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Abstract—The problem of catastrophic forgetting has a history
of more than 30 years and has not been completely solved yet.
Since the human brain has natural ability to perform continual
lifelong learning, learning from the brain may provide solutions
to this problem. In this paper, we propose a novel biologically
plausible audio-visual integration model (AVIM) based on the
assumption that the integration of audio and visual perceptual
information in the medial temporal lobe during learning is
crucial to form concepts and make continual learning possible.
Specifically, we use multi-compartment Hodgkin-Huxley neurons
to build the model and adopt the calcium-based synaptic tagging
and capture as the model’s learning rule. Furthermore, we define
a new continual learning paradigm to simulate the possible
continual learning process in the human brain. We then test our
model under this new paradigm. Our experimental results show
that the proposed AVIM can achieve state-of-the-art continual
learning performance compared with other advanced methods
such as OWM, iCaRL and GEM. Moreover, it can generate stable
representations of objects during learning. These results support
our assumption that concept formation is essential for continuous
lifelong learning and suggest the proposed AVIM is a possible
concept formation mechanism.

I. INTRODUCTION

The problem of catastrophic forgetting has a history of
more than 30 years [1], and has always been a barrier to the
development of lifelong learning artifical intelligence.

The past few years have seen the rapid development of deep
learning and the community of continual learning. Under this
background, a series of continual learning paradigms (such as
incremental learning of new instances, new classes, and the
mixture of both) have emerged [2] and a variety of meth-
ods have been proposed by different research groups around
the world. The mainstream methods proposed for continual
learning are within the framework of artificial neural network
(ANN) with backpropagation (BP) algorithm [3]. Broadly,
these methods can be organized into the following topics:
regularizations of the network [4]–[10], parameters isolation
[11] [12], dynamic structure [13] [14], memory-based consol-
idation [15] [16], and the dual memory systems inspired by
the complementary learning system theory in the brain [17]–
[19]. Although many new methods has been proposed, they
are still far from the level of human continual learning. How
to achieve human-level continual lifelong learning remains to
be explored.

*Corresponding author: lihong.cao@cuc.edu.cn

Learning from the brain. The causes of catastrophic
forgetting problem can be manifold, so the solution to this
problem needs to be considered in many ways.

From the perspective of the neuron model, McCulloch-Pitts
neuron in ANN is oversimplified compared with the neurons
in the brain [20]. Neurons in the brain are not just points, they
have tree-like dendrites that perform nonlinear computations
[21]. The dendrites of pyramidal cells in the human brain are
more complex than those of other species [22], suggesting that
the multi-compartmental neuron model might be an essential
structure of high-level intelligence.

From the perspective of the synaptic model, the synapses
in ANN are also oversimplified compared to the real synapses
in the brain. As for the excitatory and inhibitory synapses in
the brain, their functions are not merely doing addition or
subtraction. Spatial and temporal correlations should also be
concerned when integrating the neural signals at the synapses.

Last, but perhaps most important, is synaptic plasticity.
Although BP is very efficient in ANN, it is still controversial
that whether BP is biologically plausible in the brain [23]
[24]. Synaptic plasticity in the brain involves the proteins
synthesis in the postsynaptic neurons, and is closely related
to the change of calcium concentration [25]. The theory of
synaptic tagging and capture (STC) depicts the relationship
between calcium concentration and plasticity-related proteins.
It provides an elegant biological explanation of the consoli-
dation of newly formed memories at the cellular and synaptic
scale [26]. The computational model [27] [28] of STC can
also explain some experimental phenomena well.

Concept formation and continual learning. For humans,
the result of continual learning in the brain is the formation of
concepts. Concept cells in the human brain are first discovered
and discussed in the literature [29]. These amazing cells, which
are discovered in the medial temporal lobe (MTL) in the
brain, respond to multi-modal stimuli of specific concepts.
For instance, Jennifer Aniston’s cells respond to any stimuli
closely related to Jennifer Aniston, whatever modality the
stimuli belong to, and would be silence if they encounter other
stimuli. Moreover, according to [30], these concept cells seem
to be unique in the human brain and may not exist in the brains
of other animals due to the lack of human-like high-level
language functions. Considering that humans always have
better continual lifelong learning ability than other animals, we
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Fig. 1. The overall framework of the present work for continual learning. (a). Encoding module. (b). Integration module. (c). Decoding module.

assume that these concept cells in the human brain may play
an important role to make continual lifelong learning possible.
Although the concept formation mechanism is still unknown,
exploring its possible mechanism is vital in comprehending
the meaning of specific concepts in the human brain. Based
on the assumption above, from the perspective of building up
a human-like continual learning system, we find it necessary
to establish the relationship between continual learning and
concept formation, and model the possible process of concept
formation in the brain under a continual learning paradigm.

In order to do the simulation, we focus on the multi-
modal integration in the perirhinal cortex of the MTL. The
perirhinal cortex is a primary source to the entorhinal cortex,
which is the main interface between the hippocampus and
neocortex. Moreover, the cells in this region also respond to
multi-modal stimuli [31] [32], which might be the origin of
concept cells in the hippocampus. In terms of multi-modal
inputs, the perirhinal cortex receives visual signals mainly
from the temporal area TE, which is the end of the ventral
visual pathway, and it receives auditory signals mainly from
the parahippocampus, which has strong connections with the
auditory cortex [33].

Method overview. Inspired by the multi-modal integration
in the perirhinal cortex of the MTL, we propose a novel bio-
logically plausible audio-visual integration model (AVIM) for
modeling concept formation in a continual learning paradigm.
Besides, we design a set of pre-defined high-level auditory
feature codes to guide the integration learning based on the
following three assumptions: (i) The auditory system of the
brain is capable of self-learning [34]; (ii) The development of
hearing is earlier than vision; (iii) Hearing has a significant
impact on vision. Under this circumstance, the whole integra-
tion learning process can be regarded as a supervised continual
learning process, with the supervised signals coming from the
pre-defined auditory feature codes.

Fig. 1 shows the proposed overall framework for continual
learning. In general, there are three modules in our model: the
encoding module, the integration module, and the decoding
module. The encoding module’s role is to preprocess the
sensory signals, including extracting the high-level features
of visual signals and generating a set of pre-defined auditory
feature codes served as the supervised signals for learning.
The integration module’s role is to do audio-visual associative

learning and generate audio-visual concept representations
under a continual learning paradigm. Finally, the outputs of
the integration layer are fed to the decoding module to obtain
final classification results.

The contributions of the present work can be summarized
as the following: 1. We propose a biologically plausible
audio-visual integration model as the solution to the continual
learning task defined in Section III-A. 2. We define NOSC as
the high-level auditory object feature codes and use it to guide
the audio-visual integration in the continual learning paradigm;
3. We design an energy normalized linear classifier to decode
spike trains from the audio-visual integration layer and an
updating algorithm for this classifier to overcome catastrophic
forgetting in the continual learning process.

The organizational structure of the rest paper is as follows.
In Section II, we will explain the details of the overall
framework for concept formation and continual learning. In
Section III and Section IV, we will describe the experimental
design and the implementation details, respectively. In Section
V and VI, we will analyse the experimental results of our
model and other advanced methods and discuss the advantages
and possible limitations of the proposed model. Finally, we
will draw a conclusion in Section VII.

II. METHOD

In this section, we will describe the three modules in the
proposed model, namely the encoding module, the integration
module and the decoding module in order.

A. Encoding module

The role of the encoding module is to extract the high-level
features of sensory signals. Specifically, for visual signals, we
use a pre-trained convolutional neural network (CNN) to get
high-level visual features, denoted as V-FV. For a given CNN
and an input image I , we define the V-FV of I to be the output
vector of the last layer before classification layer of this CNN.
The length of a V-FV is denoted as Nvfv .

For auditory signals, we define the high-level auditory fea-
ture codes of different concepts to be a set of near-orthogonal
and sparse binary codes, denoted as NOSC for simplicity. We
assume that these auditory signals serve as a kind of super-
vised signal for vision during learning. Several facts support
the NOSC assumption. Firstly, high-level representations of
auditory objects in the brain are highly sparse coded. Secondly,



Fig. 2. Visualization of the NOSC(10, 15, 2, 1) under a specific random seed.
Red squares represent neurons with value of 1.

the number of shared neurons in the high-level representations
of auditory objects are relatively small [35]. A set of NOSCs
for C concepts can be written as NOSC(C, Nnosc, n, K), where
Nnosc is the length of a NOSC, n is the number of neurons
with value of one in a NOSC and K is the max number of
shared neurons between any two NOSCs. See Fig 2 for an
example of NOSC(10, 15, 2, 1).

B. Integration module

The role of the integration module is to do audio-visual
integration under a continual learning paradigm, as shown
in Fig. 1 (b). We name this module AVIM (audio-visual
integration model) for simplicity. There are four layers in
AVIM: the VF, AF, AVI, and INB. Here, VF, AF, AVI and
INB represent the visual feature layer, the auditory feature
layer, the audio-visual integration layer, and the inhibition
layer, respectively. Amongst these four layers, AVI is the most
critical one, it comprises a set of multi-compartment Hodgkin-
Huxley neurons, whose dendrites receive high-level visual and
auditory signals from VF and AF, respectively. Besides, we
design INB connecting to AVI for balancing its energy.

a) Network structure: For the sake of description, we
denote the number of neurons in VF, AF, AVI and INB as
Nv , Na, Nav , and Ni, respectively. Furthermore, we denote
the connections from VF to AVI as S1, the connections from
AF to AVI as S2, the connections from AVI to INB as S3 and
the connections from INB to AVI as S4.

In AVIM, the proportion of neurons between different layers
have the following relations: Nv = Na, Nav = 3Nv and Ni =
0.25Nav . The projecting ratio of S1, S2, S3, and S4 are set to
be 1:4, 1:6, 1:1.5, and 1:10, respectively. For example, if the
projecting ratio of S1 is set to 1:4, it means that each neuron
in VF is connected to four neurons in AVI on average.

b) Neuron model: For neurons in VF and AF, we use
point neuron model. Specifically, the firing rate of the j-th
neuron in VF/AF is 20v, here v (v∈[0,1]) is the activation
value of the corresponding j-th neuron in V-FV/NOSC gener-
ated from the encoding module. In addition, the spike trains
of neurons in VF/AF follow the Poisson distribution.

For neurons in AVI, we adopt a two-compartment pyramidal
neuron model proposed in [36] based on the fact that the
major neurons in the perirhinal cortex are pyramidal cells.
The neuron in AVI consists of a soma and a dendrite. The
dynamic equations of voltage in soma and dendrite are de-
scribed in (1) and (2), respectively. The constant parameters
in (1) and (2) are: Cm = 3.4µF/cm2, gds = 0.11µS/cm2,
gsd = 0.33µS/cm2. More details of these dynamic equations
can be seen in [36].

For neurons in INB, we adopt an inhibitory neuron model
in the hippocampus proposed in [37], which has one com-
partment, see (3). The constant parameter in (3) is Cm =
1µF/cm2.

Cm
dVs
dt

=− IL − INa − IK − ICa − Iahp
− gds(Vs − Vd) + IsynToSoma

(1)

Cm
dVd
dt

=− IL − INa − IK − ICa − Iahp
− gsd(Vd − Vs) + IsynToSoma

(2)

Cm
dV

dt
= −IL − INa − IK + Isyn (3)

c) Synaptic model: As for connections in AVIM, S1 is
the excitatory connections with AMPA and NMDA receptors.
S2 and S3 are excitatory connections with only AMPA re-
ceptors. S4 is inhibitory connections with GABA receptors.
AMPA and GABA receptors are ligand-gated ion channels,
and their synaptic current models follow (4). Here, gsyn is
the receptor conductance, Esyn is the reverse potential of the
receptor.

Isyn(t) = gsyn(t)(Vm(t)− Esyn) (4)

NMDA receptor is a voltage-gated ion channel, and its synap-
tic current model is shown as (5). Here, [Mg2+]o = 1,
β = 0.08 and γ = 9.

Isyn(t) = gsyn(t)s(V )(Vm(t)− Esyn)

s(V ) =
1

1 + [Mg2+]oexp(−βVm + γ)

(5)

The model of receptor conductance gsyn is a β-function,
see the following (6). Here, gsyn is the maximum receptor
conductance, τrise and τdecay are the time constants, and x(t)
are the spike trains of presynaptic neuron.

τriseτdecay
d2g

dt2
+ (τrise + τdecay)

dg

dt
+ g = gsynx(t) (6)

Besides, the reversal potentials of the above receptors are:
EAMPA = 0mV,ENMDA = 0mV,EGABA = −80mV . See
TABLE I for the details of parameters settings of the synaptic
models.

TABLE I
PARAMETERS SETTINGS OF THE SYNAPTIC MODELS.

Synapses gAMPA(mS/cm2) gNMDA(mS/cm2) gGABA(mS/cm2) τrise(ms) τdecay(ms)

S1 0.1 0.1 N 5 100
S2 1.0 N N 2 2
S3 0.01 N N 2 2
S4 N N 0.0002 5 100

d) Synaptic plasticity: We adopt the STC model as
synaptic plasticity model. Two conditions are needed for the
occurrence of synaptic plasticity. First, the calcium concentra-
tion in the spine [Ca2+]s should be high enough to set the
spine into a plastic state, that is, synaptic tagging. Second,
the plasticity related protein (PRP) is synthesized due to the
calcium concentration in the dendrite [Ca2+]d. The calcium



in the spine mainly comes from calcium-permeable synaptic
receptors such as NMDA, while the calcium in the dendrite
comes from the calcium ion channels on the cell membrane.
We use zl and zh as the minimum and maximum factors that
the synapse can achieve during LTD and LTP, respectively.
The synapse change factor is determined by the following (7).
We set zl = 0.5, zh = 5 in the experiments.

z =
(1− zl)zhey + zl(zh − 1)e−y

(1− zl)ey + (zh − 1)e−y
(7)

where the variable y in (7) is governed by the following (8)
to (13) :

dy

dt
=
Tag · PRP

τy
(8)

d(Tag)

dt
= −αTTag + βT (Flag − Tag) (9)

Flag =


0 [Ca2+]s < Ca0s

−1 Ca0s ≤ [Ca2+]s ≤ Ca1s
1 [Ca2+]s > Ca1s

(10)

βT =


0 if Flag = 0
βT,LTD if Flag = -1
βT,LTP if Flag = 1

(11)

Here, τy, αT , βT,LTD and βT,LTP are the time constants. The
variable Ca0s and Ca1s are calcium concentration thresholds
of spine. We set τy = 1.0, αT = 0.5, βT,LTD = 0.5, βT,LTP =
0.5, Ca0s = 0.1, Ca1s = 0.2 in the experiments. The PRP in
Eq.(8) is defined as integration of PRP rate, which satisfying
the following (12):

d(PRPrate)

dt
=− PRPrate

τp
+ αp(1− PRP rate)

− 1

4
(
1

τp
+ αp)

∫ t

0

PRPratedt

(12)

The value of αp in (12) satisfies the following (13):

αp =

{
0 [Ca2+]d < Ca0d

αT,LTD/LTP [Ca2+]d ≥ Ca0d
(13)

Here, αT,LTD/LTP is a time constant, τp is the decay time
constant, Ca0d is calcium concentration threshold of dendrite.
We set αT,LTD/LTP = 0.000833, τp = 0.5, Ca0d = 0.12 in
the experiments.

C. Decoding module

Fig. 3. The procedure of the proposed updating algorithm for LOC-ANN
during continual learning.

To decode the spike trains in AVI, we design an energy
normalized linear output classifier based on the ANN called
LOC-ANN for simplicity. Since LOC-ANN can suffer from
catastrophic forgetting in the process of continual learning,
we hence design the following algorithm to overcome this
problem.

We denote the dimension of input of LOC-ANN as Nav ,
the total number of objects or concepts need to be learned
as C, the connection from the i-th input neuron to the j-th
output neuron as W (i, j)(i = 1, 2, ..., Nav; j = 1, 2, ..., C),
the number of training samples in the k-th class as Nk, and
the AVI firing rate pattern of a sample that belongs to the k-th
class as AV I(k)j (j = 1, 2, ..., Nk), AV I(k)j ∈R1×Nav .

At first, all the connections in LOC-ANN are set to 0.
During learning the k-th class, only the connections that belong
to the k-th output, denoted as W (i, k)(i = 1, 2, ..., Nav),
are able to update using the following (14), while other
connections keep fixed.

W (i, k) =
1

Nk

Nk∑
j=1

AV I
(k)
j (i) (14)

After learning the k-th class, we normalize connections that
belong to the k-th output neuron using (15) to balance the
energy of classification weights of each class:

Wnorm(i, k) =
W (i, k)√∑Nav

j=1 W
2(j, k)

(15)

Fig. 3 shows the procedure of the proposed updating algorithm
for LOC-ANN during learning.

III. EXPERIMENTAL DESIGN

In this section, we will describe our work’s experimental
design, including the continual learning paradigm adopted in
the experiments and the preprocessing of datasets.

A. Continual learning paradigm

In this paper, we focus on the incremental learning of new
classes. Since the definition of incremental learning of new
classes may be different in different papers, we will describe
in detail the continual learning paradigm used in the present
work based on [38].

Supposed D is the trainset. C is the total number of classes
in D. D can be divided into T individual batches that cannot
be assumed to be iid, i.e., D =

⋃T
t=1Bt. Each batch Bt con-

sists of Nt labeled training samples, i.e., Bt = {(xi, si)}Nt
i=1,

where xi is a training sample and si is the corresponding label.
A commonly used continual learning paradigm satisfies that
the model is only permitted to learn from batches sequentially
in order, i.e., at time t it only has access to Bt.

In the continual learning paradigm adopted in our work,
we set Nt = 1, which means that there is only one sample
in each batch. Moreover, each sample can be observed only
once, which is equal to setting the epochs number to 1. Under
this continual learning paradigm, we present the samples in D
to AVIM in the order of their category indexes. See Fig. 4 for



Fig. 4. The continual learning paradigm adopted in the present work.

an example of such continual learning or incremental learning
of new classes.

Since the continual learning paradigm described above may
not be suitable for EWC [5], iCaRL [16], GEM [15] and
OWM [8], which are state-of-the-art methods to be compared
in this paper, we hence design the following continual learning
paradigm that can be adopted in those methods: we set T =
C and Bt = {(x(t)i , t)}N(t)

i=1 (t = 1, 2, ..., C), where x(t)i is a
training sample that belongs to the t-th class and N (t) is the
number of training samples in the t-th class. For EWC, iCaRL,
GEM and OWM, when learning a specific task, training
samples from this task can be observed multiple times in order
to achieve reasonable performance if needed.

B. Datasets

a) Constructing few-shot datasets: We construct three
few-shot image datasets of 10, 20 and 100 classes as ex-
perimental datasets from the following three frequently-used
datasets: MNIST [39], EMINST [40] and CIFAR100 [41].
Specifically, for MNIST10 and EMNIST20, we randomly
select 50 samples per class from the trainset as training
samples and 50 samples per class from the testset as test
samples. For CIFAR100, we randomly select ten samples per
class from the trainset as training samples and ten samples per
class from the testset as test samples.

b) Constructing the V-FV datasets: A V-FV dataset is a
dataset composed of all the V-FVs that belong to the trainset
and testset. For MNIST10 and EMNIST20, we use a LeNet-5-
like [42] CNN to construct the corresponding V-FV datasets.
For CIFAR100, we use a VGG-16 model [43] to extract V-
FVs of images. Since the topic we focus on is the multi-modal
integration in MTL, we do not make any structural changes on
these CNNs, except that we use the sigmoid activation function
instead of ReLU in the last layer before the classification layer.
Furthermore, for each dataset, we adopt CNNs with different
qualities to obtain four V-FV groups with different levels of
linear separability, which are denoted as FV1 to FV4. The
linear separability levels of these V-FVs from FV1 to FV4
are increasing. See Fig 5 for T-SNE visualization [44] of the
V-FV datasets of MNIST10.

IV. IMPLEMENTATION DETAILS

In this section, we will describe the implementation details
of the proposed AVIM and other methods to be compared.
All the experiments of AVIM are implemented in the in-
house developed brain simulator named NiMiBrain, and all

Fig. 5. T-SNE visualization of the four V-FV datasets of MNIST10.

TABLE II
THE SIZES OF AVIM IN THREE DIFFERENT DATASETS.

CNN NOSC AVIM

DATASET Nvfv Nnosc C n K Nv Na Nav Ni

MNIST10 15 15 10 3 1 15 15 50 12
EMNIST20 20 20 20 3 1 20 20 67 16
CIFAR100 50 50 100 5 2 50 50 167 40

the ANN-based comparison experiments are implemented in
PyTorch [45].

A. Details of AVIM

a) Size of AVIM: Since there are three datasets of differ-
ent sizes, the sizes of AVIM adopted in different datasets are
different; see TABLE II for details.

b) Details of training: For better description, we define
a pair of NOSC and V-FV from the same class as an A-
V training sample. When learning the i-th class, each A-
V training sample that belongs to this class is presented to
AVIM for 2 seconds. Besides, there are 4 seconds between two
adjacent training samples. When AVIM has finished learning
the i-th class, we keep it fixed. We only present the V-FVs that
belong to the i-th class in trainset to the model and then update
the parameters in LOC-ANN using the algorithm described in
Section II-C. See a visualization of this process in Fig. 6 (b).

c) Details of testing: After learning the i-th class, we
keep AVIM and LOC-ANN fixed and only present the V-
FVs of the learned classes in testset to the model for testing.
Each test sample is presented for 1 second. And there are 0.1
seconds between presentations of two adjacent test samples.
See Fig. 6 (c) for a visualization of this process.

B. Other methods to be compared

We compare the proposed AVIM with six ANN methods,
including ANN(Base), ANN(Offline), iCaRL [16], GEM [15],
EWC [5] and OWM [8]. Here, ANN(Base) represents the
sequential training without any regularization and memory
capacity, and ANN(Offline) represents the standard offline
training that does not suffer from catastrophic forgetting. EWC
and OWM are network regularization methods for continual
learning. iCaRL and GEM are methods that based on memory-
replay. For iCaRL, we compare the continual learning results
of both iCaRL-NCM and iCaRL-CNN. Specifically, iCaRL-
NCM adopts the nearest class mean (NCM) classifier for
prediction, while iCaRL-CNN adopts the end-to-end classifier
for prediction.

For a fair comparison, all ANN methods adopt a similar
network structure as AVIM, which is a network with three
fully-connected layers with Nv inputs neurons, Nav hidden



Fig. 6. (a). The whole procedure of continual learning C classes. Here NN-i
is composed of the AVIM-i and the LOC-ANN-i, and i represents the i-th
learning step. (b). The detail of learning the i-th class. (c). The detail of
testing after learning the i-th class.

neurons, and C output neurons. We remove the biases in
the classification layer. As for weight initialization, we use
Kaiming-uniform [46]. For ANN(Offline) and ANN(Base),
we adopt abundant training on each task. For other ANN-
based comparison methods, we use grid search for the training
parameters such as learning rate and batch size and other
parameters associated with particular methods such as the
alpha in OWM. Fixed epochs number or early stop strategy are
used in different comparison methods in order to get reason-
able continual learning results. For memory-replay methods
such as iCaRL and GEM, we set the memory capacity per
class (MCPC) to 1. For other comparison methods except
the ANN(Offline), the MCPC is 0. For ANN(Offline), all
the training samples are used during learning. We run each
comparison methods 10 times under different random seeds.

V. RESULTS

A. Numerical results
The continual learning performance of each comparison

method is evaluated by the final top-1 test accuracy of all the
learned classes. Statistic data of these comparison results are
recorded in TABLE III to TABLE V. In addition, we visualize
these methods’ test accuracy curves during continual learning
on the few-shot CIFAR100-FV datasets, see Fig. 7 for details.

TABLE III
FINAL CONTINUAL LEARNING ACCURACIES OF AVIM AND OTHER ANN
METHODS ON MNIST-FV. BLACK BOLDING IN THE TABLE REPRESENTS
THE BEST CONTINUOUS LEARNING PERFORMANCE IN EACH EXPERIMENT

UNDER THE SAME CONSTRAIN OF MEMORY CAPACITY PER CLASS.

Method MCPC FV1(%) FV2(%) FV3(%) FV4(%)

ANN(Offline) All 71.8±1.0 75.0±0.9 85.4±0.6 88.9±0.5

ANN(Base) 0 10.1±0.1 10.4±0.9 10.6±1.5 12.3±3.1
EWC 0 32.2±5.5 34.4±6.6 43.6±9.2 52.5±10.3
OWM 0 62.5±0.5 68.5±1.0 83.9±0.9 88.8±0.6
AVIM 0 63.3±1.9 70.5±0.8 82.5±2.0 89.8±0.2

GEM 1 56.5±3.6 66.8±3.2 79.5±2.7 89.5±0.3
iCaRL-CNN 1 54.5±1.2 62.8±0.6 69.9±1.2 88.4±0.5
iCaRL-NCM 1 63.8±0.6 71.6±0.8 83.2±0.4 89.8±0.3

TABLE IV
FINAL CONTINUAL LEARNING ACCURACIES OF AVIM AND OTHER ANN

METHODS ON EMNIST20-FV.

Method MCPC FV1(%) FV2(%) FV3(%) FV4(%)

ANN(Offline) All 72.8±0.8 77.5±0.5 83.3±0.5 90.0±0.4

ANN(Base) 0 9.7±0.1 9.7±0.1 9.6±0.1 10.0±0.5
EWC 0 26.3±3.8 27.4±3.6 29.9±3.2 32.7±3.1
OWM 0 62.7±0.6 69.5±0.9 79.9±0.5 90.0±0.4
AVIM 0 63.6±0.3 67.5±1.1 76.6±0.5 90.8±0.5

GEM 1 52.6±3.6 60.1±3.0 72.9±1.6 89.0±0.4
iCaRL-CNN 1 57.8±0.6 63.3±0.6 73.6±0.6 89.1±0.4
iCaRL-NCM 1 63.4±0.6 71.4±0.5 79.5±0.4 89.8±0.3

TABLE V
FINAL CONTINUAL LEARNING ACCURACIES OF AVIM AND OTHER ANN

METHODS ON CIFAR100-FV.
Method MCPC FV1(%) FV2(%) FV3(%) FV4(%)

ANN(Offline) All 49.8±0.3 57.5±0.4 66.1±0.3 72.9±0.2

ANN(Base) 0 1.9±0.5 2.9±0.6 3.3±0.3 3.0±0.3
EWC 0 13.6±2.3 16.4±2.4 18.8±2.2 27.6±3.7
OWM 0 38.9±0.7 47.5±0.9 58.0±1.2 71.4±0.5
AVIM 0 47.9±0.2 56.4±0.8 64.8±0.6 72.9±0.3

GEM 1 36.5±1.8 45.2±1.7 55.2±1.3 72.0±0.3
iCaRL-CNN 1 44.5±0.7 52.7±0.5 61.7±0.7 71.9±0.4
iCaRL-NCM 1 47.0±0.7 55.4±0.6 63.9±0.4 72.9±0.2

B. Result analysis

From the results shown in TABLE III-V and Fig. 7, we can
conclude that:

1. In general, the proposed AVIM can achieve comparable
performance as OWM and iCaRL, while being much better
than GEM and EWC.

2. On the few-shot CIFAR100-FV datasets, the performance
of AVIM can surpass that of OWM especially in the FV1 to
FV3 datasets. The reason of this phenomenon could be that
the weight space (50×167+167×100) is too limited for OWM
to find enough orthogonal sub-spaces for learning 100 classes.
Under this limited weight space, OWM could not update the
weights in a way without seriously interference with previous
learned classes when learning on new classes, especially in the
case that FVs of different classes are non-linearly separable.

3. On the few-shot CIFAR100-FV datasets, it seems that
the performance of iCaRL-NCM is slightly worse than that
of AVIM, the reason of which is that the limited memory
capacity of iCaRL affects its performance when learning more
classes. Additional experiments have shown that for iCaRL,
the more memory capacity it has, the better continual learning
performance it can achieve.

4. For iCaRL, iCaRL-NCM can achieve better performance
compared with iCaRL-CNN, which means that NCM can serve
as a more efficient classifier than the end-to-end classifier
during this continual learning paradigm. It is worth mentioning
that the NCM classifier adopted in iCaRL-NCM normalizes
the mean vector of each class, which is similar to the equal-
energy assumption of each class we made in the proposed
LOC-ANN.

5. GEM, another advanced method that based on memory-
replay, is overall worse than iCaRL in the comparison results.
The reason of these results is largely because GEM randomly
selects samples from the previously learned classes to replay,



Fig. 7. The continual learning test accuracy curves of AVIM and other ANN
methods on the few-shot CIFAR100-FV datasets. The solid lines in this figure
represent methods that do not need to store memory, and the dotted lines
represent methods that need to store memory for replaying during learning.

Fig. 8. In the MNIST10-FV1 dataset, we visualize (a). AVI firing rate
patterns of samples in each learned class during continual learning. The small
matrix Mi,j (1 ≤ i ≤ 10; i ≤ j ≤ 10) on the left is composed of the
AVI firing rate patterns belong to the i-th class in the j-th learning step.
The large matrix on the right is composed of all the Mi,j during continual
learning. (b). ANN(Base)’s hidden patterns of samples in each learned class
during continual learning. All these patterns are normalized to vectors whose
magnitude are 1 for visualization.

while iCaRL adopts a well-designed sample selection method.
Moreover, like iCaRL, the limited memory capacity of GEM
can also affect its performance on memory consolidation.
In short, memory quality and capacity can have significant
impacts on the continual learning performance of memory-
replay based methods such as iCaRL and GEM, especially
when learning more classes.

6. The performance of EWC is significantly worse than
AVIM, OWM, iCaRL, and GEM, suggesting that using EWC
alone for protecting important weights is not sufficient to
overcome catastrophic forgetting when incremental learning
of new classes.

VI. DISCUSSION

In this section, we discuss the advantages and possible
limitations of the three important components in the proposed
model.

a) AVIM: AVIM is a spiking neural network, served as
the core component for audio-visual integration and concept

formation. Experiments (see Fig. 8) show that AVIM can
generate stable AVI representations of objects during continual
learning, while ANN(Base)’s hidden patterns are relatively
instable, indicating that BP without extra restrictions could be
too plastic to consolidate memory. The success of formation
of these stable representations of objects is mainly due to
the multi-compartmental neuron model and the STC plastic-
ity. Additional experimental results show that if the multi-
compartment neuron models in AVIM are replaced with the
point neuron model, AVI could not form stable representations
of objects, which results in catastrophic forgetting of previous
learned classes under the same framework. Although two-
compartments neuron model is used in our experiments, more
compartments and connection patterns should be considered in
the future. Besides, we use STC plasticity, which is a calcium-
based local learning rule, allowing us to study and control
more details of neuronal responses. It will also be worthwhile
to try different SNN learning rules to see what would happen
under this experimental setting.

b) NOSC: In this paper, we define NOSC as the high-
level auditory feature codes, and use them as the supervised
signals to guide the audio-visual integration. Besides, we do
not allow the connections from AF, which take NOSC as input,
to AVI to have plasticity during learning. Although this design
is easy to implement and is reasonable to some extent, it is
more biologically plausible to integrate multi-modal signals in
the case of both visual and auditory plasticity.

c) LOC-ANN: LOC-ANN is used to decode the spike
trains of AVI and get the final classification results. We design
LOC-ANN to be an energy normalized linear classifier based
on the assumption that different classes during learning have
equal energy. Furthermore, we make LOC-ANN update in a
flexible way in the continual learning paradigm adopted in this
paper. Overall, LOC-ANN is an efficient decoder for AVIM
to obtain the classification results.

VII. CONCLUSION

In this paper, we propose a novel biologically plau-
sible audio-visual integration model (AVIM) with multi-
compartment neurons and STC plasticity for continual learn-
ing. Our experimental results show that AVIM can achieve
comparable performance with advanced methods such as
OWM, iCaRL and GEM in different datasets. Moreover, it
can generate stable representations of objects during continual
learning. It should be noted that the present work does not
mainly aim to get the top-1 performance on specific datasets
but more to explore the possible mechanism of brain-like
learning and concept formation. Finally, we point out that
the proposed AVIM is just an initial step towards solving the
problem of concept formation and continual learning. There
is still a long way to go.
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