
Dynamic Planning Networks

Norman Tasfi 1 Miriam Capretz 1

Abstract

We introduce Dynamic Planning Networks
(DPN), a novel architecture for deep reinforce-
ment learning, that combines model-based and
model-free aspects for online planning. Our ar-
chitecture learns to dynamically construct plans
using a learned state-transition model by se-
lecting and traversing between simulated states
and actions to maximize information before act-
ing. In contrast to model-free methods, model-
based planning lets the agent efficiently test ac-
tion hypotheses without performing costly trial-
and-error in the environment. DPN learns to effi-
ciently form plans by expanding a single action-
conditional state transition at a time instead of
exhaustively evaluating each action, reducing the
required number of state-transitions during plan-
ning by up to 96%. We observe various emergent
planning patterns used to solve environments, in-
cluding classical search methods such as breadth-
first and depth-first search. DPN shows improved
data efficiency, performance, and generalization
to new and unseen domains in comparison to sev-
eral baselines.

1. Introduction
The central focus of reinforcement learning (RL) is the se-
lection of optimal actions to maximize the expected reward
in an environment where the agent must rapidly adapt to
new and varied scenarios. Various avenues of research
have spent considerable efforts improving core axes of
RL algorithms such as performance, stability, and sam-
ple efficiency. Significant progress on all fronts has been
achieved by developing agents using deep neural networks
with model-free RL (Mnih et al., 2015; 2016; Schulman
et al., 2015; 2017; OpenAI, 2018); showing model-free
methods efficiently scale to high-dimensional state space

1Department of Electrical and Computer Engineering, Univer-
sity Of Western Ontario, London, Ontario, Canada. Correspon-
dence to: Norman Tasfi <ntasfi@uwo.ca>.

and complex domains with increased compute. Unfortu-
nately, model-free policies are often unable to generalize
to variances within an environment as the agent learns a
policy which directly maps environment states to actions.

A favorable approach to improving generalization is to
combine an agent with a learned environment model,
enabling it to reason about its environment. This ap-
proach, referred to as model-based RL learns a model
from past experience, where the model usually captures
state-transitions, p(st+1|st, at), and might also learn re-
ward predictions p(rt+1|st, at). Usage of learned state-
transition models is especially valuable for planning, where
the model predicts the outcome of proposed actions, avoid-
ing expensive trial-and-error in the actual environment –
improving performance and generalization. This contrasts
with model-free methods which are explicitly trial-and-
error learners (Sutton & Barto, 2017). Historically, appli-
cations have primarily focused on domains where a state-
transition model can be easily learned, such as low dimen-
sional observation spaces (Peng & Williams, 1993; Deisen-
roth & Rasmussen, 2011; Levine & Abbeel, 2014), or
where a perfect model was provided (Coulom, 2006; Sil-
ver et al., 2016a) – limiting usage. Furthermore, applica-
tion to environments with complex dynamics and high di-
mensional observation spaces has proven difficult as state-
transition models must learn from agent experience, suf-
fer from compounding function approximation errors, and
require significant amounts of samples and compute (Oh
et al., 2015; Chiappa et al., 2017; Guzdial et al., 2017).
Fortunately, recent work has overcome the aforementioned
difficulties by learning to interpret imperfect model predic-
tions (Weber et al., 2017) and learning in a lower dimen-
sional state space (Farquhar et al., 2017a).

Planning in RL has used state-transition models to perform
simulated trials with various styles of state traversal such
as: recursively expanding all available actions per state for
a fixed depth (Farquhar et al., 2017a), expanding all actions
of the initial state and simulating forward for a fixed num-
ber of steps with a secondary policy (Weber et al., 2017),
or performing many simulated rollouts with each stopping
when a terminal state is encountered (Silver et al., 2016a).
An issue arises within simulated trials when correcting er-
rors in action selection, as actions can either be undone by
wasting a simulation step, using the opposing action, or

ar
X

iv
:1

81
2.

11
24

0v
2 

 [
cs

.L
G

] 
 4

 F
eb

 2
01

9



Dynamic Planning Networks

Outer AgentPlanningEncoder

ht
𝒪

st
zt

hT
𝔗

at

(a) Architecture Overview.

z𝜏*

a𝜏*w𝜏
z𝜏+1
*

h𝜏+1
𝒪

𝜏 / T
h𝒪

𝜏

z𝜏
{p,c,r}

∼h𝔗
𝜏

h𝔗
𝜏h𝔗

𝜏 - 1

∼
× State

Model

(b) A Planning Step.

Figure 1. Dynamic Planning Network Architecture. Encoder is comprised of several convolutional layers and a fully-connected layer.
Planning occurs for τ = 1, ..., T steps using the IA and state-transition model. The result of planning is sent to the outer agent before
an action at is chosen. The fully-connected layer within the outer agent, outlined in blue, is used by the planning process. b) A single
planning step τ . Inner Agent, shown as the blue box with a recursive arrow, performs a step of planning using the state-transition model.
Circles containing × indicate multiplication and circles with ∼ indicate sampling from the Gumbel Softmax distribution.

are irreversible, causing the remaining rollout steps to be
sub-optimal in value. Ideally, the agent can step the roll-
out backwards in time thereby undoing the poor action and
choosing a better one in its place. Additionally, during roll-
outs the agent is forced to either perform a fixed number of
steps or continue until a terminal state has been reached;
when ideally a rollout can terminate early if the agent de-
cides the path forward is of low value.

In this paper, we propose an architecture that learns to dy-
namically control a state-transition model of the environ-
ment for planning. By doing so, our model has greater flex-
ibility during planning allowing it to efficiently adjust pre-
viously simulated actions. We demonstrate improved per-
formance against both model-free and planning baselines
on varied environments.

The paper is organized as follows: Section 2 covers our
architecture and training procedure, Section 3 covers re-
lated work, Section 4 details the experimental design used
to evaluate our architecture, and in Section 5 we analyze
the experimental results of our architecture.

2. Dynamic Planning Network
In this section, we describe DPN, a novel planning archi-
tecture for deep reinforcement learning (DRL). We first dis-
cuss the architecture overview followed by the training pro-
cedure. Steps taken in the environment use subscript t and
steps taken during planning use subscript τ .

2.1. DPN Architecture

The architecture is comprised of an inner agent, an outer
agent, a shared encoder, and a learned state-transition
model. Figure 1(a) illustrates a high-level diagram of the
DPN architecture. The outer agent (OA) is a feed-forward
network and the inner agent (IA) is based on a recurrent
neural network (RNN). The architecture interacts with the
environment by observing raw environment states st ∈ S
and outputting actions at ∈ A via OA. However, before
OA outputs an action at the IA performs τ = 1, ..., T steps

of planning by interacting with an internal simulated en-
vironment; where this simulated environment is defined by
the state-transition model and sub-section of OA’s network.
Selection of an action at by OA uses the final hidden state
hIT ∈ R1×hi

of IA and an embedding of the current state
zt ∈ R1×z . The objective of IA is to maximize the total
planning utility provided to the OA; where planning utility,
given in Equation 1, measures the value of the new state
zτ+1 and the change in the OA’s hidden state if it were to
have undergone a state transition from zτ to zτ+1.

Uτ (hOτ+1, h
O
τ , zτ ) = V (zτ+1) + D[hOτ+1, h

O
τ ] (1)

where zτ+1 is the state transitioned to after performing an
action aτ in state zτ , hOτ ∈ R1×ho

and hOτ+1 are the hidden
states of OA after perceiving the current state zτ and state
transitioned to zτ+1 respectively, D is a distance measure,
and V (zτ+1) is the value OA assigns the next state zτ+1.
After empirical evaluation of different distance functions,
such as L2, Cosine distance, and KL, we found the L1 dis-
tance function to be the most performant.

The planning utility formulation is similar to previous work
on intrinsic motivation (Plappert et al., 2017; Chentanez
et al., 2005). Where agent rewards are usually defined as
ret + rit with ret representing the external reward given by
the environment and rit is an internally generated reward.
In the case of Equation 1, external reward is provided by
the OA’s value function and the internal reward is defined
by the L1 distance between OA’s internal representation of
zτ and zτ+1.

Therefore, to maximize planning utility for OA during
each planning step τ , IA must select appropriate simulated-
states z∗τ and actions a∗τ . A simulated-state z∗τ is selected
from one of three embedded states tracked during planning:
the previous zpτ , current zcτ , and root states zrτ ; with the
triplet written as z{p,c,r}τ for convenience. Initially, z{p,c,r}τ=0

is set to an embedding zt produced by the encoder of the
initial raw state st as zτ=0 = encoder(st). The encoder
is comprised of a series of convolutional layers specific to



Dynamic Planning Networks

each environment. Before planning begins, OA’s hidden
state is updated using zτ=0:

hOτ = W zhzτ (2)

where W zh ∈ Rz×ho

is a learnable parameter of OA with
biases omitted. Within this work, we consider the inter-
mediate activation from the OA, a feed-forward network,
as a hidden state. The simulated-action a∗τ mirrors those
available to OA in the environment, such that a∗τ ∈ A.

Empirically, we found that using the same policy for plan-
ning and acting caused poor performance. We hypothesize
that the optimal policy for planning is inherently different
from the one required for optimal control in the environ-
ment; as during planning, a bias toward exploration might
be optimal.

2.2. A Planning Step

At each planning step τ , shown in Figure 1(b), the IA
selects a simulated-state z∗τ and action a∗τ by considering
the previous hidden state hIτ−1, the triplet of embedded
states z{p,c,r}τ , a scalar representing the current planning
step τ/T , and OA’s hidden state hOτ given zcτ . The infor-
mation is concatenated together forming a context and is
fed into IA, a recurrent network producing an updated hid-
den state hIτ ∈ R1xhi

. The updated hidden state is used to
select the simulated-state z∗τ by multiplying z{p,c,r}τ with a
1-hot encoded weight wτ ∈ {0, 1}1×3 sampled from the
Gumbel-Softmax distribution, G:

wτ ∼ G(W h3hIτ )

z∗τ = wτ [zpτ , z
c
τ , z

r
τ ]

(3)

where W h3 ∈ Rhi×3 is a learnable parameter belonging
to IA and G is the Gumbel-Softmax distribution (GSD).
Where the GSD is a continuous relaxation of the discrete
categorical distribution giving access to differentiable dis-
crete variables (Jang et al., 2016; Maddison et al., 2016).
Empirically, we found that using a 1-hot encoding for the
weight wτ gives greater performance than a softmax acti-
vation. Therefore, we used GSD in place of softmax acti-
vations throughout our architecture. Next, the simulated-
action a∗τ ∈ {0, 1}1×A, is sampled as follows:

a∗τ ∼ G(W azh[z∗τ , h
I
τ ]) (4)

where W azh ∈ Ra×z+hi

is a learnable parameter of IA.
In Equation 4 the selected simulated-state z∗τ and IA’s hid-
den state hIτ are concatenated, passed through a linear
layer, and used as logits for GSD. Then, with the selected

simulated-state z∗τ and simulated-action a∗τ , we produce the
next state zτ+1 using the state-transition model, defined as:

z′ = zτ + tanh(W zzz∗τ )

z′′ = z′ + tanh((a∗τW
azz)z′)

z∗τ+1 = zτ + z′′
(5)

where W zz ∈ Rz×z and W azz ∈ RA×z×z are learnable
parameters of the state-transition model. We parameterize
each available action in A with a learned weight matrix
that carries information about the effect of taking an ac-
tion a∗τ ∈ R1×A. We use the same state-transition model
presented by Farquhar et al. (2017a). Finally, the three em-
bedded states are updated as: zpτ+1 = zcτ , zrτ+1 = zτ=0,
and zcτ+1 = z∗τ+1.

2.3. Action selection

The IA repeats the process defined in Section 2.2 of select-
ing z∗τ and a∗τ for T steps before finally emitting a final
hidden state hIT summarizing the result of planning. The
OA uses IA’s final hidden state hIT and its initial hidden
state hOτ=0 to select an action at:

at = W ahtanh(W hhhIT + hOτ=0) (6)

where W hh ∈ Rho×hi

and W ah ∈ RA×ho

are learnable
parameters of OA. Finally, the hidden state of the IA is
reset.

2.4. Tree Interpretation

The planning process can be interpreted as dynamically ex-
panding a state-action tree, illustrated in Figure 2, where all
edges and vertexes are chosen by IA to maximize the total
planning utility provided to OA.

R
z𝜏
r

c)R

z𝜏
c

b)z𝜏
cRa)

Figure 2. Example of dynamic tree construction during planning.

With simulated-state selection z∗τ , using wτ , IA controls
which node in the tree is expanded further: the parent node
(zp), the root node (zr), or the current node (zc). While ac-
tion selection a∗ chooses the branching direction, exploring
the embedded state space using the state-transition model.



Dynamic Planning Networks

The illustration of a constructed tree in a fictional environ-
ment is shown in Figure 2. State selections are shown in
light purple, and state transitions with an action, using the
state-transition model, are shown as blue. The source state
is shown as a grey circle with a blue outline and the transi-
tioned state is shown as a fully blue circle. In this example,
there are three actions, each corresponding to their graph-
ical representation: left, right, and down. The root state
is marked with an “R”. An example of a possible tree con-
struction for T=3 steps of planning: a) step τ = 1, IA selects
the current state zc and transitions to a new state with ac-
tion “left”; b) step τ = 2, the IA selects the current state zc

and “down” action; and step τ = 3 c) IA selects the root
state zc and “down” action.

2.5. Training Procedure

We trained the parameters of DPN using A2C, a single
threaded version of asynchronous advantage actor-critic
(A3C) (Mnih et al., 2016). The OA was trained as an actor-
critic, with policy and value networks, while the IA was
trained as a policy network only. As defined in Equation
1, IA used OA’s value network as part of its target. A Hu-
ber loss was added to the loss function to perform state-
grounding of the state-transition model between the current
state zt, action at, and zt+1 which we denoted with LZ .
Combining our losses, the architecture is trained using the
following gradient:

∆θ = ∇θLO +∇θLI + λ∇θLZ − β∇θH (7)

where LO is the OA loss (policy and value), LI is the IA
policy loss, λ controls the state-grounding loss, H is the
entropy regularizer computed for OA and IA, and β is hy-
perparameter tuning entropy maximization of all policies;
we used the same β value for each policy. The losses LO
and LZ are computed over all parameters; while LI and
its entropy regularizer losses are computed with respect to
only IA’s parameters. We perform updates to IA in this way
as to stop IA from cheating by modifying the parameters of
the OA that define its reward via D[hOτ+1, h

O
τ ] and V (zτ+1)

within the planning utility.

We used 16 workers with RMSprop optimizer (Tieleman &
Hinton, 2012) across all environments.

3. Related Work
Various efforts have been made to combine model-free and
model-based methods, such as the Dyna-Q algorithm (Sut-
ton, 1991) that learns a model of the environment and uses
this model to train a model-free policy. Originally applied
in the discrete setting, Gu et al. (2016) extended Dyna-Q
to continuous control. In a similar spirit to the Dyna algo-
rithm, recent work by Ha & Schmidhuber (2018) combined

data generated from a pre-trained unsupervised model with
evolutionary strategies to train a policy. However, none of
the aforementioned algorithms use the learned model to im-
prove the online performance of the policy and instead use
the model for offline training. Therefore, the learned mod-
els are typically trained with a tangential objective to that
of the policy such as a high-dimensional reconstruction. In
contrast, our work learns a model in an end-to-end man-
ner, such that the model is optimized for its actual use in
planning.

Guez et al. (2018) proposed MCTSnets, an approach for
learning to search where they replicate the process used by
MCTS. MCTSnets replaces the traditional MCTS compo-
nents by neural network analogs. The modified procedure
evaluates, expands, and back-ups a vector embedding in-
stead of a scalar value. The entire architecture is end-to-end
differentiable.

Tamar et al. (2016) trained a model-free agent with an ex-
plicit differentiable planning structure, implemented with
convolutions, to perform approximate on-the-fly value it-
eration. As their planning structure relies on convolutions,
the range of applicable environments is restricted to those
where state-transitions can be expressed spatially.

Pascanu et al. (2017) implemented a model-based architec-
ture comprised of several individually trained components
that learn to construct and execute plans. Their work used
a single policy for planning and acting while DPN has a
separate policy for each mode. The policy used in DPN for
planning also selects which state to plan from while Pas-
canu et al. (2017) used a separate specialized policy. They
examine performance on Gridworld tasks with single and
multi-goal variants but on an extremely limited set of small
maps.

Vezhnevets et al. (2016) proposed a method which learns
to initialize and update a plan; their work does not use a
state-transition model and maps new observations to plan
updates.

Value prediction networks (VPNs) by Oh et al. (2017), Pre-
dictron by Silver et al. (2016b), and Farquhar et al. (2017a),
an expansion of VPNs, combine learning and planning
by training deep networks to plan through iterative roll-
outs. The Predictron predicts values by learning an abstract
state-transition function. VPNs constructs a tree of tar-
gets used only for action selection. Farquhar et al. (2017a)
create an end-to-end differentiable model that constructs
trees to improve value estimates during training and acting.
Both Oh et al. (2017) and (Farquhar et al., 2017a) construct
plans using forward-only rollouts by exhaustively expand-
ing each state’s actions. Similarly, François-Lavet et al.
(2018) proposed a model that combined model-free and
model-based components to plan on embedded state repre-



Dynamic Planning Networks

(a) Push Environment Samples.

Model Avg. Reward
A2C 5.62

ATreeC-1 6.68
DPN-T3 6.99

DQN 3.96
TreeQN-3 5.08

(b) Model Performance. (c) Training Curve.

Figure 3. Push Environment. a) Randomly generated samples of the Push environment. Each square’s coloring represents a different
entity: the agent is shown as red, boxes as aqua, obstacles as black, and goals as grey. The outside of the environment, not visible to the
agent, is shown as a black border around the map. b) The performance of each model where Avg. Reward is the average of the last 1000
episodes of training. c) Training curves with DPN compared to various baselines on Push environment.

sentations in a similar fashion to TreeQN (Farquhar et al.,
2017a). They propose an additional loss to the objective
function, an approximate entropy maximization penalty,
that ensures the expressiveness of the learned embedding.

In contrast to the aforementioned works, during planning
DPN learns to selectively expand actions at each state, with
the ability to adjust sub-optimal actions, and uses planning
results to improve the policy during both training and act-
ing.

Weber et al. (2017) proposed Imagination Augmented
Agents (I2As), an architecture that learns to plan using a
separately trained state-transition model. Planning is ac-
complished by expanding all available actionsA of the ini-
tial state and then performingA rollouts using a tied-policy
for a fixed number of steps. In contrast, our work learns the
state-transition model end-to-end, uses a separate policy for
planning and acting, and is able to dynamically adjust plan-
ning rollouts. Additionally, in terms of sample efficiency,
I2As require hundreds of millions of steps to converge,
with the Sokoban environment taking roughly 800 million
steps. Though not directly comparable, our work in the
Push environment, a puzzle game very similar to Sokoban,
requires an order of magnitude fewer steps, roughly 20 mil-
lion, before convergence.

Within continuous control learning a state-transition model
for planning has been used in various ways. Finn & Levine
(2017) demonstrate the usage of a predictive model of raw
sensory observations with model-predictive control (MPC)
where the model is learned in an entirely self-supervised
manner. Srinivas et al. (2018) proposed using an embed-
ded differential network that performs iterative planning
through gradient descent over actions to reach a specified

target goal state within a goal-directed policy. Henaff et al.
(2017) focus on model-based planning in low-dimensional
state spaces and extend their method to perform in both dis-
crete and continuous action spaces.

Additional connections between learning environment
models, planning and controls, and other methods related
to ours were previously discussed by Schmidhuber (2015).

4. Experiments
We evaluated DPN on a multi-goal Gridworld environment
and Push, (Farquhar et al., 2017a) a box-pushing puzzle en-
vironment. Push is similar to Sokoban used by Weber et al.
(2017) with comparable difficulty. Within our experiments,
we evaluated our model performance against either model-
free baselines, DQN and A2C, or planning baselines, such
as TreeQN and ATreeC. The experiments are designed such
that a new scenario is generated across each episode, which
ensures that the solution of a single variation cannot be
memorized. We are interested in understanding how well
our model can adapt to varied scenarios. Additionally,
we investigate how planning length T affects model per-
formance, how IA branching during planning affects per-
formance, different distance functions for the IA’s reward
function, and planning patterns that our agent learned in
the Push environment. Full details of the environments,
experimental setup, hyperparameters are provided in the
supplemental material. Unless specified otherwise, each
model configuration is averaged over 3 different seeds and
is trained for 40 million steps.

Push: The Push environment is a box-pushing domain,
where an agent must push boxes into goals while avoid-
ing obstacles, with samples shown in Figure 3(a). Since



Dynamic Planning Networks

(a) Multi-Goal Gridworld Environment Samples.

Model Avg. Reward
DQN-RNN -0.51

DQN -1.26
A2C 0.21

DPN-T3 1.3

(b) Model Performance. (c) Training Curve.

Figure 4. Gridworld Environment. a) Randomly generated samples of a 16 × 16 Multi-Goal Gridworld environment where the agent
must collect all goals. The agent is shown as red, goals in cyan, obstacles as black, and outside of the environment, not visible to the
agent, is shown with a black border. b) The performance of each model where Avg. Reward is the average of the last 1000 episodes of
training. c) Training curves with DPN compared to various baselines on 16× 16 Gridworld with 3 goals.

the agent can only push boxes, with no pull actions, poor
actions within the environment can lead to irreversible con-
figurations. The agent is randomly placed, along with 12
boxes, 5 goals, and 6 obstacles on the center 6x6 tiles of
an 8x8 grid. Boxes cannot be pushed into each other and
obstacles are “soft” such that they do not block movement,
but generate a negative reward if the agent or a box moves
onto an obstacle. Boxes are removed once pushed onto a
goal. We use the open-source implementation provided by
Farquhar et al. (2017b). The episode ends when the agent
collects all goals, steps off the map, or goes over 75 steps.
We compare our model performance against planning base-
lines, TreeQN and ATreeC (Farquhar et al., 2017a), as well
as model-free baselines, DQN (Mnih et al., 2015) and A2C
(Mnih et al., 2016).

Gridworld: We use a Gridworld domain with randomly
placed obstacles that an agent must navigate searching
for goals. The environment, randomly generated between
episodes, is a 16x16 grid with 3 goals. We force a min-
imum distance between goals and between the agent and
goals. The agent must learn an optimal policy to solve
new unseen maps. Figure 4(a) shows several instances of
a 16x16 Multi-goal Gridworld. The rewards that an agent
receives are as follows: +1 for each goal captured, -1 for
colliding with a wall, -1 for stepping off the map, -0.01 for
each step, and -1 for going over the step limit. An episode
terminates if the agent collides with an obstacle, collects
all the goals, steps off the map, or goes over 70 steps. We
evaluate our algorithm against model-free baselines such
as A2C (Mnih et al., 2016) and variants of DQN (recurrent
and non-recurrent) (Mnih et al., 2015). Each baseline used
the same encoder structure as DPN. We train for 20 million
environment steps.

Planning length: Using the Push environment, we varied
the parameter T , which adjusts the number of planning
steps, with T = {1, 2, 3} evaluated. The Push environ-
ment was chosen because the performance is sensitive to
an agent’s ability to plan effectively.

Inner Agent Branching: We examine the affect on perfor-
mance of different branching options for T = 3: current,
reset, or all. We also included the ATreeC-1 baseline as this
corresponds to the reset branching option of our architec-
ture and serves as a sanity check.

Inner Agent Distance Functions: We vary the distance
function used by the IA’s loss defined in Equation 1. We
examine L1, L2, KL, and Cosine distance functions.

Planning Patterns: We examine the planning patterns that
our agent learns in the Push environment for T=3 steps.
Here we are interested in understanding what information
the agent extracts from the simulation as context before act-
ing.

5. Results and Discussion
5.1. Push Environment

Figure 3(c) shows DPN, with planning length T = 3, com-
pared to DQN, A2C, TreeQN and ATreeC baselines 1. For
TreeQN and ATreeC, we chose tree depths which gave the
best performance, corresponding to tree depths of 3 and 1
respectively. Our model clearly outperforms both planning

1The data for the training curves of DQN, A2C, TreeQN,
and ATreeC were provided by Farquhar et al. via email corre-
spondence. Each experiment was run with 12 different seeds for
40million steps.



Dynamic Planning Networks

(a) Inner Agent Reward Distance Functions (b) Inner Agent Branching

Figure 5. a) Distance Functions: the performance of different distance functions. Centered on curve differences. b) Inner Agent Branch-
ing: Various branching choices for IA. All corresponds to the default architecture, Current results in a forward rollout, and Reset is the
same as 1-step look ahead. ATreeC-1 corresponds to 1-step look ahead as well.

and non-planning baselines: TreeQN, ATreeC, DQN, and
A2C. We see that our architecture converges at a faster rate
than the other baselines, matching ATreeC-1’s final perfor-
mance after roughly 20 million steps in the environment.
In comparison to the other planning baselines, TreeQN and
ATreeC, require roughly 35-40 million steps: ∼2x addi-
tional samples.

We note that the planning efficiency of DPN is higher
in terms of overall performance per number of state-
transitions. On the Push environment, with A = 4 actions,
TreeQN with tree depth of d = 3 requires

(Ad+1−1
A−1

)
−1 =

84 state-transitions. In contrast, DPN with planning length
of T = 3 requires only T state-transitions – a 96% reduc-
tion. Loosely comparing to I2As, simply in terms of state-
transitions, we see that I2As requireA×L state-transitions
per action step, where L is the rollout length. This perfor-
mance improvement is a result of DPN learning to selec-
tively expand actions and being able to dynamically adjust
previously simulated actions during planning.

5.2. Multi-Goal Gridworld

Figure 4(c) shows, the results of DPN compared to vari-
ous model-free baselines. Within this domain, the differ-
ence in performance is clear: our model outperforms the
baselines by a significant margin. The policies that DPN
learns generalizes better to new scenarios, can effectively
avoid obstacles, and is able to capture multiple goals. Of
the model-free baselines, we see that the A2C baseline per-
forms the best. We believe that the A2C baseline is able
to better explore the environment due to the multiple work-
ers running in parallel throughout training. Additionally,
as seen in Figure 4(c), the DQN variants fail to capture any
goals and do not achieve a score higher than -1.0. This in-
dicates the DQN baselines learn only to navigate around
the map without collecting goals before an episode ends.

It should be noted we saw little performance improvement
even when allocating the model-free algorithms an addi-
tional 2x environment steps (40 million) or, in the case of
DQN models, a 2-4x longer exploration period (8-16 mil-
lion).

The poor performance of the baseline models might be the
result of high variance in the environment’s configuration
between episodes. We believe that DPN performs better
because it captures common structure present between all
permutations of the environment by using the environment
model. This allows it to exploit the model for planning in
newly generated mazes.

Figure 7. Training over varying planning lengths, T = {1, 2, 3},
in the Push Environment. Centered on curve differences.

5.3. Planning length

In Figure 7, we see the performance of our model over the
planning lengths T = {1, 2, 3}. As seen in Figure 7, model
performance increases as we add additional planning steps,
while the number of model parameters remains constant.

As the planning length increases, we see the general trend
of faster model convergence. Even a single step T = 1



Dynamic Planning Networks

(a) Breadth-first Pattern. (b) Depth-first Pattern.

Figure 6. Samples of planning patterns the agent uses to solve the Push environment with T = 3. The faded environments, to the right
of each sample, is used to signify when the agent is planning. Highlighted squares represent the location that IA chose to move towards
during planning.

of planning allows the agent to test action-hypotheses and
avoid poor choices in the environment. From Figure 7 we
see that an additional planning step, from T = 1 to T = 2,
does not provide benefit until later in training. The plan-
ning length T = 3 provides the best performance and faster
convergence. We suspect that the shorter planning lengths
do not allow the IA to learn a policy that provides enough
utility to OA. Ideally, the architecture would be able to ad-
just the number of planning steps T dynamically based on
current needs. We see this expansion, similar to the adap-
tive computation presented by Graves (2016), as an inter-
esting avenue for future work.

5.4. Inner Agent Distance Functions

From 5(a), we see an evaluation of distance functions used
in Equation 1. The L1 distance function has the best per-
formance with slightly faster convergence. While the L2,
Cosine, and KL functions have worse performance. We
hypothesize that the L1 distance performed better due to its
robustness to outliers, a likely event during learning, as the
distance is a function of noisy and changing vectors from
the OA and state-transition model.

5.5. Inner Agent Branching

In Figure 5(b), we see how different branching options af-
fects the architecture performance. Our proposed branch-
ing improves performance of the architecture as compared
to the current and reset options. Interestingly, the perfor-
mance of our architecture when using the reset options is
roughly the same as ATreeC-1. This is unsurprising as
the reset and ATreeC-1 options employ a similar planning
strategy of a shallow 1-step look-ahead. The small discrep-
ancy in performance could be due to ATreeC-1 evaluating
all 4 actions while DPN evaluates only 3. We see that the
current branching option results in better performance and
is amounts to a forward-only rollout of length T = 3. We
hypothesize the performance difference between current

and reset is from DPN being able to see the results of its
actions from the first planning step over a longer time span.

5.6. Planning Patterns

By watching a trained agent play through newly gener-
ated maps, we identified common planning patterns, which
are shown in Figure 6. Two prominent patterns emerged:
breadth-first search and depth-first search. From Figure
6(a) we can see that our agent learned to employ breadth-
first search, where planning steps are used to expand avail-
able actions around the agent, corresponding to a tree of
depth 1. In contrast, depth-first search as seen in Figure
6(b), has the agent expanding state forward only. The agent
does not always follow depth-first search paths and seems
to use them to “check” if a particular pathway is worth pur-
suing.

6. Conclusion
In this paper, we have presented DPN, a new architecture
for deep reinforcement learning that uses two agents, IA
and OA, working in tandem. Empirically, we have demon-
strated that DPN outperforms the model-free and planning
baselines in both the mutli-goal Gridworld and Push en-
vironments while using ∼2x fewer environment samples.
Ablation studies have shown that our proposed target for
the IA improves performance and helps increase the speed
of convergence. We have shown that the IA learns to dy-
namically construct plans that maximize utility for the OA;
with IA learning to dynamically use classical search pat-
terns, such as depth-first search, without explicit instruc-
tion. Compared to other planning architectures, DPN re-
quires significantly fewer state-transitions during planning
for the same level of performance – drastically reducing
computational requirements by up to 96%.



Dynamic Planning Networks

Acknowledgments
We would like to thank Eder Santana, Tony Zhang, and
Justin Tomasi for helpful feedback and discussion. This
project received funding from Ontario Centres of Excel-
lence, Voucher for Innovation and Productivity (VIPI) Pro-
gram Project #29393.

References
Chentanez, N., Barto, A. G., and Singh, S. P. Intrinsically

motivated reinforcement learning. In Advances in neural
information processing systems, pp. 1281–1288, 2005.

Chiappa, S., Racaniere, S., Wierstra, D., and Mohamed,
S. Recurrent environment simulators. arXiv preprint
arXiv:1704.02254, 2017.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72–83. Springer, 2006.

Deisenroth, M. and Rasmussen, C. E. Pilco: A model-
based and data-efficient approach to policy search. In
Proceedings of the 28th International Conference on ma-
chine learning (ICML-11), pp. 465–472, 2011.

Farquhar, G., Rocktäschel, T., Igl, M., and White-
son, S. Treeqn and atreec: Differentiable tree plan-
ning for deep reinforcement learning. arXiv preprint
arXiv:1710.11417, 2017a.

Farquhar, G., Rocktäschel, T., Igl, M., and Whiteson,
S. “https://github.com/oxwhirl/treeqn/
blob/master/treeqn/envs/push.py”, 2017b.

Finn, C. and Levine, S. Deep visual foresight for plan-
ning robot motion. In Robotics and Automation (ICRA),
2017 IEEE International Conference on, pp. 2786–2793.
IEEE, 2017.

François-Lavet, V., Bengio, Y., Precup, D., and Pineau, J.
Combined reinforcement learning via abstract represen-
tations. arXiv preprint arXiv:1809.04506, 2018.

Graves, A. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. Con-
tinuous deep q-learning with model-based acceleration.
In International Conference on Machine Learning, pp.
2829–2838, 2016.

Guez, A., Weber, T., Antonoglou, I., Simonyan, K.,
Vinyals, O., Wierstra, D., Munos, R., and Silver, D.
Learning to search with mctsnets. arXiv preprint
arXiv:1802.04697, 2018.

Guzdial, M., Li, B., and Riedl, M. O. Game engine learning
from video. 2017.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Henaff, M., Whitney, W. F., and LeCun, Y. Model-based
planning with discrete and continuous actions. arXiv
preprint arXiv:1705.07177, 2017.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Levine, S. and Abbeel, P. Learning neural network policies
with guided policy search under unknown dynamics. In
Advances in Neural Information Processing Systems, pp.
1071–1079, 2014.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. Human-level con-
trol through deep reinforcement learning. Nature, 518
(7540):529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lilli-
crap, T., Harley, T., Silver, D., and Kavukcuoglu, K.
Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pp.
1928–1937, 2016.

Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh,
S. P. Action-conditional video prediction using deep
networks in atari games. CoRR, abs/1507.08750, 2015.
URL http://arxiv.org/abs/1507.08750.

Oh, J., Singh, S., and Lee, H. Value prediction network.
CoRR, abs/1707.03497, 2017. URL http://arxiv.
org/abs/1707.03497.

OpenAI. Openai five benchmark: Results, Aug
2018. URL https://blog.openai.com/
openai-five-benchmark-results/.

Pascanu, R., Li, Y., Vinyals, O., Heess, N., Buesing, L.,
Racanière, S., Reichert, D. P., Weber, T., Wierstra, D.,
and Battaglia, P. Learning model-based planning from
scratch. CoRR, abs/1707.06170, 2017. URL http:
//arxiv.org/abs/1707.06170.

Peng, J. and Williams, R. J. Efficient learning and planning
within the dyna framework. Adaptive Behavior, 1(4):
437–454, 1993.

https://github.com/oxwhirl/treeqn/blob/master/treeqn/envs/push.py
https://github.com/oxwhirl/treeqn/blob/master/treeqn/envs/push.py
http://arxiv.org/abs/1507.08750
http://arxiv.org/abs/1707.03497
http://arxiv.org/abs/1707.03497
https://blog.openai.com/openai-five-benchmark-results/
https://blog.openai.com/openai-five-benchmark-results/
http://arxiv.org/abs/1707.06170
http://arxiv.org/abs/1707.06170


Dynamic Planning Networks

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,
R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychow-
icz, M. Parameter space noise for exploration. arXiv
preprint arXiv:1706.01905, 2017.

Schmidhuber, J. On learning to think: Algorithmic infor-
mation theory for novel combinations of reinforcement
learning controllers and recurrent neural world models.
arXiv preprint arXiv:1511.09249, 2015.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and
Moritz, P. Trust region policy optimization. In Interna-
tional Conference on Machine Learning, pp. 1889–1897,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016a.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez,
A., Harley, T., Dulac-Arnold, G., Reichert, D., Rabi-
nowitz, N., Barreto, A., et al. The predictron: End-to-end
learning and planning. arXiv preprint arXiv:1612.08810,
2016b.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn,
C. Universal planning networks. arXiv preprint
arXiv:1804.00645, 2018.

Sutton, R. S. Dyna, an integrated architecture for learn-
ing, planning, and reacting. ACM SIGART Bulletin, 2
(4):160–163, 1991.

Sutton, R. S. and Barto, A. G. Reinforcement learning:
An introduction. MIT press, second edition, in progress
edition, 2017.

Tamar, A., Levine, S., Abbeel, P., WU, Y., and Thomas, G.
Value iteration networks. In Advances in Neural Infor-
mation Processing Systems, pp. 2146–2154, 2016.

Tieleman, T. and Hinton, G. Lecture 6.5—RmsProp: Di-
vide the gradient by a running average of its recent mag-
nitude. COURSERA: Neural Networks for Machine
Learning, 2012.

Vezhnevets, A., Mnih, V., Agapiou, J., Osindero, S.,
Graves, A., Vinyals, O., Kavukcuoglu, K., et al. Strate-
gic attentive writer for learning macro-actions. arXiv
preprint arXiv:1606.04695, 2016.

Weber, T., Racanière, S., Reichert, D. P., Buesing, L.,
Guez, A., Rezende, D. J., Badia, A. P., Vinyals,
O., Heess, N., Li, Y., et al. Imagination-augmented
agents for deep reinforcement learning. arXiv preprint
arXiv:1707.06203, 2017.


