointly update the model. (b) For test-time augmentation, AugInf will generate several augmentations of each test (validation) example, learning
a representation for each before producing the influence prediction. AugInf will calculate the average of the predictions to produce the final social influence
prediction.

B. Representation Learning

AugInf will primarily use a GAE to learn a representation
of the graph via a transformation of the graph structure into
a low-dimensional latent space. Additionally, consistent with
DeepInf, AugInf will also use DeepWalk [29] to generate
features of both the original graph G and Q augmented graphs
as extra features for the social influence prediction.

C. Neural Network Model

We have implemented two variants of AugInf based on GCN
and GAT, denoted by AugInf-GCN and AugInf-GAT. In our
joint training model, AugInf-GCN uses GCN layers to obtain
the output, while AugInf-GAT uses multi-head GAT layers.

a) Jointly trained model with train- and test-time aug-
mentation: We utilize joint training of both the GAE and
the GNN prediction module to achieve two objectives: (1)
obtain a more effective latent feature representation of the
input graphs, (2) using these representations with the GNN
prediction module to more accurately predict social influence.
We experiment with the GNN prediction module implemented
as either a GAT or a GCN for the social influence prediction.

The train-time augmentation process is shown in Figure 1
(a). The inputs are the subgraphs sampled from graph G, along
with their augmentations. We utilize the learned representation
Z as one of the GNN prediction module features, along with
influence features and pretrained DeepWalk embeddings. The



influence features are provided by the authors of DeepInf [2],
which record the user behaviour status (i.e. have they taken an
action) and whether the user is the ego [2] user. The output of
the GNN prediction module is a 2-dimension representation
for each user (each node), corresponding to the negative log-
likelihood. The test-time augmentation process is shown in
Figure 1 (b). For each test graph, we generate a number of
augmented versions of the graph, learning representations and
producing influence predictions for each, with the average of
these predictions forming the final social influence prediction.

b) Loss: The loss function of the joint model consists of
two parts:

L = LD + LGAE , (14)

where LD is the loss of the final prediction and the ground
truth, which is calculated by a negative log-likelihood, and
LGAE is the loss of GAE which is calculated by the cross
entropy of the decoded reconstructed graphs and the input
graphs.

V. EXPERIMENTS

A. Datasets

We evaluate using four datasets across different social
network domains, namely OAG1 (Open Academic Graph),
Digg2, Twitter3 and Weibo4.
• The OAG graph consists of academic graphs representing

the co-author network in which the citation behaviours,
which we are predicting, are defined as the influence
action behaviour.

• The Digg dataset contains the timestamped voting be-
haviours of users on stories on a social news aggregation
website. The edges of Digg graph are defined as following
relationships and the influence actions, which we are
predicting, are voting behaviours.

• The Twitter dataset has been built by collecting Twitter
data corresponding to tweets collected before, during and
after the announcement of the discovery of the Higgs
boson in 2012. The graph is defined as a friendship
network, and the social action, which we are predicting,
is defined as whether a user retweets Higgs boson tweets.

• The Weibo graph was built from 100 randomly selected
users and their followers and followees. The social net-
work is defined as a friendship network, and the social
action, which we are predicting, is defined as retweeting
behaviors in the Weibo social network.

These datasets were used previously by Qiu et al. [2]. Qiu
et al. [2] sampled the entire social network into sub-networks
with 50 nodes in each sub-network by using a random walk
with restart, extracted features for each node and provided a
ground-truth for the dataset. The statistics of the three datasets
are shown in Table I.

1OAG dataset details: www.openacademic.ai/
2Digg dataset details: www.isi.edu/ lerman/downloads/digg2009.html/
3Twitter dataset details: snap.stanford.edu/data/higgs-twitter.html
4Weibo dataset details: www.aminer.cn/influencelocality

TABLE I
THE STATISTICS OF THE DATASETS. |V | AND |E| ARE THE TOTAL

NUMBERS OF NODES AND EDGES OF THE ORIGINAL DATASET
RESPECTIVELY AND N IS THE NUMBER OF SUBGRAPHS AFTER

PREPROCESSING.

OAG Digg Twitter Weibo
|V | 953,675 279,630 456,626 1,776,950
|E| 4,151,463 1,548,126 12,508,413 308,489,739
N 499,848 24,428 362,888 779,164

B. Evaluation Metrics

We analyze several hyperparameters in our model and
study how different hyperparameters may affect prediction
performance. The performance is evaluated in terms of Area
Under Curve (AUC) and F1 score (F1). We compare our
model with the state-of-the-art DeepInf [2] and PSCN [30]
algorithms.

C. Experiment Setup

In our experiments we apply three augmentations to each
graph with the augmentation hyperparameter threshold value
set to 0.8 and train for 500 epochs. We will discuss the
performance of varying these parameters in a later section. For
the GAE component, each of the two hidden layers contain
64 hidden units for Digg and Twitter, and 32 for OAG and
Weibo. They are trained with the Adagrad optimizer, using a
0.2 learning rate for OAG and Weibo, 0.05 for Digg and 0.1 for
Twitter. Weight decay is set to 0.0005 all datasets except Digg,
where it is 0.001. Additionally, we use dropout rate of 0.2. For
the GNN prediction module, the first and second layers each
contain 128 hidden units and the third layer, as the output
layer, has two hidden units. There are eight attention heads in
each GAT layer, which means each head needs to process 16
hidden units for Digg and Twitter, with four attention heads
for OAG and Weibo, which means each head needs to process
32 hidden units. The nonlinear activation function we use for
both augmentation and prediction (σ in Eq. 1 and 5) is the
exponential linear unit (ELU) [31].

D. Experimental Results

We report the performance of our method (AugInf-GAT
and AugInf-GCN) over ten runs. The mean and standard
deviations are shown in Table II. For clarity, the input features
of our models are influence features and pretrained DeepWalk
embeddings, consistent with the end-to-end method Deep-
Inf [2], but without any hand-crafted vertex features. As an
experimental comparison, we used the state-of-the-art GNN
methods DeepInf and PSCN [30] as the baselines.

Our proposed method AugInf-GAT achieves better perfor-
mance over most of the baselines in terms of AUC. However,
consistent with all models, the GCN-based approaches do
not perform well, as GCN uses the unweighted aggregations
over the neighbours’ representations when calculating a node’s
representations, a mechanism that appears not to be suitable
for tasks like social influence prediction, which benefits from
considering the importance of neighbouring nodes.



TABLE II
THE PERFORMANCE OF TWO AUGINF MODELS ON DIFFERENT DATASETS,
ALONG WITH THE PERFORMANCE OF THE BASELINES WITHOUT VERTEX

FEATURES.

Dataset Model AUC F1

Digg

DeepInf-GAT 0.8882(±0.011) 0.7052(±0.010)
DeepInf-GCN 0.8372(±0.007) 0.6404(±0.006)
PSCN 0.8499(±0.013) 0.6636(±0.011)
AugInf-GCN 0.8580(±0.013) 0.6711(±0.024)
AugInf-GAT 0.9067(±0.011) 0.7385(±0.017)

Twitter

DeepInf-GAT 0.7843(±0.002) 0.5484(±0.002)
DeepInf-GCN 0.7615(±0.004) 0.5271(±0.004)
PSCN 0.7664(±0.004) 0.5319(±0.006)
AugInf-GCN 0.7694(±0.003) 0.5360(±0.006)
AugInf-GAT 0.7861(±0.004) 0.5486(±0.007)

OAG

DeepInf-GAT 0.6814(±0.006) 0.4544(±0.004)
DeepInf-GCN 0.6281(±0.002) 0.4231(±0.003)
PSCN 0.6556(±0.006) 0.4372(±0.029)
AugInf-GCN 0.6334(±0.003) 0.4229(±0.011)
AugInf-GAT 0.6889(±0.012) 0.4602(±0.004)

Weibo

DeepInf-GAT 0.8212(±0.003) 0.5770(±0.003)
DeepInf-GCN 0.7706(±0.002) 0.5312(±0.004)
PSCN 0.8012(±0.004) 0.5625(±0.002)
AugInf-GCN 0.7531(±0.006) 0.5147(±0.004)
AugInf-GAT 0.8124(±0.005) 0.5785(±0.007)

Referring to the statistics of the datasets in Table I, we
can see that the performance improvement of AugInf-GAT
is particularly clear on the datasets with much fewer edges
(Digg) but limited on datasets with more edges (Twitter and
Weibo). We believe that this is because the Twitter and
Weibo datasets contain enough edges to learn a sufficiently
comprehensive representation, hence less benefit is gained
from the augmentation. We will further investigate the effect
of removing edges from graphs as part of data augmentation
in future work. Nonetheless, particularly for smaller graphs,
we believe our proposed approach of train- and test-time
augmentation can provide additional performance.

1) Hyperparameter Analysis: We conduct an hyperparame-
ter analysis on the Digg dataset with the same hyperparameters
values mentioned previously, unless stated otherwise.

a) Number of Augmentations: For the data augmentation,
we analyze the effect of the number of augmentations on the
performance of AugInf. We successively apply one to eight
augmentations while leaving the other parameters constant.
The results of this are shown in Figure 2. When we apply
four augmentations, the highest performance is achieved. After
that, as the number of augmentations increase, the AUC score
stabilises. Interestingly, the F1 score does not appear to be
affected by the number of augmented graphs and remains
stable between 0.73 and 0.74.

b) The Threshold for Augmentation: Another parameter
we analyze is the threshold that determines which edges may
be added. The results of this are shown in Figure 3. When the
threshold is set to 0.8 for Digg dataset, our method achieves
the highest performance, while on average the number of edges
per dataset increases by 2.7%. As we increase the number of
added edges, the performance of our method decreases.

1 2 3 4 5 6 7 8
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Fig. 2. The performance of AugInf-GAT on Digg as we vary the number of
augmentations. The value of threshold is set to 0.8.
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Fig. 3. The performance of AugInf-GAT on Digg as we vary the parameter
that controls the minimum quality of edges that are added for augmentation.
The number of augmentations is set to three.

E. Ablation Study

We have further evaluated AugInf-GAT and AugInf-GCN
on the individual components of our approach, to determine
the contribution of each component to the overall performance.

There are three main components in our approach: (1)
train-time augmentation (2) test-time augmentation and (3)
the jointly trained model. We have evaluated the following
combinations on the Digg dataset:

• Ablation #1: The method contains only a GNN pre-
diction module. We use this set of experiments as a
baseline to compare with other combinations when other
components are added.

• Ablation #2: The method contains the jointly trained
model with no augmentation. The purpose of this exper-
iment is to measure the effect of joint training without



augmentation.
• Ablation #3: The method uses a GNN prediction module

with train-time augmentation only. The purpose of this
experiment is to measure the effect of train-time aug-
mentation.

• Ablation #4: The method uses a GNN prediction module
with test-time augmentation only. The purpose of this
experiment is to measure the effect of test-time augmen-
tation.

• Ablation #5: The method uses a GNN prediction module
with both train-time and test-time augmentation. The
purpose of this experiment is to measure the effect of
both forms of augmentation together.

• Ablation #6: The method contains the joint training
model with train-time augmentation only. The purpose
of this experiment is to evaluate the extent of which
using train-time augmentation improves the joint training
model.

• Ablation #7: The method contains the joint train-model
with test-time augmentation only. The purpose of this
experiment is to evaluate the extent of which using test-
time augmentation improves the joint training model.

• Complete #8: The method is our complete method,
AugInf, consisting of all components.

The results with the GAT prediction module are shown in
Figure 4. Through the comparison with #1 and #2, we can
see the jointly trained model contributes to the performance
improvement. Through the comparison among the ablations
#1, #3, #4 and #5, we observe that the augmentations can
improve the GAT performance, but there is little difference
between using train-time augmentation and test-time augmen-
tation separately or together, without the jointly trained model.
The result of version #8, the complete AugInf method, shows
using train- and test-time augmentation, along with the jointly
trained model, has the highest AUC score and F1 score.

#1 #2 #3 #4 #5 #6 #7 #8
With GAT

0.87

0.88

0.89

0.90

0.91

0.92

0.93

AU
C

AUC

0.68

0.70

0.72

0.74

0.76

F1

F1

Fig. 4. The performance of the ablation study using GAT where #8 is our
complete method consisting of all components, AugInf.

The results with the GCN prediction module are shown
in Figure 5. The AUC scores of this set of experiments are

between 0.83 and 0.86. We can see that all components have
contributed to some extent to the performance of the GCN
prediction module, but overall, AugInf when using a GCN for
social influence prediction achieves lower performance than
AugInf when using a GAT for social influence prediction.

#1 #2 #3 #4 #5 #6 #7 #8
With GCN

0.82

0.83

0.84

0.85

0.86

0.87

0.88

AU
C

AUC

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

F1

F1

Fig. 5. The performance of using different combinations of components with
GCN, where #8 is our complete model consisting of all components, AugInf.

VI. CONCLUSIONS

In this paper we proposed a new social influence pre-
diction method, AugInf, which incorporates train- and test-
time augmentation with a jointly trained graph neural network
approach. During training, this method takes into account
the losses of both the graph representation learning and
downstream social influence prediction task. We improve per-
formance by applying numerous augmentations to the graphs
using variational graph auto-encoders at both train- and test-
time. Via an ablation study we show that the jointly trained
model obtains more effective latent feature representations by
using the joint loss along with both the train- and test-time
augmentations. We compare our proposed end-to-end method
with the state-of-the-art on several social network datasets.
The experimental results show that our proposed method,
AugInf-GAT, can improve the performance of predicting social
influence on a number of social networks, and in particular,
on the smallest of the social network graphs.
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