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Abstract—Modern computer vision techniques applied to
radiographic studies are presented as an alternative to assist the
specialist in screening and diagnosing the respiratory syndrome
(SARS-CoV-2), assisting in clinically severe cases, such as acute
pneumonia, acute respiratory failure, organ failure, and death.
This work proposes a screening method based on the Internet of
Medical Things (IoMT) based on deep learning techniques for
the classification of COVID-19 from chest X-ray (CXR) exams.
The proposed system called Computer-Aided Remote medical
diagnostics System (CARMEDSys) applied to the diagnosis
of COVID-19 consists of three main stages: 1) segmentation
of the lung region in X-ray images, 2) deep extraction of
attributes from the filtered pulmonary area and 3) Prediction
patient status with machine learning assistance. The performance
of CARMEDSys was evaluated considering twelve different
deep neural networks, via the transfer of learning. Besides,
the performance of this approach is evaluated against recent
studies for the classification of healthy patients, with pneumonia,
or with COVID-19. The evaluation methodology considered
two different sets of radiographic images, reaching Sensitivity
(99.97%), F1-Score (99.43%), and Accuracy (98.89%) promising
to distinguish patients with pneumonia and COVID-19 combining
DenseNet201 as attribute extractor with Support Vector Machine
with radial basis function, exceeding up to 12.31% sensitivity for
prediction of COVID-19 recent related works.

Index Terms—COVID-19, Coronavirus, Deep Learning, Chest
X-ray images, IoMT

I. INTRODUCTION

According to the World Health Organization (WHO), severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is
caused by a new coronavirus discovered in 2019. It is an
infectious disease that, when it becomes more serious, is
able to progress for critical pneumonia with severe respiratory
failure, organ failure, and death [1].

Previous studies on influenza [2] showed that the risk of
death for critically ill patients was higher in those who had
some comorbidity, such as chronic obstructive pulmonary
disease, cardiovascular disease, or hypertension. Likewise,
people who had a history of previous illnesses increased their
predisposition to develop respiratory failure by up to 4 times
in cases of SARS-CoV-2 [3] coronavirus infection.

The high degree of contagion of the disease contributes
to many infected people, and this significant increase in the

demand for clinical care overburdens health facilities. Thus,
health professionals are subjected to high workloads, directly
compromising the cognitive performance, perception, and
decision-making of specialists. Also, healthcare professionals
are increasingly at risk of infection because they often deal
with infected patients. In this way, computer-aided diagnostic
systems (CAD) work by offering a tool to support this
professional in the interpretation of X-ray exams, providing
a second opinion regarding the findings in the exam, with
efficiency and precision that do not depend on the workload,
which the system will be exposed, in addition to contributing
to the response time and diagnostic performance.

The application of the Internet of Things (IoT) concepts
in medical diagnostics systems has demonstrated a significant
increase in productivity, mobility, and monitoring of results.
When using the Internet of Medical Things (IoMT) [4] in
the development of systems, we will have greater assistance,
considering that we will be able to connect several electronic
devices and use the ecosystem of technologies from the
Internet. IoMT adds, in addition to technology and greater
autonomy on the part of professionals in the field, an
innovative means of connecting medical assistance to patients
who lack health services [5].

In this work, we propose a new solution based on CNNs in
the classification of COVID-19 based on chest X-ray (CXR)
exams. Fine-tuning and transfer learning techniques were used
to detect, segment, and extract lung characteristics. Machine
learning techniques were applied to solve the classification
task. Two data sets were selected to solve this task. To
solve the segmentation task, we used the Chest X-Ray
Masks and Labels [6] image base containing 704 exams with
their respective ground truth provided by specialists. For the
classification task, we used the COVIDx [7] dataset composed
of 16,756 chest radiographs in 13,645 patient cases.

Therefore, we combine the principles of IoMT with
CAD systems to face the quarantine and pandemic of
COVID-19, proposing a system to assist the medical diagnosis
called Computer-Aided Remote Medical Diagnostics System
(CARMEDSys), offering greater accessibility, flexibility,
speed and accuracy of clinical diagnoses through digital
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images. Specifically, this article offers the following study and
contributions:

1) Fine-Tunning the Detectron2 convolutional neural
network using the Chest X-Ray Masks and Labels
dataset to detect and segment the lung region of CXR
exams.

2) Perform two classification steps: in the first step, we
have a binary classification to identify whether the exam
is Normal (healthy) or Sick; if the exam classifies as a
patient, the second classifier will diagnose in Pneumonia
or COVID-19.

3) A quick and accessible approach to lung disease
prediction useful for screening patients.

4) Proposal for a medical diagnosis aid system based on
IoMT.

II. RELATED WORKS

Motivated by the need for a more agile diagnosis and less
dependence on the radiologist to assess chest X-ray images
of patients suspected of being infected by COVID-19, several
studies based on deep learning have been proposed.

A. Convolutional Neural Networks

This subsection presents some recent work that proposes
new techniques based on CNNs to detect COVID-19 using
CXR.

Wang and Wong [7] proposed COVID-Net, a CNN to
classify chest X-ray images as Normal, Pneumonia, or
COVID-19. The work also presents a dataset of CXR images,
named COVIDx, composed of 16,756 radiographs of 13,645
patients. More specifically, 8066 of the tests are healthy, 5526
have pneumonia without COVID-19, and 76 have COVID-19.
CNN COVID-Net was trained and evaluated on the COVIDx
dataset reaching 95%, 91%, and 80% sensitivity for healthy
people, pneumonia, and Covid-19, respectively.

Farooq and Hafeez [8] proposed COVID-ResNet, a CNN
originated from the pre-trained ResNet-50 network and
followed by fine-tuning for the classification of COVID-19
in CXR images. The model can identify other types of
illnesses such as bacterial pneumonia and viral pneumonia,
in addition to detecting healthy patients from a normal X-ray.
The authors used a version of the COVIDx data set as dataset
containing 1203 radiographs of healthy patients (Normal),
931 radiographs of bacterial pneumonia, 660 radiographs of
viral pneumonia, and 68 radiographs of patients positive for
COVID-19.

B. Transfer Learning

Several works related to the detection of COVID-19 are
presented in the current literature. The search for patterns in
medical images using deep learning techniques brings new
proposals in diagnosis by medical images for the detection of
COVID-19 during the pandemic. This is the case of the study
by Ioannis D. et al. [9] who proposed the automatic detection
of COVID-19 in X-ray images using transfer learning through
Convolutional Neural Networks, the study obtained 96%

Accuracy, demonstrating the effectiveness in CNN Networks.
However, the study used a limited set of medical images,
compromising the generalization of the approach.

Narin et al. [10] proposed an approach based on the
transfer of learning using the pre-trained models ResNet50,
InceptionV3, and Inception-ResNetV2 to automatically predict
patients with COVID-19 through chest X-ray images,
achieving an accuracy of 98% in the best model. However,
a notable disadvantage is the number of images used in the
study, consisting of only 100 images in total: 50 images
of normal patients’ CXR and 50 images of patients with
COVID-19.

C. Applications of IoMT Systems in Medical Images

The Internet of Medical Things (IoMT) can be defined
as well-recognized Internet principles, tools, and techniques
aimed especially at medical and health sectors and domains.
The definition of IoMT proposes to integrate health resources
and instruments to technology through Internet applications
and electronic devices. This subsection features recent work
that was developed by implementing the IoMT approach to
tackle the COVID-19 pandemic and offer remote medical
assistance to patients during this pandemic block.

Singh, Ravi Pratap, et al. [11] and Singh, Ravi Pratap, et al.
[12] proposed an IoMT approach to provide medical treatment
to orthopedic patients during the COVID-19 pandemic. The
work offers better monitoring of patients in addition to making
medical assistance in remote locations viable.

III. MATERIALS AND METHODS

In this section, we present the techniques that contributed
to the formulation of the proposed approach. In the subsection
III-A we present the exams dataset, followed by the main
methods for extracting characteristics in subsection III-C,
segmentation in subsection III-B, and classification models in
subsection III-D. Finally, we present the evaluation metrics in
subsection III-E proposed in this work.

A. Datasets

The data set used for the segmentation task was published
and made available by Jaeger et al. [6]. The set consists
of CXR images containing radiographs of healthy patients
and patients with the manifestation of tuberculosis. In total,
406 radiographs are normal, and 394 radiographs have
tuberculosis. The images are provided in Digital Imaging and
Communications in Medicine (DICOM) format with different
dimensions.

On the other hand, COVIDx, proposed by Wang and Wong
[7], was used for the classification stage. This dataset consists
of 16,756 chest radiography images from 13,645 patients. This
set has three classes: Normal, Pneumonia, and COVID-19.
Only AP radiographs were considered, where AP refers to
the direction of the x-ray crossing the patient from the back
towards the front of the chest. More specifically, the COVIDx
data set consists of 8066 radiographic images of healthy



patients, 5526 patients with pneumonia, and 76 of patients
with COVID-19.

In the current version of the data set used in this study, there
were 8848 radiographs of healthy patients, 5,991 radiographs
of patients with pneumonia, and 142 radiographs of patients
infected with COVID-19. Clearly, the cases of COVID-19 are
considerably less than the number of cases in the other classes.
Therefore, we applied the augmentation technique to the set
of instances of COVID-19.

The augmentation application was made in the training
set after the separation of training and testing of the cases
of COVID-19. In this sense, rotation techniques with angles
within the range of [-20, 20], horizontal flip, and translation
within the range of [-100, 100] pixels were applied. The set
separation was 90% for training and 10% for testing each class
at random.

B. Detectron2 for Lung Detection and Segmentation in X-ray
scans

This subsection presents the convolutional neural network
Detectron2, a recent Mask R-CNN proposed and maintained
Facebook Artificial Intelligence Research (FAIR) [13].

CNN Detectron2, originated from the Mask R-CNN [14]
framework, was proposed by the Facebook Artificial Research
in Intelligence (FAIR) group. The framework is implemented
in PyTorch. Detectron2 includes high-quality implementations
of object detection algorithms. The choice of this framework
for the detection and segmentation stage is due to its
modularity, ease, and speed to perform the training, and high
performance in working with medical images, as can be seen
in Han, Tao et al. [15].

C. Deep Features Extractors

The application of deep learning models is still limited
in the medical field, as there are not enough data sets to
train these models from the beginning adequately [16]. To
address this problem, an approach called Transfer Learning has
been extensively investigated and applied to computer-assisted
diagnosis [17]. This approach consists of transposing the
knowledge acquired from one context to another. CNN models
are trained in large datasets and with a large number of classes,
such as ImageNet [18].

In this work, we consider the output of the last convolutional
layer as deep attributes. The layer output is adjusted to a
one-dimensional vector format. This vector represents the
input image attributes and will be used as input for the
classification algorithms. The CNN models for the deep
extraction of attributes used in this work were: Xception
[19], MobileNet [20], VGG [21], Inception-ResNet-V2 e
InceptionV3 [22], DenseNet [23], NASNetMobile [24], e
ResNet [25].

D. Classifiers

The technique of extracting attributes from CNNs combined
with machine learning classifiers has been used successfully
to solve robust classification tasks in medical images, as can

be seen in the work of Nobrega et al. [17]. In order to obtain
better results, we combined five classifiers with the attributes
extracted from each CNN, the best combination being included
in the approach solution.

The classifiers used in this work were Naive-Bayes
Classifier [26], Multi-Layer Perceptron (MLP) [27], k-Nearest
Neighbors (kNN) [28], Random Forest [29], e Support Vector
Machine [30] com kernel Linear, Polinomial e RBF.

E. Evaluation Metrics

Four evaluation metrics were used to verify the classifiers
performance: Accuracy, F1-Score, Recall, and Precision. The
calculation is done through the confusion matrix generated by
the classifiers, according to True Positive (TP), False Negative
(FN), False Positive (FP), and True Negative (TN) [31].

IV. A NOVEL WEB PLATFORM FOR A COVID-19 REMOTE
DIAGNOSIS

IoMT-based systems are innovative because they integrate
technologies with medical resources and equipment to assist
and collaborate in healthcare professionals’ workflow. Also,
these systems provide ample connectivity and agility in
accessing and exchanging important information for the
patient’s diagnosis.

This section describes the Computer-Aided Remote Medical
Diagnostics System (CARMEDSys) platform inspired by
IoMT to assist in the diagnosis of COVID-19. A workflow
based on computer vision techniques built on a WEB
ecosystem with communication through a mobile application
is proposed. The proposed methodology presents, as a first
stage, the detection, and segmentation of the pulmonary
region, later, in the second stage, the extraction of
characteristics from the exams and, finally, in the third stage,
the diagnosis prediction. Different deep learning techniques
are evaluated in each stage, such as CNN, deep extractors,
and transfer of learning.

A. Remote Access Web Platform

CARMEDSys presents the following workflow: Step 1 -
Health professional accesses the WEB system and uploads the
CXR image; Step 2 - The image loaded and distributed to one
of the processing nodes; Step 3 - Detection and segmentation
of the lung region; Step 4 - Extraction of characteristics of the
region of interest using deep extractors; Step 5 - Prediction of
the diagnosis through the attributes extracted in two steps, Step
5.a - Classification of the examination between healthy and
ill, and Step 5.b - Classification of the examination between
pneumonia and COVID-19. In Figure 1 presents a flowchart
of the proposed methodology.

1) Step 1 - Healthy of Things System Access: The
professional can access CARMEDSys through browsers
or smartphones. If access via the browser, the user will
be directed to the WEB version, then the authentication
credentials will be requested. However, if the access is made
through the smartphone, the user must install the mobile
application that will be made available with authorization. In
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Fig. 1. The figure shows the architecture of the proposed application based
on the IoMT. Step 1 illustrates the moment of access to the WEB system
and mobile application by the health professional. Step 2 is responsible for
distributing the flow of requests to ensure that services are processed quickly
and safely. Step 3 consists of detecting and segmenting the CXR lung region
using Detectron2. After the lung is segmented, in step 4, the attributes are
extracted using deep extractors. Finally, in step 5, the classification process
begins. The first classification identifies whether the image represents a
healthy lung or any pathologies: Pneumonia or COVID-19. When the system
prediction is Normal, the patient has no infection, and the process ends. If
any manifestation of the disease is identified, a second classification is made
to diagnose the examination in Pneumonia or COVID-19.

both cases, the user has the option to upload an CXR exam
image. All accesses are recorded in an audit for control and
security of access to patient data.

2) Step 2 - API Gateway and Load Balancer: The
CARMEDSys architecture is structured in multiple processes
that meet the various diagnostic prediction requests produced
by the platform users. For processing to happen in a parallel
and distributed way, thus offering fast and secure processing.

3) Step 3: Lung Detection and Segmentation Service: As
shown in 1, step 3 is responsible for the first main stage
of this solution and represents the phase of detection and
segmentation of the pulmonary region. In III-B presented the

neural network Detectron2, which is used here to detect and
segment the lung region in X-ray images. From the dataset
presented in the III-A, the network training phase used 704
CXR images. From the image submitted by the user in Stage
1 (in 1 -3.1), Detectron2 is applied to identify if there is a
region of interest (RoI) in the image (in 1 -3.2). If not, there
is no lung region in the image and the processing flow ends
(in 1 -3.3). Otherwise, a pulmonary region was detected and
segmented by Detectron (in 1 -3.4). Therefore, the result of
this stage is the segmented lung region (in 1 -3.5) represented
in an image free of findings that could act as noise, such as
bone structure and organs adjacent to the lung.

4) Step 4: Deep Extraction: The pulmonary feature
extraction step is constructed from pre-processed images from
the previous stage (in 1 -4.1). Inspired by deep extractors, this
phase of the methodology proposes using extracting features
with CNN from CXR images. To find the best deep extractor,
all CNN models described in the III-C were evaluated. These
CNNs have pre-training weights in the ImageNet dataset.

5) Step 5 - Classification: Finally, the classification stage is
performed using the deep attributes extracted in the previous
step (in 1 - 5.1). According to 1 - 5.2 and 5.3, the methodology
for predicting the diagnosis of patients consists of two steps.
The objective of the first step is to classify a sample in Normal
or Sick classes (in 1 - 5.3). If the patient is classified as
Normal, the flow ends. However, if the predicted class is sick,
the flow goes to the second sub-stage, which classifies the
sample as pneumonia or COVID-19 (in 1 - 5.4).

V. RESULTS AND DISCUSSIONS

The results is organized as follows: In the subsection V-A,
we present the results of the proposed methodology as a
classification binary problem for X-ray exams in Normal or
Sick (Pneumonia + COVID-19), in this section the results
of the best combination of deep extractor and classification
algorithm with the proposed solution for the first stage. The
second stage, evaluated in subsection V-B, corresponds to the
stage where the CXR exam classified as sick, is classified
as Pneumonia or COVID-19. Finally, the third stage, V-C,
combine the models of stage one and two to produce a single
automatic system for detecting COVID-19. In this last section,
we validate our method of comparing our best results with the
works proposed in the literature on the same data set.

A. First Stage: Normal vs. Sick Binary Classification

This stage is the first classification stage, it consists of
classifying the segmented lung region. First, we organized
the segmented dataset into two categories: healthy exams as
Normal and exams with Pneumonia and COVID-19 as Sick.

Then, we apply deep extraction techniques using
the Xception, ResNet50, MobileNet, VGG16, VGG19,
InceptionV3, InceptionResNetV2, NASNetMobile,
DenseNet121, DenseNet169 and DenseNet201 extractors
described in III-C, generating 11 new datasets. We applied
the classic machine learning methods Naive Bayes, MLP,



Nearest Neighbors, Random Forest, and SVM with the
Linear, Polynomial, and RBF kernels, described in III-D.

The training set was normalized by an average of zero
and unit variation, and the test set was also normalized
using the same normalization rule as the training set. To
find the best combination of hyperparameters, value ranges
for the hyperparameters were generated for each classifier,
and the grid search technique with cross-validation of k-folds
was applied. The hyperparameters that achieved the highest
accuracy in the validation set (average of 10-folds) were
selected as the best hyperparameters.

The grid search technique with 10-folds validation was
adopted to choose the best hyperparameters for each classifier.
The number of neurons in the hidden layer of the MLP
classifier varied within the range of [2, 1001] neurons. The
k hyperparameter of the kNN classifier varied between [1, 9]
selecting only odd values. For Random Forest, the maximum
number of decision trees was 1500. For the SVM classifier
with Linear Kernel, the range of C varied between [2−5, 215].
The SVM with Polynomial Kernel, on the other hand, the
degree of the polynomial varied between the values [3, 5, 7,
9] and the hyperparameter C between [2−5, 215]. Finally, for
SVM with Kernel RBF, the range of C and γ ranged from
[2−5, 215] e [2−15, 23], respectively.

Table I presents the values for the metrics of Accuracy
(ACC), Sensitivity (SEN), Positive Predictive Value (PPV),
and F-Score for all the extractor-classifier combinations for
the first classification step Normal vs. Sick. In the case of
disease detection, the sensitivity metric is important because
it reveals how sensitive the system is to the detection of sick
patients. The greater the sensitivity, the greater the system’s
capacity to identify the patients who present the disease. The
Positive Predictive Value (PPV) metric indicates the efficiency
of the system in not detecting false positives.

Once the evaluation metrics were clarified in the paragraph
above, to select the best extractor-classifier model, we chose
the combination that reached the highest average between
the F1-Score and Sensitivity metrics. We chose F1-Score
because it represents a weighting between Sensitivity and
Positive Predictive Value in a single value. We also chose
Sensitivity because it represents the quality of the model in
identifying infected patients. Thus, we weigh the F1-Score
with Sensitivity. Selecting the best model only for the highest
F1-Score was not very effective for our problem, as the
F1-Score can be elevated due to a high PPV, but not sensitive
to disease. However, it is better to treat a patient who
eventually does not have COVID-19, but has been classified
as if he did, than to stop treating a patient who has COVID-19
because he was wrongly classified without COVID-19.

Thus, considering the Table I, the combination that achieved
the highest average between SEN and F1-Score and chosen
as the model proposed for the first classification stage
was the DenseNet121 extractor combined with the SVM
Linear classifier, reaching 93.95% SEN, 91.03% PPV, 92.46%
F1-Score and 91.40% ACC. The average value between SEN
and F1-Score was 93,205. The value found for the hypertext

TABLE I
ACCURACY (ACC), SENSITIVITY (SEN), POSITIVE PREDICTIVE VALUE

(PPV), AND F-SCORE ACHIEVED FOR EACH EXTRACTOR-CLASSIFIER
COMBINATION FOR THE FIRST NORMAL VS. SICK BINARY

CLASSIFICATION STEP IN THE VALIDATION SET.

Model Classifier ACC(%) SEN(%) PPV(%) F-Score(%)

Xception

Bayes 80.07 84.43 80.45 82.40
MLP 89.94 89.46 93.67 91.52

Nearest Neighbors 82.14 79.16 93.90 85.90
Random Forest 87.07 88.23 89.65 88.93

SVM Linear 89.40 90.53 91.26 90.89
SVM Polynomial 90.47 89.81 94.25 91.97

SVM RBF 84.94 84.40 90.80 87.48

ResNet50

Bayes 79.74 81.30 84.48 82.86
MLP 87.14 88.07 90.00 89.02

Nearest Neighbors 83.94 80.86 94.71 87.24
Random Forest 85.80 88.51 86.78 87.63

SVM Linear 87.47 88.83 89.65 89.24
SVM Polynomial 87.54 91.09 87.01 89.00

SVM RBF 88.67 88.88 91.95 90.39

MobileNet

Bayes 87.40 89.54 88.62 89.08
MLP 89.34 91.18 90.34 90.76

Nearest Neighbors 87.60 84.33 96.55 90.03
Random Forest 90.07 91.48 91.37 91.43

SVM Linear 91.13 91.63 93.21 92.42
SVM Polynomial 89.94 90.80 91.95 91.37

SVM RBF 91.13 92.21 92.52 92.36

VGG16

Bayes 85.87 87.55 88.16 87.85
MLP 90.13 89.84 93.56 91.66

Nearest Neighbors 86.67 83.50 95.97 89.30
Random Forest 89.80 92.32 89.88 91.08

SVM Linear 90.80 94.41 89.42 91.85
SVM Polynomial 91.53 91.69 93.90 92.78

SVM RBF 89.47 94.16 87.24 90.57

VGG19

Bayes 84.94 86.42 87.81 87.11
MLP 90.40 91.15 92.41 91.78

Nearest Neighbors 85.80 82.68 95.51 88.64
Random Forest 89.60 91.41 90.57 90.99

SVM Linear 90.93 91.99 92.41 92.20
SVM Polynomial 91.07 92.20 92.41 92.30

SVM RBF 91.67 92.96 92.64 92.80

InceptionV3

Bayes 80.34 85.98 78.96 82.32
MLP 87.20 93.23 84.02 88.39

Nearest Neighbors 81.61 83.44 85.17 84.30
Random Forest 74.75 95.37 59.31 73.13

SVM Linear 84.67 95.45 77.24 85.38
SVM Polynomial 88.67 92.27 87.81 89.98

SVM RBF 85.80 88.51 86.78 87.63

InceptionResNetV2

Bayes 81.27 83.20 84.82 84.00
MLP 88.87 87.59 94.13 90.74

Nearest Neighbors 83.87 80.42 95.40 87.27
Random Forest 86.60 88.40 88.50 88.45

SVM Linear 89.94 91.27 91.37 91.32
SVM Polynomial 81.61 88.07 78.96 83.27

SVM RBF 90.60 91.65 92.18 91.91

NASNetMobile

Bayes 74.08 78.73 75.74 77.21
MLP 86.54 89.57 86.89 88.21

Nearest Neighbors 80.87 81.04 87.47 84.13
Random Forest 82.54 87.81 81.14 84.34

SVM Linear 78.81 90.35 71.03 79.53
SVM Polynomial 80.94 80.86 87.93 84.25

SVM RBF 82.34 92.30 75.86 83.28

DenseNet121

Bayes 86.14 87.91 89.19 88.18
MLP 91.27 92.96 92.64 92.80

Nearest Neighbors 87.40 84.70 95.51 89.78
Random Forest 88.47 92.44 87.24 89.76
SVM Linear 91.40 93.95 91.03 92.46

SVM Polynomial 87.20 90.16 87.47 88.79
SVM RBF 90.47 93.32 90.00 91.63

DenseNet169

Bayes 86.00 87.16 88.96 88.05
MLP 90.87 90.94 93.56 92.23

Nearest Neighbors 87.54 85.16 95.05 89.84
Random Forest 86.60 92.82 83.33 87.82

SVM Linear 89.94 90.16 92.75 91.44
SVM Polynomial 90.20 92.28 90.68 91.47

SVM RBF 91.40 91.95 93.33 92.64

DenseNet201

Bayes 88.40 89.01 91.26 90.12
MLP 91.60 91.24 94.59 92.88

Nearest Neighbors 86.74 83.65 95.86 89.34
Random Forest 85.54 94.78 79.42 86.42

SVM Linear 91.47 92.93 92.29 92.61
SVM Polynomial 90.67 91.10 92.98 92.03

SVM RBF 89.07 93.79 86.89 90.21

parameter C of the SVM classifier with Linear Kernel was C
= 4.

B. Second Stage: Pneumonia vs. COVID-19 Binary
Classification

The Second Stage corresponds to the second classification
stage, which consists of classifying the segmented lung region
from the segmentation stage and classified as Sick in the
first classification stage. In this step, another classifier trained
to identify Pneumonia without COVID-19 and Pneumonia
with COVID-19 is applied to classify the exams that showed
Pneumonia manifestation in the first classification step.



Initially, we selected from the segmented COVIDx set only
radiography exams categorized as Pneumonia and COVID-19.

Similar to the first classification step, we applied the
deep extraction techniques to the images with only
the segmented pulmonary region using the Xception,
ResNet50, MobileNet, VGG16, VGG19, InceptionV3,
InceptionResNetV2, NASNetMobile, DenseNet121,
DenseNet169 and DenseNet201 extractors present in
subsection III-C, generating 11 new datasets. After extracting
the dataset, we apply the classic Naive Bayes, MLP, Nearest
Neighbors, Random Forest, and SVM machine learning
methods with the Linear, Polynomial, and RBF kernels,
described in subsection III-D.

The training set was normalized by an average of zero
and unit variation, and the test set was also normalized
using the same normalization rule as the training set. To find
the best combination of hyperparameters, ranges of values
for the hyperparameters were generated for each classifier
equivalent to that used in the first classification step. The
hyperparameters that achieved the highest accuracy in the
validation set (average of 10-folds) were selected as the best
hyperparameters.

Table II presents the values for the metrics of Accuracy
(ACC), Sensitivity (SEN), Positive Predictive Value (PPV),
and F-Score for all extractor-classifier combinations for
the second classification step Pneumonia vs. COVID-19
binary. Exactly as in the first classification stage, the best
extractor-classifier model selected as the most adequate to
solve the problem was the one that reached the highest average
between the metrics F1-Score and SEN. Choosing the best
model considering only the highest F1-Score value is not
recommended since its high value may be due to the high
value of PPV, however, the SEN is low, leading the system
not to identify the people really infected.

Thus, considering the Table II, the combination that
achieved the highest average between SEN and F1-Score and
chosen as the model proposed for the second classification
stage was the DenseNet201 extractor combined with the SVM
RBF classifier, reaching 99.67% SEN, 99.19% PPV, 99.43%
F1-Score and 98.89% ACC. The average value between
SEN and F1-Score was 99.55. The values found for the
hyperparameters C and γ of the SVM classifier with Kernel
RBF was C = 32 and γ = 2.

C. Comparison against recent methods

To validate our experiments, in this subsection we compare
our approach which consists of the integration of the
segmentation stages, followed by the classification stage of the
pulmonary region between Normal vs. Sick, concluding with
the classification stage between Pneumonia vs. COVID-19,
with the proposed method by Wang and Wong [7]. The
combinations between the DenseNet121 extractor with the
SVM Linear classifier for the first classification step and
the DenseNet201 extractor with the SVM RBF classifier
for the second classification step were chosen to obtain the
best performance considering the average between SEN and

TABLE II
ACCURACY (ACC), SENSITIVITY (SEN), POSITIVE PREDICTIVE VALUE

(PPV), AND F-SCORE ACHIEVED FOR EACH EXTRACTOR-CLASSIFIER
COMBINATION FOR THE SECOND STAGE OF BINARY CLASSIFICATION

PNEUMONIA VS. COVID-19 IN THE VALIDATION SET.

Model Classifier ACC(%) SEN(%) PPV(%) F-Score(%)

Xception

Bayes 78.60 98.98 78.96 87.84
MLP 96.03 99.66 96.27 97.94

Nearest Neighbors 92.23 99.30 92.71 95.89
Random Forest 95.72 99.00 96.60 97.78

SVM Linear 96.83 99.17 97.57 98.36
SVM Polynomial 96.51 99.66 96.76 98.19

SVM RBF 98.09 99.34 98.70 99.02

ResNet50

Bayes 87.32 98.90 88.02 93.15
MLP 95.72 99.00 96.60 97.78

Nearest Neighbors 91.28 99.29 91.74 95.37
Random Forest 96.67 98.69 97.89 98.29

SVM Linear 95.87 99.16 96.60 97.86
SVM Polynomial 97.93 99.18 98.70 98.94

SVM RBF 98.73 99.03 99.67 99.35

MobileNet

Bayes 80.66 99.60 80.58 89.08
MLP 96.98 99.83 97.08 98.44

Nearest Neighbors 95.24 99.66 95.46 97.52
Random Forest 96.98 99.01 97.89 98.45

SVM Linear 91.91 99.82 91.90 95.70
SVM Polynomial 98.41 99.83 98.54 99.18

SVM RBF 98.41 99.67 98.70 99.18

VGG16

Bayes 96.19 98.05 98.05 98.05
MLP 96.35 99.50 96.76 98.11

Nearest Neighbors 96.35 99.66 96.60 98.11
Random Forest 94.13 99.48 94.49 96.92

SVM Linear 86.21 99.81 86.08 92.44
SVM Polynomial 93.66 99.65 93.85 96.66

SVM RBF 97.78 99.67 98.05 98.85

VGG19

Bayes 96.98 98.07 98.86 98.46
MLP 94.77 99.32 95.30 97.27

Nearest Neighbors 94.92 99.49 95.30 97.35
Random Forest 95.40 99.16 96.11 97.61

SVM Linear 87.00 99.62 87.05 92.91
SVM Polynomial 96.35 99.50 96.76 98.11

SVM RBF 98.57 99.35 99.19 99.27

InceptionV3

Bayes 88.58 98.57 89.64 93.89
MLP 96.19 99.50 96.60 98.02

Nearest Neighbors 91.12 99.29 91.58 95.28
Random Forest 97.14 98.23 98.86 98.54

SVM Linear 96.51 99.50 96.92 98.19
SVM Polynomial 94.61 99.49 94.98 97.18

SVM RBF 98.09 99.02 99.02 99.02

InceptionResNetV2

Bayes 87.63 99.09 88.18 93.32
MLP 92.39 99.30 92.88 95.98

Nearest Neighbors 90.49 99.29 90.93 94.93
Random Forest 95.24 98.83 96.27 97.54

SVM Linear 89.69 99.64 89.80 94.46
SVM Polynomial 92.39 99.13 93.04 95.99

SVM RBF 96.35 99.33 96.92 98.11

NASNetMobile

Bayes 74.16 98.92 74.43 84.94
MLP 95.87 99.33 96.44 97.86

Nearest Neighbors 88.74 99.63 88.83 93.92
Random Forest 95.87 99.16 96.60 97.86

SVM Linear 88.74 98.92 89.48 93.96
SVM Polynomial 88.58 99.63 88.67 93.83

SVM RBF 95.56 99.49 95.95 97.69

DenseNet121

Bayes 97.30 97.92 99.35 98.63
MLP 94.61 99.65 94.82 97.18

Nearest Neighbors 94.61 99.32 95.14 97.19
Random Forest 95.40 98.67 96.60 97.62

SVM Linear 90.01 99.64 90.12 94.64
SVM Polynomial 96.19 99.50 96.60 98.02

SVM RBF 98.25 99.51 98.70 99.10

DenseNet169

Bayes 97.93 98.09 99.83 98.95
MLP 92.55 99.48 92.88 96.06

Nearest Neighbors 93.50 99.31 94.01 96.59
Random Forest 84.94 99.24 85.27 91.73

SVM Linear 89.69 99.46 89.96 94.47
SVM Polynomial 97.14 99.34 97.73 98.53

SVM RBF 97.62 99.34 98.22 98.77

DenseNet201

Bayes 96.51 98.06 98.38 98.22
MLP 93.81 99.31 94.33 96.76

Nearest Neighbors 94.13 99.48 94.49 96.92
Random Forest 97.46 98.54 98.86 98.70

SVM Linear 89.69 99.11 90.29 94.49
SVM Polynomial 96.51 99.66 96.76 98.19

SVM RBF 98.89 99.67 99.19 99.43

F1-Score metrics in the validation set. Thus, we seek to ensure
that the system operates in its best configuration, identifying
the largest number of infected and reducing the number of
false positives in new tests as much as possible, giving greater
importance to recognizing the disease.

Although the current version of the COVIDx dataset
acquired to carry out the experiments of this work is larger
than the version used in the work of Wang and Wong [7], the
distribution of images by class to perform the training of the
models was similar. More specifically, the number of images
in the Normal class used by Wang and Wong was 7966, while
the number of images for the Normal class used in this work



was 7978 images, a difference of only 12 images. Also, the
number of images in the Pneumonia class used by Wang and
Wong for training was 5426, while the number of images in
the Pneumonia class used in this work was 5373, a total of 53
fewer images.

In addition, the number of images of the class COVID-19
used by Wang and Wong were 76 images, while the number
of images with the manifestation of COVID-19 used in this
work was 142 and, after augmentation, the number of images
with COVID-19 it became 2064. However, the author’s Wang
and Wong in their work, applied the augmentation technique.
They did not provide the new distribution of exams by class,
thus hindering a more appropriate and fair comparative study.

Also, note that our test set size is larger, making our
assessment results more general. The number of images
defined for testing by Wang and Wong was not the same as
those chosen for this work. Unlike Wang and Wong [7], who
selectively selected only 100 images from the Normal class,
100 images from the Pneumonia class and ten images from
the COVID-19 class, this work randomly separated 10% of
the total number of images from each class, resulting in a
much larger number of images per class for testing. More
specifically, 870 images of Normal radiography were used for
testing in this work, while Wang and Wong used only 100
images, a difference of 770 fewer images.

Considering the Pneumonia class, 618 images were used
for testing in this work, while Wang and Wong used only 100
images, that is, 518 fewer images to be tested. As for the
COVID-19 class, although the number of images for training
is 2064, augmentation images did not leak into the test set,
thus avoiding possible anomalies in the test set. Therefore,
only 13 images were randomly separated from the test set.
Similarly, Wang and Wong [7] selected only ten images for
the COVID-19 test.

Table III shows the results generated by our best model
based on this study compared to the work of Wang and
Wong [7]. Our experiments used a much larger number of
samples for the test set than the number of samples from
Wang and Wong [7] considering the same COVIDx data set.
Despite this, our work surpassed the Sensitivity metric of
the Pneumonia and COVID-19 classes by 2.2% and 12.31%,
respectively, compared to the work of Wang and Wong [7].
This shows our model’s high performance and efficiency in
identifying patients positive for COVID-19, and even patients
with Pneumonia.

Considering the Positive Predictive Value metric, our model
obtained 89% for Pneumonia and 71% for COVID-19. These
metrics’ values suffered considerably due to the imbalance of
the classes in the test set of our distribution. Even so, we
overcame the work of Wang and Wong [7] with 4.03% in the
PPV metric for the Normal class.

Figure 2 shows the confusion matrix obtained by our best
approach in the test set. Through the confusion matrix, we can
carefully observe and discuss the results achieved.

We can observe, through the confusion matrix in Figure
2, that our approach failed to correctly classify only a

TABLE III
COMPARATIVE TABLE OF THE METRICS OBTAINED IN THE TEST SET BY

THE PROPOSED METHOD WITH THE COVIDX DATASET COMPARED WITH
THE WORK OF WANG AND WONG [7].

Method Our Approach Wang and Wong [7]
SEN(%) PPV(%) SEN(%) PPV(%)

COVID-19 92.31 71 80 88.9
Pneumonia 93.2 89 91 93.8
Normal 92 95.33 95 91.3

Fig. 2. Confusion matrix obtained by the approach proposed in the test set.

small sample of COVID-19, classifying it as Pneumonia.
However, our model did not erroneously classify any sample
of COVID-19 as Normal, an important result considering that
this would result in discharging a sick patient without adequate
follow-up or treatment.

Still, in Figure 2, we can see 576 Pneumonia samples were
classified correctly. Only three samples of Pneumonia were
identified as COVID-19. Still, a very low number of false
positives is considered for COVID-19.

Considering the Normal class, Figure 2 shows that our
model correctly identified 797, or 91.60% of all Normal
samples, failing to classify 73 samples as Sick. Considering
these 73 Normal samples wrongly classified, the probability
of the model classifying as Pneumonia was 97.26% against
2.74% for COVID-19, indicating very few false positives for
COVID-19.

The proposed method proved to be superior in identifying
patients with the manifestation of COVID-19 and Pneumonia
through X-ray examinations compared to the work of Wang
and Wong [7]. In addition, our approach has ensured greater
generalization by experimenting with our method on a much
larger set of tests than the compared work, providing greater
confidence.

VI. CONCLUSION AND FUTURE WORKS

This work aimed to develop an IoMT-based medical aid
system to detect COVID-19 via X-ray exams. Our approach
is based on techniques of deep learning and transfer learning.
The approach had two main stages: after the identification
and automatic segmentation of the pulmonary region, we



have the classification of patients as healthy or sick based
on radiographic exams; then, patients classified as sick are
classified between paneumonia or COVID-19.

The results were very satisfactory, considering the set of
CXR COVIDx images. Our best model obtained 92.31%
sensitivity for the COVID-19 class, 93.2 % for the Pneumonia
class, and 92% for the Normal class, exceeding up to 12.31%
sensitivity for prediction of covid19 recentrelated works

The proposed method works with a total classification
time of fewer than three seconds. This is especially
important for scenarios in which response time is essential to
start the treatment flow, increasing healthcare professionals’
productivity and efficiency.

For future studies, we propose to try our approach on
a larger set of CXR images, mainly containing more real
samples of COVID-19, to balance the classes. Also, we
propose to investigate new CNNs for the segmentation of the
lung region performed in the first stage. We intend to apply
other machine learning techniques for the classification task,
such as Mixing Gaussians and Mixing Specialists.
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