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Abstract—Regularization plays a vital role in machine learning
optimization. One novel regularization method called flooding
makes the training loss fluctuate around the flooding level. It
intends to make the model continue to “random walk” until it
comes to a flat loss landscape to enhance generalization. However,
the hyper-parameter flooding level of the flooding method fails
to be selected properly and uniformly. We propose a novel
method called Jitter to improve it. Jitter is essentially a kind
of random loss function. Before training, we randomly sample
the “Jitter Point” from a specific probability distribution. The
flooding level should be replaced by Jitter point to obtain a new
target function and train the model accordingly. As Jitter point
acting as a random factor, we actually add some randomness
to the loss function, which is consistent with the fact that there
exists innumerable random behaviors in the learning process
of the machine learning model and is supposed to make the
model more robust. In addition, Jitter performs “random walk”
randomly which divides the loss curve into small intervals and
then flipping them over, ideally making the loss curve much flatter
and enhancing generalization ability. Moreover, Jitter can be a
domain-, task-, and model-independent regularization method
and train the model effectively after the training error reduces
to zero. Our experimental results show that Jitter method can
improve model performance more significantly than the previous
flooding method and make the test loss curve descend twice.

I. INTRODUCTION

Machine learning is mainly challenged to make the trained
model have excellent generalization performance. The model
must perform well not only on the training set but also on
new input that is not observed [7]. Generally, when a machine
learning model is trained, a loss function is set to measure
and act as the target to reduce the training loss. The goal
of the optimization method mainly focuses on minimizing
generalization errors, also known as test errors. Overfitting
and underfitting are two common reasons for the poor gen-
eralization ability of model, both of which are the result of
the mismatch between the learning ability of the model and
the data complexity. Overfitting is one of the most signifi-
cant points of interest and concern in the machine learning
community [2], [4], [15], [18], [24]. Simply, overfitting refers
to the phenomenon that the model is too complicated. The
characteristics in the training set that do not apply to the
test set are memorized, resulting in the huge gap between the
training loss and the test loss. Whether the model is overfitted
can be judged by observing whether the generalization gap
obtained by test loss minus training loss keeps increasing or
not.
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To alleviate the overfitting problem and reduce the gener-
alize error, many regularization methods have been proposed.
For example, the penalty term of L2 norm constraint is added
to the loss function to limit the weight decay with smaller L2
norm [35]. Other regularization methods with penalty terms
have been proposed, such as elastic net regularization [41]
utilizing both L1 and L2 norm constraint [31], [32], [37]. Ran-
dom inactivation of neurons forces individual neurons to learn
more robust characteristics [28]. Moreover, [29] combined
the lower parameter count and additional regularization with
batch-normalized auxiliary classifiers and Label-Smoothing
regularization method. Data augmentation methods [14], [21],
[26] add noise to the input, or simply stopping the training at
an earlier phase when the validation accuracy does not ascend
[16]. These regularization methods are considered to be able
to directly control the training loss, reduce the generalization
error, and enhance the generalization performance of the
model to a certain extent.

Fig. 1. Double descent curve phenomenon.

Although stronger regularization makes training error and
loss more difficult to approach zero, it can not keep the training
loss at a correct level before the end of the training [10]. For
some over-parametrized deep networks, the weak regulariza-
tion method does not prevent training loss from dropping to
zero, making it even harder to choose the hyper-parameter
that corresponds to a specific loss level. [10] proposed a
new regularization method under construction called flooding.
Assuming that the original learning target is J , the improved
flooding goal J̃ was shown in Eq.1.

J̃(θ) = |J(θ)− b|+ b (1)

Where b > 0 is the flooding level specified by the user,
which can be regarded as a hyper-parameter, and θ is the
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parameter of the model. The flooding is a direct solution to
prevent the training loss from falling to zero when the training
loss is reduced to the flooding level by random walking. As
a byproduct, flooding method makes test loss curve appear
double descent phenomenon [17] (see Fig. 1).

However, the flooding level is obtained by performing the
exhaustive search or observing the loss curve of the validation
set. The exhaustive searching will lead to a large amount of
time and computational cost. Moreover, it is often difficult to
find the optimal value. In addition, the method of observing
the loss curve of the validation set is not proper and rigorous.
What’s more, the optimal value can be changeable during the
process of learning.

Our paper proposes a novel method called Jitter, essentially
a random loss function to improve the flooding method. In
each back-propagation of the random jittering loss function
during training, the b in Eq.1 is randomly sampled from uni-
form distribution or Gaussian distribution, the value obtained is
called Jitter point. To be more general, this paper also studies a
method for obtaining the Jitter point value by random sampling
from a standard normal distribution. Since the Jitter point
value is obtained by random sampling, the loss function is
therefore uncertain and changeable, which is purposed to make
the trained model possess better generalization ability. The
experimental results show that the utilization of Jitter method
can make the original model achieve better performance than
the previous flooding method. As a universal and adaptable
method, Jitter is domain- task- and model-independent. As a
byproduct, the random jittering loss function can make the test
loss curve descend twice.

What’s more, it is known to us that there exists innumerate
random behaviors during the process of the machine learning.
However, the traditional target functions or loss functions of
machine learning are all certain and unchangeable. This paper
introduces randomness to the loss function first. This kind of
random jittering target function achieved by the Jitter method
is supposed to make the model more robust and possesses
better generalization ability.

II. RELATED WORK

A. Regularization method

Ivanov in 1962 first proposed the method of stable solution
by adding constraints, where the basic idea was to exploit
the energy of constrained restoration image [11]. In 1963,
Tikhonov proposed the method of solving ill-conditioned
problems and applied it to image restoration, which was called
“regularization” [33], [34]. The basic idea of Tikhonov was
to restrict the energy of high-frequency components in the
restored image instead of the energy of the restored image.

Nowadays, regularization is one of the core problems
in machine learning realm. According to Goodfellow [7],
regularization refers to modifying the learning algorithm to
reduce the generalization error rather than the training error.
As known from that, “regularization” has further evolved
to a more general meaning, including various methods that
alleviate overfitting. There are more and more different kinds

of regulation methods, according to the main idea of different
regularization methods, the common regularization methods
can be divided into [12]:
• Methods of regularizing models by data level technol-

ogy (e.g., Data Augmentation [9], [19], [39], Label-
Smoothing [8], [36], [38]);

• Methods of introducing random behavior into neuronal
activation (e.g., Drop Block [6], AutoDropout [22]);

• Method of normalizing batch statistics in feature activa-
tion (e.g., Batch Group Normalization [40], SelfNorm and
CrossNorm [30]);

• Avoid overfitting by decision level fusion (e.g., Bagging
[3], Boosting [5], [25]);

• Methods of introducing norm constraints on network
weights (e.g., L2 norm constraint, elastic network con-
straint);

• Utilize guidance from validation set to control the learn-
ing process (e.g., Early Stopping).

Our Jitter method actually regularizes the model from the
aspect of loss function.

B. The phenomenon of double descent curves

The phenomenon of “double descent” was first discovered
by Krogh and Hertz [13] in 1992, where they showed the
double descent phenomenon under a linear regression setup
theoretically. But this phenomenon has not been named until
2019 by Belkin [1] to explain the two stages of deep learning.
In the first stage, where the model complexity is small com-
pared to the number of training samples, that is to say, the
model is underfitting. The test error curve decreases with the
increase of model complexity. When the model complexity
increases to a certain extent, the test error curve begins to
rise. It confirms the view of traditional machine learning that
too much model complexity will reduce model generalization
ability. In the stage II, the model is over-parameterized, which
means the model complexity becomes even more extensive.
Then the curve starts to descend again as increasing the
complexity decreases test error, leading to the formation of
double descent shape. The phenomenon that the test error
decreases again usually occurs after the training error falls to
zero. It is consistent with the view of modern machine learning
that larger models have better generalization performance. In
our paper, the double descent curve phenomenon is observed
in the evolving process of test loss.

C. Flooding method

In this subsection, we discuss the regularization method of
flooding. The idea of flooding method is “floods the bottom
area and sinks the original empirical risk, so that the essential
risk cannot go below the flooding level” [10] . As is shown
in Eq.1, if J(θ) > b, then J̃(θ) and J(θ) have the same
phase; if J(θ) < b, then the phase of J̃(θ) is opposite to
that of J(θ). It means that if the initial learning goal is above
the flooding level, the gradient will descend, and the gradient
ascends otherwise. The flooding method makes the training
loss increase and decrease in the region near the flooding



level, making the model random walk in the area of non-zero
training loss. The intention is to make the model enter a flat
loss area, make the loss curve flatter, and finally improve the
generalization performance of the model.

As mentioned above, flooding level can be regarded as a
user-specified hyper-parameter, and the better value can be
obtained through exhaustive search or validation set guid-
ance. However, we considers that the two methods are time-
consuming, laborious and not rigorous. Besides, there exists
no unified and standard configurations for different models and
tasks. Moreover, with the increase of training rounds, the better
level is likely to change. That is to say, setting the flooding
level as a constant can make the training loss fluctuate up and
down in a specific range, however, as for different training
periods, the most appropriate range which is time-depend may
be diverse.

III. RANDOM JITTERING LOSS FUNCTION - JITTER

A. Jitter algorithm

According to the previous section analysis, the flooding
method has certain innovations and advantages, but some
shortcomings also exist. Therefore, this paper proposes Jitter
as an improvement of flooding. In each forward propagation
of the model, Jitter randomly samples a value α from a
specific probability distribution within a certain interval like
the uniform distribution or Gaussian distribution. The resulting
α is called Jitter point. The expression of random jittering loss
function is shown in Eq.2.

L̃(θ) = |L(θ)− α|+ α

α ∼ N
(
µ, σ2

)
or α ∼ U (a, b)

(2)

Where, L(θ) is the initial loss function, L̃(θ) is the improved
random jittering loss function with Jitter point, α is the Jitter
point which is randomly sampled from a specific distribution,
and θ stands for the parameters of the model.

When L(θ) > α, L̃(θ) has the same form as L(θ), and
the initial learning target is affected by the “gravity” effect ,
leading to gradient descending during backpropagation. On the
contrary, when L(θ) < α, L̃(θ) is on the opposite side of L(θ),
the initial learning target gets a “buoyancy” effect, leading to
the gradient ascending in the opposite direction. Moreover,
the Jitter method is a generic regularization method, and it
is domain-, task-, model-independent. The Jitter method will
also cause the phenomenon of double descent test loss curve,
so that when the training error is reduced to zero, the model
can still carry out effective training.

B. Implementation

Mini-batched stochastic optimization which makes com-
putation efficient is often utilized for large scale problems.
Suppose that D = {(Xi,yi)}Ni=1 represents a dataset with N
samples, M stands for the number of disjoint mini-batches,
and the batch size is Nb. Here we summarized the pseudo
code of Jitter in Algorithm 1.

Algorithm 1 The pseudo code of Jitter
Input:

D = {(Xi,yi)}Ni=1: Training dataset,
Nb: Batch size,
M : Number of disjoint mini-batches,
D(a, b): Specific distribution where Jitter point sampled
from

Output:
yp: Predicted label vector

1: repeat
2: for t=1: M do
3: Randomly select Nb instances from D
4: Sample Jitter point αm from D(a, b) randomly
5: Update the loss function with Eq.2
6: Input Xt to the model
7: Compute the label prediction vector ytp
8: Calculate the loss with Eq.2
9: Update model parameters by back-propagation

10: end for
11: until converge
12: return yp

In addition, suppose that R̃(X) stands for the empirical
risk of full-batch case, and Rm(Xm) represents the original
empirical risk of the m-th mini-batch for m ∈ {1, ...,M}.
According to Eq.2, the actually empirical risk of the m-th mini-
batch with Jitter point αm is R̃m(Xm) = |R(XM )−αm|+αm.
On the basis of the convexity of the absolute value function
and Jensen’s inequality, we can prove that by mini-batched
stochastic gradient descent with Jitter can minimize the upper
bound of the full-batch case empirical risk. That is:

R̃(X) ≤ 1

M

M∑
m=1

(|Rm(Xm)− αm|+ αm) (3)

C. Advantages of Jitter method

In this section, we talk about the specific advantages which
Jitter possesses.

Because the Jitter point is obtained by randomly sampling, it
does not need to be selected exhaustively as the flooding level
value. Our experimental results have validated that sampling
Jitter point from a standard normal distribution with a average
value of 0 and a standard deviation of 1 can still obtain good
results. This random sampling method named as Standard
Jitter method provides a unified standard for parameter selec-
tion, as a result, it becomes unnecessary to select the hyper-
parameter by detecting the loss curve of the validation set.

In addition, unlike the flooding method, which uses a
fixed constant flooding level, since Jitter point is obtained by
sampling randomly, our loss function is also random. In this
way, adding randomness tries to make the training model be
able to resist some random and unknown input data changes,
enhance the robustness of the learning features of the model,
and improve the generalization ability of the model further.



(a) Original method (b) Flooding method (c) Jitter method

Fig. 2. Schematic diagram of loss functions of original method (a), flooding method (b), and Jitter method (c).

This design is actually consistent to the inevitable randomness
in the learning procedure of the machine learning models.

Moreover, Jitter breaks through the previous method which
makes the training loss curve fluctuate up and down around
the certain level in the late training period. The random loss
function makes the training loss fluctuate within a certain
interval according to the probability, which makes the “random
walk” of the model occur randomly. Therefore, the loss curve
is divided into cells for flipping, which has a greater proba-
bility of resisting the uneven part of the loss curve, making
the loss curve flatter than the flooding method and enhancing
the model’s generalization performance more significantly. As
shown in Fig. 2, the loss functions of the original method
without flooding or Jitter method, flooding method and Jitter
method are shown respectively.

Here, we take the one dimension loss function curve as an
example. Using the flooding method is equivalent to turning
up the part below the flooding level threshold. It can be found
that there are many more local minimum values for the whole
target. Moreover, the number of local minimum values will
grow exponentially when the dimension of the loss function
curve increases. We can consider the loss of flooding Ĵ(θ)
is flatter than the original loss of J(θ), so the generalization
ability of the model will be better. Since the loss function is
flipped in multiple intervals, the Jitter method intuitively make
the loss flatter compared with the flooding method.

D. Theoretical analysis
A simple explanation for Jitter method is that Jitter method

increases the number of local minimum values of the original
loss function, and equips the model with certain climbing
ability, which can prevent the optimization of parameters from
falling into a bad local minimum value and unable to jump
out.

The analysis is then performed from the point of view
of the adversarial sample. The adversarial sample makes the
loss larger by generating wrong samples, so that the model
classifies the generated sample incorrectly. We assume that
the least loss difference of the model between the correct and
incorrect classification is 4J(θ)min, that is, when the loss
of the counter sample is higher than the loss difference of
4J(θ)min, the adversarial sample will be misclassified. Intu-
itively, the flatter the loss is, the farther the interval between

the counter sample and the normal sample is, and the more
difficult it is to generate it. Therefore, the flatter the loss is, the
more robust the model will be to counter disturbance. Fig. 3
is the schematic diagram of two loss functions corresponding
to normal sample and adversarial sample. The orange dot
represents the normal paired sample, the red dot represents
the adversarial sample, and the right graph loss function is
flatter than the left. Similarly, the steeper the loss function is,
the larger the interval between the adversary sample and the
normal sample is, and the more steep the loss function is, the
more likely the adversary sample will be misclassified.

In fact, the general robustness and generalization are also
the same. The general robustness refers to the robustness of
the model to some samples, such as Gaussian fuzzy, salt-and-
pepper noise. In other words, if the sample is perturbed to a
certain extent, the loss change of the model to the disturbed
sample should not be too large. As a result, the flatter the
loss, the better the robustness. In other words, for an unknown
sample and a labeled sample belonging to the same class, the
necessary condition for the model to divide it into pairs is that
the loss difference cannot be too large, then the “flat” loss can
meet this condition, thus the generalization will be better.

From the perspective of SVM [20], for a linear separable
binary classification problem, there are innumerable classifica-
tion super-planes to separate it. SVM is to select the classifier
that can meet the “maximum interval”. From another point of
view, the smoother the loss, the more likely it is to separate
different classes. Because if the sample is slightly disturbed,
the change of loss will not be too large, which means that the
sample with slight disturbance will not run to the other side
of the classification surface.

(a) The steeper loss function (b) The flatter loss function

Fig. 3. Schematic diagram of two loss functions corresponding to normal
sample and adversarial sample.



E. Mathematical analysis

Theorem I: the equivalent effective flooding value of
Jitter point value sampled by Standard Jitter method is
1√
2π

.

It is easy to know that the equivalent theoretical flooding
value of Jitter point value is the expectation value of the
distribution that the Jitter point sampled from. So, in terms of
the standard Jitter method which samples from the standard
normal distribution whose expectation is zero, the equivalent
theoretical flooding value is zero.

However, in the flooding method, the value of flooding
level is positive. Also, the value of the loss function L(θ)
is constant positive as well. As a result, the Jitter points that
make an effect actually are these positive ones, which means
that the negative Jitter points make no difference. So equivalent
effective flooding value can be inferred as below.

The probability density function of standard normal function
is:

f(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2

=
1√
2π
e−

x2

2

(4)

The expectation value of effective Jitter points α is:

E(α) =

∫ ∞
−∞

f(α)α · dα

=

∫ ∞
0

1√
2π
e−

α2

2 α · dα

=
1√
2π

∫ ∞
0

e−
α2

2 · dα
2

2

=
1√
2π

∫ ∞
0

e−x · dx

=
1√
2π

(5)

Now, we have proved that equivalent effective flooding
value is 1√

2π
.

Theorem II: Jitter method increases the expected value
of training loss, but reduces the mean square error of the
estimated empirical risk.

If the Jitter point α satisfies L(θ) ≥ α, we have:

L̃(θ) = |L(θ)− α|+ α

= L(θ)
(6)

If the Jitter point α satisfies L(θ) < α, we have:

L̃(θ) = |L(θ)− α|+ α

= 2α− L(θ)
> L(θ)

(7)

So, L(θ) ≤ L̃(θ) is established, as a result, the expectation
value of L̃(θ) is not less than that of L(θ).

However, the mean squared error(MSE) of the estimated
empirical risk is smaller than the original risk estimator. If the
Jitter point α satisfies L̂(f) < α < L(f), we have:

MSE(L̃(f)) < MSE(L̂(f)) (8)

And if the Jitter point α satisfies α ≤ L̂(f), we have:

MSE(L̂(f)) =MSE(L̃(f)) (9)

Here, f stands for any measurable vector-valued function.
L̂(f) is the original training loss, L̃(f) is the actual training
loss and L(f) is the test loss. The proof is similar with that
in [10], but replacing the flooding level b with the expectation
value of Jitter point α.

IV. EXPERIMENT

A. Dataset description

We tested various methods on six benchmark datasets:
CIFAR-10, CIFAR-100, SVHN, MNIST, KMNIST and Fash-
ion MNIST.
• CIFAR-10: CIFAR-10 dataset is composed of 10 classes

of natural images with 50,000 training images and 10,000
testing images in total. The 10 classes include: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and
truck. Each image is a RGB image of size 32× 32.

• CIFAR-100: CIFAR-100 dataset is composed of 100
different classifications, and each classification includes
600 different color images, of which 500 are training
images and 100 are test images. As a matter of fact, these
100 classes are composed of 20 super classes, and each
super class possesses 5 child classes. The images in the
CIFAR-100 dataset have a size of 32×32 like CIFAR-10.

• SVHN: SVHN (Street View House Numbers) dataset is
composed of 630,420 RGB digital images with a size of
32× 32, including a training set with 73,257 images and
a test set with 26,032 images.

• MNIST: MNIST is a 10 class dataset of 0 ∼ 9 handwrit-
ten digits,including 60,000 training images and 10,000
test images in total. Each sample is a size 28× 28 gray-
scale image.

• KMNIST: Kuzushiji-MNIST (KMNIST) dataset is com-
posed of 10 classes of cursive Japanese characters
(namely, “Kuzushiji”). Each sample is a gray-scale image
of 28 × 28 size. This dataset includes 60, 000 training
images and 10,000 test images in total.

• Fashion-MNIST: Fashion-MNIST (FMNIST for short) is
a 10 class dataset of fashion items:T-shirt/top, Trouser,
Pullover, Dress, Coat, Scandal, Shirt, Sneaker, Bag and
Ankle boot. Each sample is a gray-scale image of 28×28
size. This dataset includes 60,000 training images and
10,000 test images in total.

B. Basic configuration

In this paper, the convolutional neural network model VGG-
16 [27] is selected as the basic model, which is composed of
13 layers of convolution layer and 3 layers of fully connected



TABLE I
THE CONFIGURATIONS OF SIX KINDS OF JITTER METHODS.

Method Distribution Interval Average Value Standard Deviation
Jitter 1 Uniform Distribution [0.00,0.04] 0.02

√
0.04/3

Jitter 2 Uniform Distribution [0.01,0.03] 0.02
√

0.02/3
Jitter 3 Gaussian Distribution [0.00,0.04] 0.02 0.01
Jitter 4 Gaussian Distribution [0.01,0.03] 0.02 0.005
Jitter 5 Normal Distribution [−∞,+∞] 0 0.1
Jitter S Normal Distribution [−∞,+∞] 0 1

TABLE II
TEST ACCURACY OF VARIOUS METHODS ON DIFFERENT BENCHMARK DATASETS.

Method CIFAR-10 CIFAR-100 SVHN MNIST KMNIST F-MNIST
Accuracy(%) best mean best mean best mean best mean best mean best mean

Original 90.35 90.34 65.85 65.82 92.15 92.13 99.23 99.23 96.08 96.05 92.46 92.43
Flooding 90.49 90.47 66.13 66.12 93.14 93.13 99.26 99.25 96.66 96.63 93.29 93.26
Jitter 1 90.48 90.45 66.30 66.28 93.09 93.03 99.37 99.36 96.72 96.70 92.97 92.95
Jitter 2 90.58 90.56 66.43 66.41 93.20 93.16 99.33 99.33 96.67 96.62 93.24 93.22
Jitter 3 90.55 90.53 65.93 65.85 93.10 93.07 99.30 99.30 96.64 96.63 93.17 93.14
Jitter 4 90.55 90.54 65.93 65.88 93.29 93.26 99.37 99.36 96.63 96.62 92.65 92.64
Jitter 5 90.61 90.57 66.65 66.63 93.01 92.89 99.40 99.39 96.76 96.75 93.33 93.31
Jitter S 89.73 89.69 65.54 65.47 91.93 91.87 99.04 99.03 95.99 95.97 92.24 92.19

layer. The convolution layers with step-size is utilized to
conduct downsampling operation instead of employing pooling
method [23]. As a regularization method, we add the dropout
to the first two of the three fully connected layers and
set the activation rate to 50%. In addition, we add batch
normalization layers after all convolutional layers. All the
models use cross-entropy loss as the original loss function. The
training algorithm uses mini-batch stochastic gradient descent
with a momentum term of 0.95 and weight decay coefficient
of 0.0005, the batch size is 128. All experimental models have
been trained with NVIDIA GeForce GTX 2080Ti GPU.

For CIFAR-10, CIFAR-100 and SVHN, the model is trained
for 500 epochs. For others, it is 300 epochs. During the
training, the learning rate remains unchanged with 0.001. For
the training data of CIFAR-10 and CIFAR-100 data sets, we
adopt the method of data augmentation as follows: four circles
of zero pixels are padded around the original image, and
then the padded image was randomly cropped to the size of
the original image. Then we flip the image horizontally at a
probability level of 0.5.

C. Compared methods

Eight groups of comparative experiments are carried out on
all the selected five data sets. The first experiment is original
models without the Jitter method or flooding method. The
second one is the flooding method with the flooding level
of 0.02. The third one is the Jitter 1 model with Jitter point
sampled directly from a uniform distribution on an interval of
[0.00, 0.04]. The fourth one is the Jitter 2 model of Jitter
point sampled directly from a uniform distribution on an
interval of [0.01, 0.03]. The fifth one is the Jitter 3 model
of Jitter point sampled directly from Gaussian distribution
on the interval [0.00,0.04] with the average value of 0.02
and standard deviation of 0.01. The sixth one is the Jitter 4

model of Jitter point sampled directly from Gaussian distri-
bution on the interval [0.01,0.03] with the average value of
0.02 and standard deviation of 0.005. Considering that the
training loss of the model always has an order less than 1e-
2, so the equivalent effective flooding value of the standard
Jitter method, 1√

2π
is slightly unsuitable for the original loss

function. As a result, we multiply the Jitter point sampled
from the standard normal distribution with a correction factor
1e-1. And this is the seventh method Jitter 5. The last one
is the Jitter Standard(Jitter S for short) model of Jitter point
from the normal distribution. To be seen more clearly, the
configurations of these six kinds of Jitter methods are shown
in Table. I.

For the Jitter 1∼4 models, the Jitter point sampled has an
expected value of 0.02, which is the same as the flooding
level value selected in the flooding method, and the purpose
of this setting is to compare the random Jitter method with the
fixed method in which the flipping level of the lost function
has the same expected value. In fact, however, for these
four models, distributions of different kinds, such as uniform
distribution, Gaussian distribution, and the choice of mean,
variance or sampling interval of the distributions can still be
considered artificial selection of hyperparameters. To provide
a more uniform and straightforward standard selection of Jitter
point values, we set up the Jitter S model that gets the Jitter
point values sampled from a standard normal distribution. We
find that this method makes the test loss curve similar to the
training loss curve in that it keeps descending and converges
finally, which means the overfitting problem of the model does
not show up.

D. Experimental results and analysis

Table. II shows all the results of our experiments. We run
each model five times. The variances were close to zero,
therefore not listed in the Table. II. From Table. II, we can



(a) Original method (b) Jitter 1 method

(c) Jitter 5 method (d) Jitter S method

Fig. 4. Training loss and test loss curves of various methods on CIFAR-10.

see that the methods Jitter 1∼5 and flooding all achieve
better results than the original method, which indicates that
these improved methods can indeed enhance the generaliza-
tion ability of the original model. In addition, most of the
Jitter methods outperform the flooding method, validating
the effectiveness of our Jitter method. The method Jitter 5
achieves the best generalization results on most benchmark
datasets which are represented by the test accuracy. To explore
the reason, we think that the normal distribution possesses
the maximum uncertainty and the minimum prior knowledge,
which enhances the generalization ability. Besides, according
to the central limit theorem, normal distribution is supposed
to modeling the optimal Jitter point sampling. On the other
side, the test accuracy of the method Jitter S is slightly lower
than the original and other improved methods, we attribute
this phenomenon to that the dispersion and volatility of the
distribution utilized in the method Jitter S is excessive, which
may be unsuitable for the loss curve. As a result, we argued
that the correction factor employed in Jitter 5 method is
significant.

Fig. 4 shows the training and test loss curves of the Original
method (a), Jitter 1 method (b), Jitter 5 method (c) and the
Jitter S method (d) on CIFAR-10 dataset. From Fig. 4 (a),
We can see that the testing loss curve of the model trained
in original method begins ascending in about 40-th epoch,
indicating the emerging of over-fitting. Fig. 4 (b) exhibits the
double descent phenomenon of the Jitter 1 method clearly. For

the Jitter 5 method, the test loss keeps unchanged virtually
after the first ascent. Fig. 4 (d) shows that the test loss
curve of Jitter S keeps descending and converges finally like
the training loss curve, which means that though the double
descent phenomenon fails to arise, the model using Jitter S
does not suffer the problem of over-fitting like the original
method. The disappearance of the double descent phenomenon
may contribute to the high uncertainty and volatility of the
distribution utilized, which alternates the learning difficulty
and optimization direction. Moreover, compared to the test
loss of other methods, the method Jitter S obtains the lowest
test loss but has the highest test error. This paradox may make
us think about whether we should achieve a low test loss or
a low test error and whether the training after achieving zero
training error is meaningful.

V. CONCLUSION

In this paper, we proposed a novel regularization method
called “Jitter”. Jitter method samples the value of “Jitter Point”
from a uniform distribution or a Gaussian distribution and
introduces randomness to the loss function. Our experiments
validate that the Jitter method can improve the original model’s
generalization ability. In addition, Jitter method achieved
better generalization results than flooding method on vari-
ous benchmark data sets including CIFAR-10, CIFAR-100,
SVHN, MNIST, KMNIST and FashionMNIST. Moreover,
Jitter method can make the test loss curve descend for the



second and converge finally, which means the model can be
trained efficiently as well when the train error tends to zero.
As a domain-, task-, and model-independent regularization
method, Jitter method can be utilized in all the machine
learning domains.

Essentially, Jitter method is a kind of random loss function
proposed first. There exist innumerable random behaviors in
the training and inferring process of the machine learning
models. We think that further research on random loss function
might be beneficial to the improvement of machine learning.
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