
Towards Searching Efficient and Accurate Neural
Network Architectures in Binary Classification

Problems
Yigit Alparslan§1*, Ethan Jacob Moyer§2, Isamu Mclean Isozaki§1, Daniel Schwartz1

Adam Dunlop3, Shesh Dave4, Edward Kim1

1College of Computing & Informatics, Drexel University, PA
2School of Biomedical Engineering, Drexel University, PA

3College of Arts & Sciences, Drexel University, PA
4College of Engineering, Drexel University, PA

Email: { ya332, ejm374, imi25, des338, ajd393, sd3536, ek826 }@drexel.edu

Abstract—In recent years, deep neural networks have had
great success in machine learning and pattern recognition.
Architecture size for a neural network contributes significantly
to the success of any neural network. In this study, we optimize
the selection process by investigating different search algorithms
to find a neural network architecture size that yields the highest
accuracy. We apply binary search on a very well-defined binary
classification network search space and compare the results to
those of linear search. We also propose how to relax some of
the assumptions regarding the dataset so that our solution can
be generalized to any binary classification problem. We report a
100-fold running time improvement over the naive linear search
when we apply the binary search method to our datasets in order
to find the best architecture candidate. By finding the optimal
architecture size for any binary classification problem quickly,
we hope that our research contributes to discovering intelligent
algorithms for optimizing architecture size selection in machine
learning.

I. INTRODUCTION

IN recent decades, deep neural networks (DNNs) have seen
many breakthroughs to achieve or even exceed human-

level performance on difficult classification and recognition
tasks. Breakthroughs in many challenging applications, such
as speech recognition [1] [2], image recognition [3] [5] [4],
genomic classification [6], machine translation [7] [8], have
been achieved due to intelligent architectures that have been
designed for the task at hand.

As described in [9], one such architectural breakthrough
was in computer vision to predict objects in images by
AlexNet [5], VGGNet [10], GoogleNet [11], and ResNet [12]
which replaced the previously used architecture designs that
were based on features such as SIFT [13] and HOG [14].
Designing architectures for a specific problem and dataset
enabled greater success in many other fields as well such

§These co-first authors contributed equally.
* Corresponding author
All source code is open-sourced at GitHub.

as voice recognition [15]. However, models started to require
many small design choices, increasingly sophisticated details,
and many hyperparameters - parameters chosen by a user.
These hyperparameters, such as the number of hidden layers,
the number of nodes at each layer etc. affects the accuracy,
model training duration, and architecture size directly. There-
fore, recent years have seen a surge in interest in the Neural
Architecture Search (NAS) field. NAS generally dictates gen-
erating a search space with all the artificial neural networks
that can be designed and optimized, and then a search strategy
is implemented to go over and find the best candidate among
all the neural network architectures in that space. A search
strategy can be optimized to skip similar candidates, and find
the most accurate architectures. Zoph et al. [16] outperformed
the best manually designed architecture for the CIFAR-10
dataset by finding a model architecture 1.05x faster and with
0.09% better accuracy.

In NAS, even though the accuracy of the model is the most
important metric, other metrics such as memory consumption,
training time, inference time, model size could also be impor-
tant when choosing a search strategy.

In this study, we search for architecture sizes that would
give the highest accuracy and lowest training time for a
given, well-defined architecture size search space with certain
assumptions. Our aim is to look at the architecture size as
a hyperparameters and propose a framework for discovering
the most optimal architecture size for a given problem. We
specifically consider the number of hidden layers and the num-
ber of neurons at each layer for a given problem and search
the most optimal settings in a deep neural network (DNN).
We consider a limited set of networks that satisfy the binary
classification problem. Thus, the output for all the networks
only have a single output neuron. We use binary search and
linear search as a way of finding the optimal architecture sizes
for problems of this nature. In our experiments, we investigate
the Titanic dataset and a Customer Churn dataset to compare
and apply our findings. We treat the linear search method as a
baseline and report qualitative and quantitative improvements

ar
X

iv
:2

10
1.

06
51

1v
1

 [
cs

.L
G

]
 1

6
Ja

n
20

21

https://github.com/drexelai/binary-search-in-neural-nets

via binary search over the baseline.
This paper is organized such that section II discusses related

work, section III discusses the implemented search algorithms,
section IV reports the experiments and results, section V
concludes the paper by going over the important findings one
more time, and finally section VI discusses future work.

II. RELATED WORK

Architecture size has long been considered a hyperparameter
that a user picks randomly or heuristically. Yet, this hyper-
parameter impacts the model accuracy for a given problem
significantly. Recent years have shown several studies in
which hyperparameters are optimized [17] [18] [19] [20]. Such
studies have been limited to fixed-size models when searching
for the optimal hyperparameters.

Zoph and Le [9] relaxed the fixed-space assumption using
reinforcement learning. Shen et al. [21] has focused on finding
the optimal architecture size for binary neural networks, which
are neural networks where the weights consist of only +1 and
-1 values. These two studies have proposed new frameworks
for determining the architecture size of neural networks in
a systematic way rather than leaving such choice seemingly
ambiguous. However, such studies have taken into account
different assumptions regarding the models they design when
applying each approach. to limit the search space. For ex-
ample, Shen et al [21] added the constraint of architecting
binary neural network to only look most compact at the
neural networks. This constraint that they added is only
slightly similar to our assumptions in this work. Instead of
a forced binarization on the weights, we simply assume that
our classification problems are ones that can be implemented
with binary outputs. In other words, we only investigate our
search algorithms to datasets that can be solved with a model
where the last layer has one node. Additionally, Alparslan et
al. [22] worked on using sparsity as a heuristics to find the
architecture candidates that would give the most sparse as well
as accurate models.

III. METHODOLOGY

Because of the fact that DNNs require training and testing on
typically large datasets, it becomes increasingly difficult and
time consuming to determine optimal hyperparameters.

In this work, we define model evaluation as the end-to-end
training and testing of a model architecture with a constant
training and testing dataset, which is specially outlined in
subsubsection III-A3.

A. Assumptions

Often in machine learning, algorithms are implemented with
general assumptions in order to simplify the problem. For
instance, the Naive Bayes classification algorithm relies on
the assumption that all features are perfectly independent of
each other given a certain class [23]. Intuitively, this is a poor
assumption because features of a given class interact in some

way or another. Regardless, Naive Bayes has proved time and
time again to be an excellent classifier in text classification
[24] [25]. Additional example is the fact that most neural
networks use gradient descent algorithm as optimization algo-
rithm. The condition to apply gradient ascent is that we have to
assume the function is continuously convex and differentiable
[26]. However, cost functions that are optimized by neural
networks might not meet this condition. So, in theory, those
neural networks don’t guarantee globally optimal solutions, but
in practice, neural networks converge to a local minimum point
as proven by Zhong et al. [27] [28] and Zhang et al. [29]. Just
like the cases of Naive Bayes and Gradient Descent, we also
make assumptions in our paper that help explain our method,
but do not have to hold in order to achieve good results in
practice.

This binary search method that we outline in this paper
can be considered as follows: a trade-off between speed and
accuracy. If the assumptions are met, it finds the globally
optimal solution quickly (see Table I). If the assumptions
are not met, it finds, at the very least, a local optimum (see
Table II). In our framework, we describe the following three
assumptions that limit the problem space upon which we
apply our binary search method.

1) Network Architecture Assumption
We will be modeling our classification problem with an

input layer, one hidden layer, and one output layer as shown
below.

Fig. 1: A generalized one-layer deep neural network with M
input neurons, N hidden layer neurons, and one output neuron.

2) Accuracy Distribution Assumption
Our second general assumption is that the accuracy distri-

bution is uni-modal with respect to the number of units, N ,
in the hidden layer. There exists only one global maximum
when accuracies are plotted against each architecture with a
hidden layer of dimension between 1 and n and accuracy
values increase from both sides until global maximum.

3) Dataset Assumptions
With respect to our dataset, we assume that there will be

M number of inputs but only 1 output unit in the output

layer. As a result, we are simplifying this to only binary
classification problems. We suspect that specifically our linear
search method in subsubsection III-C1 will be more efficient
for smaller input spaces, whereas our binary search method
in subsubsection III-C2 will be more efficient for larger input
spaces. It follows that we can explore the relative speeds of
these two methods under our respective assumptions in order
to determine a general threshold for when one method should
be used over the other.

B. Datasets

1) Churn dataset
Churn dataset is made public by Drexel Society of Artificial

Intelligence [30]. It has 14 columns and 10000 rows where
each row has information for a business that uses a cloud
service and each column represents one feature regarding
the customer. The dataset has specifically 14 columns but
3 of them are row number, customer id and company name
which are excluded during the training process because they
do not have meaning for the model. The remaining columns
are features to indicate the revenue of the customer, contract
duration of the customer, whether the customer has raised a
ticket or renewed the contract before etc. The model that is
trained on this dataset predicts whether the customer will leave
the service contract or not. So, the label column is either 0
or 1 to indicate if the customer will renew the service. We
train a model that has 1 input layer that consist of 11 nodes,
one hidden layer that consists of D nodes and 1 output layer
that consist of 1 node. Next, we find the node count, D, that
would give the maximum accuracy in our model- first, via
linear search and, second, via (modified) binary search. We
also investigate whether the solution provided by the binary
search is a globally optimal solution. In other words, if there
is a global maximum in all the accuracies given by all the
architecture candidates, the binary search, just like the linear
search should find the globally maximum accuracy value.

2) Titanic dataset
Titanic dataset is a dataset made public by Kaggle [31].

It has 14 columns and 1310 rows where each row has
information for a passenger on Titanic and each column is
one of many features. We use 11 features such as fare amount,
gender, ticket class, cabin type etc from the dataset and the
label for each sample that the model predicts is either 0 or
1 to indicate if the person survived or not. We train a model
that has 1 input layer that consist of 11 nodes, one hidden
that consists of D nodes and 1 output layer that consist of 1
node. The methods we follow is to find the value of D that
would give the maximum accuracy in our model first via linear
search and second via (modified) binary search.

C. Search

For each model, we have a varying hidden layer of dimen-
sion, D, between the input layer and the output layer. We
sweep D from 1 to n to find the maximum accuracy which
we treat as our baseline. In our studies, n=1000 proved to be
effective because we have not realized any benefits of going

more than three orders of magnitude larger than the input
dimensions (11 nodes) in our problems. Such linear search
outlined in subsubsection III-C1 takes exactly n iterations
meaning we need to train and test n models with different
architectures to find the highest accuracy. We then assume
the accuracies are fit to a distribution with a single global
maximum and apply binary search to skip some number of
model architectures which then helps us the training time
reduce by 100 fold and achieves a maximum accuracy in
around 10 iterations. We discuss ways of applying binary
search to this problem in section III-C2.

1) Linear Search
The usage of linear search is considered baseline in our

study for the generalized dataset that follows the accuracy
distribution as mentioned in subsubsection III-A3 and the two
datasets described in subsection III-B. Linear search is a brute
force method because one must iterate over all the elements
and checking if the current element is greater than the current
maximum element that has been observed so far in the search.
We pick a range to constrain the search space so that finding
the number of hidden layer units is a bounded problem instead
of an unbounded problem. The time complexity for finding the
maximum using linear search is O(n). It should be noted that
although the search is greedy, this method is able to find the
optimal hyperparameters perfectly in each search. Algorithm 1
formalizes this linear search algorithm.

Algorithm 1 Finding maximum accurate architecture size in
a neural network via linear search

1: procedure MAXIMIZEACCURACYLINEARLY
2: n← upper bound of dimension in a hidden layer
3: max accuracy← 0
4: max network size← 1
5: for current size := 1 to n do
6: current accuracy←

Pipeline(model(current size))
7: if current accuracy > max accuracy then
8: max accuracy ← current accuracy
9: max network size← current size

return (max accuracy,max network size)

2) Binary Search
Given our assumptions, the premise of the binary search

method is to implement a way to determine from which side
we are approaching the cusp. Because of the fact that the slope
of the distribution is generally monotonically increasing in
magnitude in approaching the maximum accuracy, we model
the index based on the sign of the recorded slope and the
previously recorded slopes in the search.

In general, binary search can halve the input space at every
comparison, because the search takes advantage of the fact
that the dataset is sorted. During binary search, performing one
comparison to check whether the current candidate is the target
in a sorted dataset can eliminate the current candidate during
that comparison as well as all the other candidates worse than
the current one because the dataset is sorted. In other words,

linear search is removing one candidate at each step, whereas
binary search is removing half of the current input space at
each step. We adapt this binary search idea and perform it
in a similar way using slopes. Therefore, each comparison
will take at least two model evaluations for each comparison.
We introduce a variable δ that models the distance between
each model evaluation taken at ni and nj , which represent the
current number of units on which we base our comparison and
search. Figure 2 models the relationship between these three
variables in the search algorithm.

We then define γL and γU , which represent the minimum
and maximum number of units in our search space, respec-
tively. These variables will be used to keep track of the lower
and upper bounds of our search. As shown in 2a, these two
variables are set to 1 and n by default. If the search continues
appropriately, these will approach the cusp from either side.

Moreover, we define lists mL and mU for the previously
recorded slopes for the lower and upper bound side of the
maximum cusp, respectively. Initially, these lists are empty as
displayed in Figure 2a. As the search advances, the previously
recorded slopes will be appended to either list depending on
from which side the slope was taken.

After initializing these variables, the search begins by per-
forming two model evaluations at ni and nj in Figure 2a.
This would result in a negative slope, which indicates that
the upper bound conditions are changed as shown in Figure
2b. The upper bound γU is set to the n from which the slope

was estimated, and the slope is appended to the list containing
previously recorded slopes on the right side of the cusp, mU .
As displayed in this figure, the search continues to the opposite
side of the search space.

After each slope is calculated, we want to know whether
there is enough evidence to suggest that there exists a
maximum either at or near that recorded slope. We determine
the probability of a maximum by evaluating a posterior shown
in Equation 1.

Posterior:

P (maximum | m, γL, γU , δ) = P (y=m|maximum)×
P (maximum|γL, γU , δ)

(1)

This probability can be broken down into a likelihood
in Equation 2 and a prior in Equation 3. The likelihood
represents the probability of observing a maximum given a
history of maximums. This is implemented by modeling the
next maximum with a linear regression with respect to the
previously recorded maximums. This next expected maximum
is then modeled as a normal distribution with a standard
deviation equal to that of the regression as shown in Figure 3.

Likelihood:

P (y = m | maximum) = N(ŷ = β0 + β1 ∗ x, σ) (2)

(a) Binary hyperparameter search. Initial conditions.

(b) Binary hyperparameter search. First comparison.

Fig. 2: Binary hyperparameter search. A change in the sign
of the slope indicates that there is a global maximum. Binary
search rejects the side where there is no global maximum until
it finds the global maximum.

Prior:

P (maximum | γL, γU , δ) =
δ

γU − γL
(3)

The prior calculated in Equation 3 is simply the probability
of discovering the maximum at random between two points
based on the initial γL and γU . Additionally, calculating prior
probability takes O(1) time.

Fig. 3: Binary search method. When a normal distribution
is fit on the next point, points that are far from the mean
by 2 standard deviations will be assigned a very small prior
probabilities.

Algorithm 2 formalizes the binary search algorithm.

Algorithm 2 Finds maximum accurate architecture size in a
neural network via binary search

1: procedure MAXIMIZEACCURACYBINARY
2: n← upper bound of dimension in a hidden layer
3: γL ← lower bound of dimension in a hidden layer
4: γU ← n
5: δ ← sufficient distance between ni and nj
6: α← threshold probability that a maximum exists
7: mL ← []
8: mU ← []
9: midL ← []

10: midU ← []
11: max accuracy← 0
12: max network size← 1
13: while γL <= γU do
14: current size← γU−γL

2
15: current slope← getSlope(current size, δ)
16: if current slope > 0 then
17: mL ← append(mL, current slope)
18: midL ← append(midL, current size)
19: if getPosteriorProbability(n, δ, mL,midL

side=1) > α then
20: max network size← midL[len(midL)]
21: break
22: else
23: γL ← current size
24: else
25: mU ← append(mU , current slope)
26: midU ← append(midU , current size)
27: if getPosteriorProbability(n, δ, mU , midU ,

side=2) > α then
28: max network size← midU [len(midL)]
29: break
30: else
31: γU ← current size
32: max accuracy ← Pipeline(model(max network size))

return (max accuracy,max network size)

In algorithm 2, line 32, the Pipeline that we have is a
set of scripts to take a hidden layer size as input, generate
a model and run training and testing on it. Line 1 and 2
in algorithm 4 also uses the same Pipeline to automate the
training and testing for architecture candidates that iterate over.
Additionally, calculating the the posterior likelihood for being
a maximum for each candidate in the search space means that
we need to set up a threshold to accept the current candidate
as the best candidate and stop the algorithm. From empirical
evidence in two datasets that we studied, 2 standard deviations
(σ) distance from the mean for a normal distribution is enough
to accept any candidate as the architecture candidate with the
best accuracy.

Algorithm 3 Evaluates posterior probability of whether a
maximum exists between two points

1: procedure GETPOSTERIORPROBABILITY(n, δ, m, mid,
side)

2: if m == 1 then
3: likelihood← 0.5
4: else if m == 2 then
5: likelihood← norm(m[0], sigma).cdf(m[1])
6: else
7: x← mid[: −1]
8: y← m[: −1]
9: model← LinearRegression(x, y)

10: y pred← model.predict(x)
11: sigma← std(y pred)
12: yi ← model.predict(mid[−1])
13: likelihood← norm(yi, sigma).cdf(mid[−1])
14: if side == 1 then
15: likelihood← 1− likelihood
16: prior← δ

n−1
17: posterior← likelihood ∗ prior return posterior

This can be attributed to the fact that 95% of all data in a
normal distribution can be fit into 2 standard deviation within
the mean. Such usage of a predetermined acceptance threshold
would mean to stop the algorithm early and save CPU time.
A second choice would be to run the algorithm to completion
with no early stopping until each candidate checked by the
algorithm gets assigned a posterior likelihood and then pick
the one with the highest posterior likelihood.

Algorithm 4 Returns slope of secant line between two given
architecture sizes separated by δ

1: procedure getSlope(current size, δ)
2: accuracyi ← Pipeline(model(current size + δ

2))
3: accuracyj ← Pipeline(model(current size - δ2))

return accuracyi−accuracyj
δ

IV. EXPERIMENT RESULTS AND OBSERVATIONS

We run two experiments where first we sweep the hidden layer
size from 1 to 100 and second from 1 to 1000. Picking a small
value such as 100 allows us to see if the linear search would be
faster than the binary search due to overhead that comes from
the modifications that we do in the binary search. Such small
number also allows us to see if there is a global maximum
in the curve fit that we do when we plot the accuracies over
the hidden layer units. When we run the same experiment
with 1000, it allows us to see real improvement that binary
search provides. When we run sweep from 1 to 100, we fail
to observe any global maximum that would generate a curve
with a single global maximum in our Figures 4, 5, 8 and 9.
Absence of such global maximum fails the assumptions that
we explained for the binary search to be applied, therefore, we

TABLE I: Experiment results displaying the difference between linear search and binary search on the sample search architecture
search space.

Search Number of evaluations Evaluation Error
Methods Average Standard Deviation Average Standard Deviation
Linear 1000 0 0 0
Binary 6.458 0.9477 1.152 0.8915

TABLE II: Linear and Binary Search were used to find the best models for both datasets and their training and testing accuracies
are reported as well as the their sizes and the time spent on searching them. Every candidate model was trained over 15 epochs
when searching. Finding the best model via linear search took 1000 steps for both models, or 1000×15 epochs each. Finding
the best model via binary search took 11 steps for the titanic model and 10 steps for the churn model.

Model Type, Iteration, Dropout Linear
Search
Duration

Binary
Search
Duration

Best Model’s
Training
Accuracy

Best Model’s
Testing
Accuracy

Best Model’s
Architecture

Titanic Model 100 (w/o Dropout) (4) 100 steps 7 steps 81.9% 79.6% 24 nodes
Titanic Model 100 (w/ Dropout) (5) 100 steps 7 steps 78.1% 80.7% 61 nodes

Titanic Model 1000 (w/o Dropout) (6) 1000 steps 11 steps 81.9% 79.6% 787 nodes
Titanic Model 1000 (w/ Dropout) (7) 1000 steps 9 steps 83.4% 78.5% 410 nodes
Churn Model 100 (w/o Dropout) (8) 100 steps 6 steps 94.7% 77.5% 1 node
Churn Model 100 (w/ Dropout) (9) 100 steps 7 steps 96.2% 78.4% 64 nodes

Churn Model 1000 (w/o Dropout) (10) 1000 steps 10 steps 86.8% 80.2 % 804 nodes
Churn Model 1000 (w/ Dropout) (11) 1000 steps 9 steps 83.1% 78.2%% 511 nodes

cannot get global optimal solution via binary search for the
experiment where N is 100. This proves that the binary search
would fail to find the global maximum when the assumptions
are not met. However, when we run the experiment with N is
1000, we observe the existence of a global maximum (albeit
with the requirement of excluding the first few points), and
the binary search proves to find the global maximum 100
times faster than the linear search in Figures 6, 7, 10 and
11. In Table II, for runs where iteration count is 100, we
report the best accuracies and architectures found by linear
search since binary search fails and can only find suboptimal
accuracies. For runs where iteration count is 1000, linear
and binary search find the same architectures so the reported
best model accuracies are results of both search methods.
Overall, the experiments agree with the assumptions that we
laid out in the Section III-C2, i.e binary search risks missing
the global optimum if the conditions are not met, however
when the assumptions are correct, it finds the global maximum
several orders of magnitude faster than the naive approach.
Additionally, when we apply a dropout layer to the models,
for the case of Titanic 100 (Figure 5) and Churn 1000 (Figure
11), we see a decrease in the accuracies for about 3%. Also,
the best architecture candidates found are about 35% smaller
and the binary search converges faster when the dropout layer
was included to the Titanic and Churn models (Figures 7 and
11).

V. CONCLUSION

In this paper, we propose a framework to find the optimal
architecture size for binary classification problems. We employ

linear search and binary search to find such architecture size to
give the highest accuracy. We use the Titanic dataset and the
Churn Rate dataset and report a 100x improvement in finding
the best model architecture when we apply the modified binary
search compared to the linear search. We also show what
happens when the assumptions that we lay out for binary
search are not met. Binary search fails to find the global
maximum solution and is stuck on a local solution.

Fig. 4: Accuracy vs Number of Hidden Layer Units in the
Titanic Model. 100 different models were created and trained
with same input and output layer and different hidden layer.
The resulting curve of model accuracies is where the linear
and binary search are applied.

Fig. 5: Accuracy vs Number of Hidden Layer Units in the
Titanic Model. 100 different models with Dropout layer
applied were created and trained with same input and output
layer and different hidden layer. The resulting curve of model
accuracies is where the linear and binary search are applied.

Fig. 6: Accuracy vs Number of Hidden Layer Units in the Ti-
tanic Model. 1000 different models were created and trained
with same input and output layer and different hidden layer.
The resulting curve of model accuracies is where the linear
and binary search are applied.

Fig. 7: Accuracy vs Number of Hidden Layer Units in the
Titanic Model. 1000 different models with Dropout layer
applied were created and trained with same input and output
layer and different hidden layer. The resulting curve of model
accuracies is where the linear and binary search are applied.

Fig. 8: Accuracy vs Number of Hidden Layer Units in the
Churn Model. 100 different models were created and trained
with same input and output layer and different hidden layer.
The resulting curve of model accuracies is where the linear
and binary search are applied.

Fig. 9: Accuracy vs Number of Hidden Layer Units in the
Churn Model. 100 different models with Dropout layer
applied were created and trained with same input and output
layer and different hidden layer. The resulting curve of model
accuracies is where the linear and binary search are applied.

Fig. 10: Accuracy vs Number of Hidden Layer Units in the
Churn Model. 1000 different models were created and trained
with same input and output layer and different hidden layer.
The resulting curve of model accuracies is where the linear
and binary search are applied.

Fig. 11: Accuracy vs Number of Hidden Layer Units in the
Churn Model. 1000 different models with Dropout layer
applied were created and trained with same input and output
layer and different hidden layer. The resulting curve of model
accuracies is where the linear and binary search are applied.

VI. FUTURE WORK

In this study, we focused on datasets that can be modeled
as binary classification problems where the output layer is
0 or 1. In the future, investigating these methods on multi-
class classification problems or on models with more than one
hidden layer can be worthwhile.

Additionally, in this paper, we assumed that the accuracy
graph when plotted against the architecture size would have a
convex shape leading to a global maximum. In the future, we
can look into removing this assumption in order to generalize
the approach to all datasets.

ACKNOWLEDGMENT

We would like to acknowledge Drexel Society of Artificial
Intelligence for its contributions and support for this research.

REFERENCES

[1] G. Hinton et al., ”Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research Groups,” in
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012,
doi: 10.1109/MSP.2012.2205597.

[2] Alparslan, K., Alparslan, Y., and Burlick, M., “Adversarial Attacks
against Neural Networks in Audio Domain: Exploiting Principal Com-
ponents”, arXiv e-prints, 2020.

[3] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, ”Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.

[4] Alparslan, Y., Alparslan, K., Keim-Shenk, J., Khade, S., and Greenstadt,
R., “Adversarial Attacks on Convolutional Neural Networks in Facial
Recognition Domain”, arXiv e-prints, 2020.

[5] Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E, ”Im-
ageNet Classification with Deep Convolutional Neural Networks”,
published in ”Advances in Neural Information Processing Sys-
tems”, p. 1097-1105, 2012 https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[6] Ethan J Moyer and Anup Das , ”Machine learning applications
to DNA subsequence and restriction site analysis”, arXiv preprint
arXiv:2011.03544, 2020.

[7] Sutskever, I., Vinyals, O., and Le, Q. V., “Sequence to Sequence
Learning with Neural Networks”, arXiv e-prints, 2014.

[8] Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., and Bengio, Y.,
“End-to-End Attention-based Large Vocabulary Speech Recognition”,
arXiv e-prints, 2015.

[9] Zoph, B. and Le, Q. V., “Neural Architecture Search with Reinforcement
Learning”, arXiv e-prints, 2016.

[10] Simonyan, K. and Zisserman, A., “Very Deep Convolutional Networks
for Large-Scale Image Recognition”, arXiv e-prints, 2014.

[11] Szegedy, C., Liu, W., Jia, Y., et al. (2015) Going Deeper with
Convolutions. Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, Boston, MA, 7-12 June 2015, 1-9.
https://doi.org/10.1109/CVPR.2015.7298594

[12] K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for
Image Recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778, doi:
10.1109/CVPR.2016.90.

[13] D. G. Lowe, ”Object recognition from local scale-invariant fea-
tures,” Proceedings of the Seventh IEEE International Conference on
Computer Vision, Kerkyra, Greece, 1999, pp. 1150-1157 vol.2, doi:
10.1109/ICCV.1999.790410.

[14] N. Dalal and B. Triggs, ”Histograms of oriented gradients for human
detection,” 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 2005,
pp. 886-893 vol. 1, doi: 10.1109/CVPR.2005.177.

[15] M. Schuster and K. K. Paliwal, ”Bidirectional recurrent neural net-
works,” in IEEE Transactions on Signal Processing, vol. 45, no. 11,
pp. 2673-2681, Nov. 1997, doi: 10.1109/78.650093.

[16] Zoph, Barret; Le, Quoc V. (2016-11-04). ”Neural Architecture Search
with Reinforcement Learning”. arXiv:1611.01578

[17] James Bergstra, R. Bardenet, Yoshua Bengio, Balázs Kégl. Algorithms
for hyperparameters Optimization. 25th Annual Conference on Neural
Information Processing Systems (NIPS 2011), Dec 2011, Granada,
Spain. ffhal-00642998

[18] Bergstra, J. and Yoshua Bengio. “Random Search for hyperparameters
Optimization.” J. Mach. Learn. Res. 13 (2012): 281-305.

[19] Snoek, J., Larochelle, H., and Adams, R. P., “Practical Bayesian Opti-
mization of Machine Learning Algorithms”, arXiv e-prints, 2012.

[20] Saxena, S. and Verbeek, J., “Convolutional Neural Fabrics”, arXiv e-
prints, 2016.

[21] Mingzhu Shen, Kai Han, Chunjing Xu, Yunhe Wang; Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
2019, pp. 0-0

[22] Yigit Alparslan, Ethan Moyer, Edward Kim, ”Evaluating Online and
Offline Traversal Algorithms for Sparse and Accurate Neural Network
Architectures”, arXiv e-prints, 2021

[23] Rish, Irina et al. ”An empirical study of the naive Bayes classifier”,
IJCAI 2001 workshop on empirical methods in artificial intelligence,
2001, pp. 41–46

[24] Ting, SL and Ip, WH and Tsang, Albert HC. ”Is Naive Bayes a good
classifier for document classification”, International Journal of Software
Engineering and Its Applications, 2011, pp. 37–46

[25] Kim, Sang-Bum and Han, Kyoung-Soo and Rim, Hae-Chang and
Myaeng, Sung Hyon. ”Some effective techniques for naive bayes text
classification”, IEEE transactions on knowledge and data engineering,
2006, pp. 1457–1466

[26] Chong, Edwin K. P.; Żak, Stanislaw H. (2013). ”Gradient Methods”. An
Introduction to Optimization (Fourth ed.). Hoboken: Wiley. pp. 131–160.
ISBN 978-1-118-27901-4.

[27] Zhong, K., Song, Z., and Dhillon, I. S. Learning nonoverlapping
convolutional neural networks with multiple kernels. arXiv preprint
arXiv:1711.03440, 2017.

[28] Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon, I. S. ,
”Recovery guarantees for one-hidden-layer neural networks”, arXiv
preprint arXiv:1706.03175, 2017

[29] Zhang, X., Yu, Y., Wang, L., and Gu, Q. ,”Learning one hidden-layer
relu networks via gradient descent”, arXiv preprint arXiv:1806.07808,
2018.

[30] Churn Customer Prediction Dataset, published by Drexel Society
of Artificial Intelligence, December, 2021, https://github.com/drexelai/
binary-search-in-neural-nets/blob/main/ChurnModel.csv

[31] Titanic Kaggle Dataset, https://www.kaggle.com/c/titanic-dataset/data

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/2011.03544
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1711.03440
http://arxiv.org/abs/1706.03175
http://arxiv.org/abs/1806.07808
https://github.com/drexelai/binary-search-in-neural-nets/blob/main/ChurnModel.csv
https://github.com/drexelai/binary-search-in-neural-nets/blob/main/ChurnModel.csv
https://www.kaggle.com/c/titanic-dataset/data

	I Introduction
	II Related Work
	III Methodology
	III-A Assumptions
	III-A1 Network Architecture Assumption
	III-A2 Accuracy Distribution Assumption
	III-A3 Dataset Assumptions

	III-B Datasets
	III-B1 Churn dataset
	III-B2 Titanic dataset

	III-C Search
	III-C1 Linear Search
	III-C2 Binary Search

	IV Experiment Results and Observations
	V Conclusion
	VI Future Work
	References

