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Abstract—The advancement of technology in Quantum Com-
puting has brought possibilities for the execution of algorithms in
real quantum devices. However, the existing errors in the current
quantum hardware and the low number of available qubits make
it necessary to use solutions that use fewer qubits and fewer
operations, mitigating such obstacles. Hadamard Classifier (HC)
is a distance-based quantum machine learning model for pattern
recognition. We present a new classifier based on HC named
Quantum One-class Classifier (QOCC) that consists of a minimal
quantum machine learning model with fewer operations and
qubits, thus being able to mitigate errors from NISQ (Noisy
Intermediate-Scale Quantum) computers. Experimental results
were obtained by running the proposed classifier on a quantum
device and show that QOCC has advantages over HC.

Index Terms—quantum machine learning, quantum comput-
ing, pattern classification

I. INTRODUCTION

Quantum Computing (QC) [1] can solve some problems
more efficiently than any known classical algorithm. Examples
of quantum speedup are Shor’s factoring algorithm [2] and
Grover’s search algorithm [3]. Characteristics such as quantum
parallelism and other phenomena only observed in quantum
mechanics increased research interest of QC to problems
without known efficient algorithmic solutions.

Quantum Machine Learning (QML) [4] is an area of quan-
tum computing that combines artificial intelligence techniques
with the power of quantum computing. Several works propose
Quantum Machine Learning models and quantum supervised
learning problems. More related to our proposal, there are the
works presented in [5]–[10]. Such works introduce distance-
based quantum classifiers with similarities to the classifier
proposed in this paper and will be described in Section III.

We investigate the Hadamard Classifier (HC) [9] and present
an improved minimal classifier named Quantum One-Class
Classifier (QOCC) that aims to mitigate errors from NISQ
(Noisy Intermediate-Scale Quantum) devices [11]. QOCC

This work is supported by research grants from CNPq, CAPES and
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is based on HC and resembles the operation of a Proba-
bilistic Quantum Memory (PQM) [12]. We reduced HC by
removing its class and index quantum registers maintaining
accuracy. Besides that, HC needs a 2-qubit measurement to
perform the classification, and QOCC requires only a one-
qubit measurement. This modification results in a reduction in
measurement errors from current noisy quantum devices. Both
HC and QOCC are quantum machine learning models that use
quantum interference to classify new input data.

We perform experiments on IBM Quantum Experience [13]
to validate our classifier, the first experiment in an error-free
simulation environment, and then in two non-error-corrected
quantum processors ibmq athens and ibmq santiago. In the
error-free experiment, results show that QOCC accuracy is
equivalent to HC accuracy. QOCC has equivalent or better
accuracy in real quantum devices. We present the QOCC as
a minimum classifier that has competitive results compared
to HC (even with fewer operations and qubits) and classical
classifiers. Also, we provide an update on HC performance in
current quantum devices.

The remainder of this paper is divided into 6 sections. Sec-
tion II summarizes the basic principles of quantum computing.
Section III describes some quantum machine learning models
related to this work. Section IV describes the Hadamard
Classifier that motivated our proposal. Section V presents the
main results of this work: a description of the Quantum One-
Class Classifier. Section VI gives details of the experiments,
results, and a discussion. Finally, Section VII is the conclusion.

II. QUANTUM COMPUTING

A quantum computer is a machine capable of performing
computational calculations and operations based on inherently
quantum properties. Analogous to the classic bit, the unit of
quantum information is the quantum bit, or qubit. The logical
values “0”, “1”, or any superposition of these can be assigned
to a qubit. This superposition consists of a linear combination
of the states of the computational basis described by a vector as
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described in Eq. (1), where α and β are probability amplitudes
associated with the respective states and |α|2 + |β|2 = 1.

|ψ〉 = α|0〉+ β|1〉 =
[
α
β

]
(1)

One of the main characteristics of quantum computing
compared to classical computing is the superposition of states.
This superposition allows quantum computing to obtain a high
degree of computational parallelism. With n qubits, we can
create the superposition described in Eq. (2), where αi are
probability amplitudes associated with i states. Thus, n qubits
can represent 2n combinations of states.

|ψ〉 :=
2n−1∑
i=0

αi|i〉 (2)

Operations under a quantum state are performed by unitary
operators. Given a U : V → V operator, with V denoting a
vector space, U is said to be unitary when its inverse is equal
to its conjugate transpose. That is, UU† = U†U = I , where
I designates the identity operator. A quantum operator acts
linearly on vectors (Eq. (3)).

U |ψ〉 = U

(
2n−1∑
i=0

αi|i〉
)

=

2n−1∑
i=0

αiU |i〉 (3)

Quantum measurements are performed by operators who act
on the quantum state to determine the result of the computation
that was performed. Given the state in Eq. (1), one can use
the measurement operators M0 = |0〉〈0| and M1 = |1〉〈1| to
obtain the probability that the measurement result is 0 (|α|2)
or 1 (|β|2), respectively.

Quantum circuits are one of the ways available to represent
quantum computing. It is the quantum circuits that determine
which and in what order the operators are applied to one or
more qubits. Examples of quantum operators/gates and their
respective actions are: Not (4), Hadamard (5), Ry (6) and
Controlled-not (CNOT) (7).

X =

[
0 1
1 0

]
,

X|0〉 = |1〉
X|1〉 = |0〉 (4)

H =

[
1√
2

1√
2

1√
2
− 1√

2

]
,

H|0〉 = 1√
2
(|0〉+ |1〉)

H|1〉 = 1√
2
(|0〉 − |1〉) (5)

Ry(θ) =

(
cos
(
θ
2

)
−sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ) (6)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (7)

CNOT |0〉|0〉 = |0〉|0〉 CNOT |1〉|0〉 = |1〉|1〉
CNOT |0〉|1〉 = |0〉|1〉 CNOT |1〉|1〉 = |1〉|0〉

In addition to these, there is a generalization of the CNOT
quantum gate, which can include more than one qubit having
the control function (0, ..., i) and more than one qubit as target
(0, ..., j), in addition to being able to apply an arbitrary U
operator to the target qubits. The general controlled gate is
represented in Figure 1.

|q1〉 Ry(1.36) •

|q2〉 Ry(7.77) Ry(3.89)

Figure 4: Example of how to load a sample in the amplitudes of a quantum state.
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Fig. 1. Representation in the quantum circuit of a general controlled gate
where q0...qi are i−1 control qubits and q0...qj are target qubits. Operation
U is only applied to target qubits if all control qubits have true values.

III. QUANTUM MACHINE LEARNING

As stated in Section I, several approaches employ the
concept of quantum machine learning to perform classification
tasks. In this section, we will introduce some of the works most
related to our proposal.

In [5] is presented a binary quantum classifier based on
kernel methods. The authors show that quantum computing
can improve distance-based classification tasks in machine
learning based on kernel methods. This conclusion is obtained
through the efficiency with which quantum computing can
deal with large feature spaces. In [6], the label qubit is
removed reducing the original classifier proposed by [9]. They
propose a distance-based quantum classifier that uses SWAP-
Test to obtain a similarity metric between the training and test
samples.

In [8] it is proposed a quantum version of the well-known
K-Nearest Neighbors (KNN) algorithm. The authors used
Hamming distance as a measure of similarity between the
test and training samples. To carry out the classification, the
features of the dataset are stored in quantum bits. To prove
the model’s effectiveness, experiments were performed using
the MNIST database.

The classifier proposed in [7] also uses the Hamming
distance. As in [5], SWAP-Test was also used to obtain
the similarity measure. The experiments were performed on
the real quantum devices ibmqx2 and ibmq 16 melbourne
from IBM Quantum Experience. Despite demonstrating the
applicability and efficiency of the classifier in some examples,
the results show that the execution is not yet fully feasible in
current quantum devices.

Finally, during the time of writing, we noted the related
work [10]. Despite being a related approach where the authors
seek to build a minimal classifier, in [10] there is still the
conditional measurement present in the classifier shown in [9].



IV. HADAMARD CLASSIFIER

The Hadamard Classifier [9] aims to investigate how to
perform a distance-based classification task with a minimal
quantum circuit. The strategy used in the HC is to use
amplitude encoding to encode the input features and perform
quantum interference to evaluate the distance from a new
input vector to the training (stored) data. HC is a quantum
machine learning model that can be implemented in NISQ
devices. To validate the HC, the authors performed supervised
classification experiments using the Iris dataset [14] (available
in Scikit-learn [15]). The quantum system that performs the
classification is shown in Eq. (8), where |m〉 is an index
register flagging the mth training vector, |ψxm〉 is the mth
training vector, |ψx̃〉 is the new input, and |ym〉 is a single
qubit that stores the class.

|D〉 = 1√
2M

M∑
m=1

|m〉
(
|0〉|ψx̃〉+ |1〉|ψxm〉

)
|ym〉 (8)

The main limitation of HC is a conditional measurement
(see Figure 2), called postselection, that depends on the prob-
ability of measuring |0〉 in the ancilla qubit. A measurement is
made in the class qubit only after the postselection succeeds.
Experimental results showed 100% accuracy for classes 1 and
2 of the Iris dataset. However, due to the dependence on
postselection, more repetitions are needed to obtain a realistic
estimate of the result. Also, with the presence of this post-
selection, it is necessary to perform a 2-qubit measurement,
which can increase the probability of errors from the current
quantum noisy devices.

• • • • • •

Ry(θ) Ry(θ) • • • • X • • • •

Ry(θ) Ry(θ) Ry(θ) Ry(θ) Ry(θ) Ry(θ) Ry(θ) Ry(θ)

Figure 10: .
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a0 = 0 H • X • H

i0 = 0 Ry(α) Ry(β)

Figure 11: Minimal Quantum One-Class Classification.
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a0 = 0 H • X • • H a

m0 = 0 H • X • • m
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c0 = 0 × i
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Figure 13: Quantum circuit implementing the distance-based classifier using the two training vectors 0 and 1 and the
input vector ′̃ from the rescaled and normalised Iris flower dataset. First the ancilla and index qubits are put into uniform
superposition (step A) and the input vector ′̃ is entangled with the ground state of the ancilla (step B). Then the training
vector 0 is entangled with the excited state of the ancilla and the ground state of the index qubit (step C) followed by
entangling training vector 1 with the excited state of the ancilla and the index qubit (step D). Next, the data and class
qubits are swapped and the class qubit is flipped conditioned on the index qubit being 1 (step E) which completes the
initial state preparation. In step F, the Hadamard gate interferes the copies of ′̃ with the training vectors and the ancilla
is measured followed by a measurement of the class qubit (due to prior swapping now at the position of the i qubit) when
the ancilla was found to be in the 0 state.
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Fig. 2. Hadamard Classifier present in [9] showing an example of classifier
circuit wherein the step B the test vector is loaded and in steps C and D the
training vectors are loaded. In step F there is the disentanglement with the
Hadamard gate and the 2-qubit measurement.

V. QUANTUM ONE-CLASS CLASSIFIER

The postselection of the HC [9] succeeds with probability
pacc =

1
4M

∑
m |x̃ + xm|2. This probability depends on data

distribution and can tend to zero. Figure 3 presents an artificial
dataset where the postselection probability is approximately
0.02 for the pattern x0 and 0.98 for pattern x1. The postselec-
tion probability is a function of the Euclidean distance of the
new pattern to the patterns in the dataset and returns 0 with a
higher probability if the new pattern is near to the patterns in
the dataset. It is important to point out that the post-selection
problem found in [9] has already been addressed in [5], where

it was shown that only the result of measuring a single qubit
is necessary to determine the class.
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Fig. 3. An artificial example where the probability of postselection tends to
zero for a given new input vector x0 from class 0. The stars are samples from
the dataset and have a unit norm. The black square x0 (x1) is a sample of
class 0 (1) to be classified. Postselection is performed based on the distance
between the sample to be classified and all other samples in the dataset. In
this example, the sample x0 would not be classified because the approach
in [9] requires output 0 in the postselection to proceed with the classification.
Output 0 in postselection is only achieved if the data to be classified is close
to the other data in the dataset.

In this Section, we redefine the HC to use the outcome of
the postselection as the output of the classifier. With this, we
remove the class qubit, reduce the number of repetitions nec-
essary to estimate the output of the classifier, and reduce the
number of operations necessary to perform the classification.

The QOCC is based on the HC and extends its applicability
to allow the classification of a new input vector from a
quantum one-class classifier indicating the probability that the
vector will be associated with the set of loaded (training)
vectors in the classifier. Such a feature allows us to execute
the classifier with fewer repetitions to obtain the result and
perform only a 1-qubit measurement, instead of the 2-qubit
measurement present in the HC. As pointed in [16], the
error rate present in current quantum devices can cause the
power of quantum computing to be hidden. Therefore, the
reduction of a 2-qubit measurement to a 1-qubit measurement
also means an attempt to mitigate errors from the current
noisy quantum computers without necessarily making use of
a specific procedure for this.

In our approach, we use the same data preprocessing
strategy used in [9]. However, the classification of a new input
vector works similar to a probabilistic quantum memory [12].
This connection with quantum probabilistic memories comes
from the similarity in how the output is defined: a new input is
compared with the samples already present in the classifier and
the output is given by a probability distribution. Thus, the more
distant (different) the new input and stored samples are, the
more likely we are to see |1〉 when measuring the ancilla qubit.
On the other hand, if the similarity between them is high, we
will see in the output a greater probability of observing |0〉 in



the measurement of the ancilla. Thus, a new input vector is
classified according to a degree of membership of this new
vector against vectors already stored in the classifier. This
degree of membership is the probability of measuring 0 on
the output where previously was postselection.

Thus, the modification made here allows us to abstract the
issue of data distribution, which could lead to a very low
probability of postselection. Also, by loading training samples
from a single class, our classifier proves to be more flexible by
simplifying the classification/association of a new input vector
in any class.

Figure 4 shows the circuit of QOCC receiving inputs with
two features. In step E the computed output of successive
measurements represents the degree of membership of the new
input vector to the c class. Therefore, a degree of membership
greater than 0.5 means that the new input vector has been
classified as class c. The procedure for performing QOCC with
2 stored samples is shown in Algorithm 1.

A B C D E

|q0〉 = |0〉 H • X • • H

|q1〉 = |0〉 H • X •

|q2〉 = |0〉 Ry(α) Ry(β) Ry(γ)

Figure 5: Multiclass
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ancilla = |0〉 H

Input

X

Quantum model

Rz Ry

data0 = |0〉
...

datai = |0〉

Figure 6: Uma célula do Multiclass-QOCC. No Step A o ancilla é posto em superposição uniforme. Input vetor a ser
classificado é carregado com o amlitude encoding no Step B. As features são codificadas nas amplitudes dos data qubits
{data0, ..., datai}, onde i = {0, ..., N} e N é o número de features. Step C flips the ancilla qubit e coloca os dados do input
no ket 0. O quantum model do Step D é o circuito paramétrico responsável por encontrar o centróide artificial da classe.
A versão paramétrica que substitui a porta Hadamard é mostrada no Step E. Finalmente, no Step F, temos a medição
que retornará a probabilidade de o Input estar associado a esta célula do Multiclass-QOCC (i.e. a probabilidade de obter
0). A informação sobre os ângulos foi omitida por simplificação.
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data0 = |0〉
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datai = |0〉
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Fig. 4. Quantum circuit implementing quantum one-class classifier. The result
of successive runs of this circuit represents a kind of degree of membership
of the new input vector (step B) to the vectors already stored in the classifier
(steps C and D). The quantum gates Ry are responsible for loading data from
each vector through their associated angles α, β, and γ. Enclosed the dashed
lines is the subcircuit for state preparation. At the end of the computation
(step E), the Hadamard gate in the ancilla qubit interferes with the copies of
the new input vector with the loaded vectors and then the ancilla is measured.

In Figure 4 the rotation gates Ry in steps B, C and D
load the classical input vectors in quantum amplitudes. How-
ever, this is not so straightforward and requires an auxiliary
procedure to perform such an embedding, to be explained in
Section V-A.

Finally, when performing the experiments, we noticed that
with only 1 stored (training) sample in the classifier it was
possible to obtain an accuracy equivalent to the case where
we used 2 training samples. This performance equivalence
between the use of 1 or 2 stored samples is justified as this
single sample may be close to the centroid representation of
the class. In this way, the QOCC just got smaller, eliminating
the index qubit that can be seen in Figure 4. Regarding
the Algorithm 1, to perform the classification with 1 stored
sample, it is not necessary to have the index qubit. Thus, the
QOCC, as a minimum classifier, can be seen in Figure 5. The
results of these experiments can be seen in Section VI.

A. Amplitude Encoding
To perform the amplitude encoding necessary to encode

input data in the amplitudes of the qubits, we follow the
strategy present in [17]. Figure 6 illustrates how to start from
the desired vector to the state |0...0〉.

Algorithm 1: Quantum One-class Classifier (QOCC)
Input: test, training

1 Initialize quantum registers ancilla = |a〉,
index = |m〉, data = |i〉

2 Perform H|a〉 and H|m〉
3 Perform C-Ry(test)|a〉|i〉 to load the sample to be

classified
4 Apply X|ancilla〉 to entangle the test sample with the

ground state of the ancilla
5 Perform CC-Ry(training[0])|a〉|m〉|i〉 to load the first

training sample
6 Apply X|m〉 to entangle the first training sample with

the ground state of the index and the excited state of
the ancilla

7 Perform CC-Ry(training[1])|a〉|m〉|i〉 to load the
second training sample

8 Apply H|a〉 to interferes the copies of the test sample
with the training ones

9 Measure |a〉 to get the probability of the output being
|0〉 Return the degree of membership accordingly to
the result of the measurement

• • • •
• • • •∼= ∼=

Rz Rz Rz Rz Rz Rz Rz

Figure 8: The recursive decomposition of a multiplexed Rz gate. The boxed CNOT gates may be canceled.
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Figure 11: Minimal Quantum One-Class Classification.
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Fig. 5. Minimal Quantum One-Class Classification. In step B the test sample
is loaded. In step C a single stored sample is loaded. Finally, in step C, the
disentanglement and measurement of the ancilla qubit is performed.

In Figure 6 each β is a rotation angle to be performed by the
respective Ry gate and is calculated according to (9), where
s = {1, ..., n}, n is the number of qubits and j =

{
1, ..., 2i−1

}
(i is the index of the qubit in which the rotation gate is being
applied).

βsj = 2 arcsin


√∑2s−1

l=1 |α(2j−1)2s−1+l|2√∑2s

l=1 |α(j−1)2s+l|2

 (9)

The main idea is to perform different rotations for each
portion of the superposition state through multi-controlled
rotation gates. Amplitude coding is performed by applying the
inverse gates shown in Figure 6 in the inverse order. As an
example of how amplitude encoding works, Figure 7 shows the
procedure being performed to load the 4 feature input vector
|ψ〉 = −0.286|00〉 + 0.723|01〉 − 0.464|10〉 − 0.425|11〉 (Iris
sample 20) in a quantum circuit.

VI. EXPERIMENTS AND RESULTS

In this Section, we perform experiments using a quantum
simulator and real NISQ quantum devices. As in [9], we use
the Iris dataset [14] in our experiments. In addition, we also
performed experiments with Haberman’s Survival [18] and
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Figure 1: Explicar n, Ry e β
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Figure 2: Quantum circuit implementing quantum one-class classifier. The result of successive runs of this circuit represents
a kind of degree of membership of the new input vector (step B) to the vectors already stored in the classifier (steps C
and D). The quantum gates Ry are responsible for loading data from each vector through their associated angles α, β and
γ. Enclosed the dashed lines is the subcircuit for state preparation. At the end of the computation, the Hadamard gate
in the ancilla qubit interferes the copies of the new input vector with the loaded vectors and then the ancilla is measured.
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Figure 3: Procedure to reach the vector |0...0〉 from any other vector.
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Fig. 6. Procedure to reach the vector |0...0〉 from any other vector.

|q0〉 Ry(1.36) •

|q1〉 Ry(7.77) Ry(3.89)

Figure 4: Example of how to load a sample in the amplitudes of a quantum state.
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Figura 15 mostra como o amplitude encoding é realizado para um pattern com 4 features.
Na Figura MQC.c, temos a forma geral do nosso classificador para um dataset com 3 classes e 4 features. Note que o

fixed input é o mesmo para cada célula do MQC. Assim, cada célula tem seus parâmetros otimizados com relação a uma
classe e esse fixed input será comparado com cada uma. Ao final das medições, a célula que retornar a maior propabilidade
de se obter |0〉 indicará a classificação do new inut.
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Fig. 7. Example of how to load a sample in the amplitudes of a quantum
state.

Skin Segmentation [19] datasets. The characteristics of the
datasets can be seen in Table I.

Due to imbalanced data in Haberman’s [18] and Skin [19]
datasets, we use SMOTE re-sample procedure [20] to increase
the number of samples of the minority class. As our goal is
to build a binary classification method, we choose the two
first classes of the Iris dataset. To use the less number of
qubits, achieving the minimal quantum classifier, we chose
2 features of the datasets. In Haberman’s, we drop out the
attribute that stores the patient’s year of operation. The features
choose in the Iris dataset are sepal width and petal length. The
attributes of the Skin dataset are RGB colors of the pixel, and
we chose arbitrarily the R(red) and B(blue) colors. To estimate
the performance in an equal number of samples in all datasets,
we separate the Haberman’s and Skin in 4 batches of the same
number of Iris instances of the two first classes (100 samples).

To be able to use amplitude encoding to encode the samples
on the quantum circuit the sample vector must be normalized
and have unit length. Therefore, we standardize the data
features to have zero mean and unit variance and normalize the
sample vectors. Just like in HC, an adequate choice of training
vectors strongly influences the probability of classification
success. Ideally, we should load a larger training set, but due to
the limitations and errors of the available quantum hardware,
we decided, initially, to keep the original proposal and load
only 2 training vectors with 2 features for the classifier - this
choice aims to keep the classifier as simple as possible by
also configuring it as a proof of concept. Therefore, is called
training stage the procedure that chooses the pair that achieves
better accuracy in a training set. This stage is performed
exclusively in the quantum simulator present in Qiskit [21] on
a training set, that corresponds to 70% of the total dataset. As
a way of not having to execute all the combinations present in
the training set, we decided to take (among this 70%) 30 pairs
(or samples, in the case of the approach with a single stored
sample) to perform the training stage. The remaining 30% is
used as a validation set. To apply a fair statistical comparison,

we use the same sample folds on HC and QOCC.
In the validation step, we perform the inferences in the

validation set using the fixed pair chosen in the training
step. This choice has a different approach depending on the
quantum classifier. If the experiment is on QOCC this pair
has the same class, and if is on HC has different classes.
In addition to simulation using Qiskit simulator, the QOCC,
and HC inference is executed on IBM quantum devices [13]
(ibmq athens and ibmq santiago) followed the default (1024
runs) for each experiment/sample. Due to noise present in real
quantum computers, we get the average accuracy over 5 runs
of the validation circuits resulting from the Algorithm 1, with
the training pair and a sample from the validation set as input.
The complete experiment procedure is present in Algorithm 2.

TABLE I
DATASETS CHARACTERISTICS

Dataset Classes Features Instances
Iris 3 4 150

Haberman’s Survival 2 3 306
Skin Segmentation 2 3 245057

Algorithm 2: Experiments for Quantum One-Class
Classification
input: Training set T and validation set V containing

patterns of one class
1 Set accuracy variable abest = 0
2 Set best samples index kbest
3 Set inference array Itraininf

4 for (xk, xk+1) ∈ T × T where k ∈ N do
5 Calculate the angles Pangles of the training pairs

for Ry gates
6 X = T − {xk, xk+1}
7 for x ∈ X do
8 Calculate test angle xangle for Ry gate
9 y = QOCCsimulation(xangle, Pangles)

10 Itraininf ← (x, y)

11 end
12 aactual = accuracy(X , Itraininf )

13 if aactual ≥ abest then
14 abest ← aactual
15 kbest ← k
16 end
17 end
18 Calculate the angles Pbestangles of the training pairs with

better accuracy
19 for x ∈ V do
20 Calculate test angle xangle for Ry gate
21 y = QOCCreal device(xangle, Pbestangles)
22 Ivalinf ← (x, y)

23 end
24 Return aval = accuracy(V, Ivalinf )

Therefore, in order to validate our approach, we replicate



TABLE II
RESULTS OF HADAMARD CLASSIFIER EXECUTION ON SIMULATION AND
ON THE REAL DEVICES IBMQ ATHENS AND IBMQ SANTIAGO (MARKED

WITH AN ∗).

Dataset Simul./real HC
Iris simul. 97.78%
Iris real 92,44% / 92%∗

Haberman’s simul. 64.72%
Haberman’s real 62.50% / 62.72%∗

Skin simul. 95.56%
Skin real 87.56% / 87.56%∗

TABLE III
RESULTS OF 2-CLASS QOCC EXECUTION WITH 2 STORED SAMPLES ON

SIMULATION AND ON THE REAL DEVICES IBMQ ATHENS AND
IBMQ SANTIAGO (MARKED WITH AN ∗).

Dataset Simul./real QOCC C1 QOCC C2

Iris simul. 98.89% 100%
Iris real 98.89% / 91.11%∗ 98.67% / 97.33%∗

Haberman’s simul. 65% 64.17%
Haberman’s real 64.61% / 63.28%∗ 63.11% / 63.50%∗

Skin simul. 94.17% 95.56%
Skin real 89.17% / 83.44%∗ 90.44% / 88.44%∗

TABLE IV
ACCURACY OF THE CLASSICAL CLASSIFIERS SVM, DT, KNN, AND SGD.

Dataset SVM DT KNN SGD
Iris 100% 100% 100% 100%

Haberman’s 65% 65.83% 73.33% 58.33%
Skin 95.56% 95.83% 95.56% 86.11%

the HC and compare with our QOCC (Table II and Table III,
respectively). For comparison purposes, we perform the same
classification tasks using known classical classifiers. The re-
sults obtained are shown in Table IV.

As noted in Section V, in addition to removing the class
qubit, it was also possible to obtain significant results with
competitive accuracy when running QOCC with only 1 stored
sample. With that, it was possible to remove the index qubit
and improve QOCC in such a way as to be a minimum model
of classification based on distance. The results for these exper-
iments can be seen in Table V. Regarding Algorithms 1 and 2,
using only 1 stored sample, instead of loading pairs of samples,
we only load 1 training/validation sample. Lastly, the reposi-
tory https://github.com/lucasponteslpa/QOCClassifier contains
all codes used to generate the results of this paper.

A. Discussion

The accuracy presented in [9] is only achieved if postselec-
tion succeeds (i.e. when ancilla qubit is 0). In the experiments
performed, postselection had a probability greater than 50% of
success in only 47.66% of the executions on the real quantum
computer. This shows that HC requires more executions to be
carried out to have a more accurate answer.

TABLE V
RESULTS OF 2-CLASS QOCC EXECUTION WITH 1 STORED SAMPLE ON

SIMULATION AND ON THE REAL DEVICES IBMQ ATHENS AND
IBMQ SANTIAGO (MARKED WITH AN ∗).

Dataset Simul./real QOCC C1 QOCC C2

Iris simulation 98.89% 98.89%
Iris real 97.78% / 98.89%∗ 98.89% / 98.89%∗

Haberman’s simulation 62.78% 64.17%
Haberman’s real 63.33% / 61.94%∗ 64.44% / 61.11%∗

Skin simulation 95.56% 96.67%
Skin real 95% / 95.83%∗ 96.11% / 96.39%∗

Regarding the impossibility of classifying vectors from
the class 2 pointed in [9]: this obstacle was based on the
rapid decoherence of the class qubit when storing state |1〉.
In our experiments, it was not observed this impediment in
classifying class 2 vectors.

As our goal is to build a minimum distance-based classifier,
we ran our final experiments with just 1 stored sample. The
results of such experiments are shown in Table V and show
that the accuracy, remained consistent with the experiments
containing 2 stored samples (Table III). We can also observe
that, for the Skin dataset, QOCC with 1 stored sample per-
formed better than that with 2 stored samples. The advantage
of QOCC over HC at this point may not seem significant, since
we are dealing with only 1 class at a time. However, such a
reduction becomes more noticeable in a multiclass approach
with multiple QOCCs running in parallel. Thus, the execution
of a multiclass classifier based on QOCC on NISQ devices
would become more feasible concerning the number of qubits
needed.

Like in HC, our QOCC was built to deal only with the real
part of quantum states and is not suitable for general quantum
states. An approach to quantum classification that also takes
into account the imaginary part of quantum states is the one
that uses the SWAP-test, as in [5].

Finally, it is necessary to note that on datasets with only
two classes the QOCC works as a complete quantum binary
classifier. Therefore, it is possible to classify the entire dataset
only concerning the samples of a single class stored in the
classifier, so that the high (low) degree of membership of the
test samples to those already stored gives us the classification
between the two classes.

VII. CONCLUSION

In this work, we proposed a minimal Quantum One-Class
Classifier based on the Hadamard Classifier and the idea
of probabilistic quantum memory. Compared with the HC,
QOCC has equivalent or improved accuracy on real quantum
devices and uses fewer quantum resources. The QOCC is
competitive when compared with classical classifiers and can
be used to classify quantum data.

QOCC shows an advantage regarding the HC concerning
its size and the reduction of the 2-qubit measurement to a 1-
qubit measurement. In datasets with two classes, the QOCC



behaves like a complete quantum binary classifier, indicating
in the ancilla qubit the degree of membership of the input
vector to the class, just needing to load data from one of the
classes. We also provide an update of the HC performance in
current quantum devices.

There are some possible improvements to be explored.
Possible future works are to investigate how to use the QOCC
to classify multiclass datasets and explore how to insert
parameters into the classifier to improve its accuracy. Also,
it is possible to conduct a circuit optimization study for even
more efficient execution on NISQ devices.

ACKNOWLEDGMENTS

This work was supported by CNPq, CAPES, and FACEPE
(Brazilian research agencies). We acknowledge the use of IBM
Quantum services for this work. The views expressed are those
of the authors and do not reflect the official policy or position
of IBM or the IBM Quantum team.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2010.

[2] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, ser. SFCS ’94. Washington, DC,
USA: IEEE Computer Society, 1994, pp. 124–134. [Online]. Available:
http://dx.doi.org/10.1109/SFCS.1994.365700

[3] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’96. New York, NY, USA:
ACM, 1996, pp. 212–219. [Online]. Available: http://doi.acm.org/10.
1145/237814.237866

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[5] C. Blank, D. K. Park, J.-K. K. Rhee, and F. Petruccione, “Quantum
classifier with tailored quantum kernel,” npj Quantum Information,
vol. 6, no. 1, pp. 1–7, 2020.

[6] D. K. Park, C. Blank, and F. Petruccione, “The theory of the quantum
kernel-based binary classifier,” Physics Letters A, p. 126422, 2020.

[7] K. Kathuria, A. Ratan, M. McConnell, and S. Bekiranov, “Implemen-
tation of a hamming distance–like genomic quantum classifier using
inner products on ibmqx2 and ibmq 16 melbourne,” Quantum Machine
Intelligence, vol. 2, no. 1, pp. 1–26, 2020.

[8] Y. Ruan, X. Xue, H. Liu, J. Tan, and X. Li, “Quantum algorithm
for k-nearest neighbors classification based on the metric of hamming
distance,” International Journal of Theoretical Physics, vol. 56, no. 11,
pp. 3496–3507, 2017.

[9] M. Schuld, M. Fingerhuth, and F. Petruccione, “Implementing
a distance-based classifier with a quantum interference circuit,”
EPL, vol. 119, no. 6, p. 60002, 2017. [Online]. Available:
https://doi.org/10.1209/0295-5075/119/60002

[10] N. M. Neumann, “Classification using a two-qubit quantum chip,” arXiv
preprint arXiv:2004.10426, 2020.

[11] J. Preskill, “Quantum Computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https:
//doi.org/10.22331/q-2018-08-06-79

[12] C. A. Trugenberger, “Probabilistic quantum memories,” Physical Review
Letters, vol. 87, no. 6, p. 067901, 2001.

[13] (2020) IBM Q Experience. [Online]. Available: https://www.ibm.com/
quantum-computing/technology/experience/

[14] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[16] C. Kim, K. D. Park, and J.-K. Rhee, “Quantum error mitigation with
artificial neural network,” IEEE Access, vol. 8, pp. 188 853–188 860,
2020.

[17] M. Schuld and F. Petruccione, Supervised learning with quantum com-
puters. Springer, 2018, vol. 17.

[18] S. J. Haberman, “Generalized residuals for log-linear models,” in Pro-
ceedings of the 9th international biometrics conference, 1976, pp. 104–
122.

[19] R. B. Bhatt, G. Sharma, A. Dhall, and S. Chaudhury, “Efficient skin
region segmentation using low complexity fuzzy decision tree model,”
in 2009 Annual IEEE India Conference. IEEE, 2009, pp. 1–4.

[20] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[21] Qiskit, https://qiskit.org/, last accessed: 2019-11-14.

http://dx.doi.org/10.1109/SFCS.1994.365700
http://doi.acm.org/10.1145/237814.237866
http://doi.acm.org/10.1145/237814.237866
https://doi.org/10.1209/0295-5075/119/60002
http://arxiv.org/abs/2004.10426
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://www.ibm.com/quantum-computing/technology/experience/
https://www.ibm.com/quantum-computing/technology/experience/

	I Introduction
	II Quantum Computing
	III Quantum Machine Learning
	IV Hadamard Classifier
	V Quantum One-class Classifier
	V-A Amplitude Encoding

	VI Experiments and Results
	VI-A Discussion

	VII Conclusion
	References

